JPS6288566A - Precision polishing method - Google Patents

Precision polishing method

Info

Publication number
JPS6288566A
JPS6288566A JP60230167A JP23016785A JPS6288566A JP S6288566 A JPS6288566 A JP S6288566A JP 60230167 A JP60230167 A JP 60230167A JP 23016785 A JP23016785 A JP 23016785A JP S6288566 A JPS6288566 A JP S6288566A
Authority
JP
Japan
Prior art keywords
polishing
polisher
workpiece
polishing liquid
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60230167A
Other languages
Japanese (ja)
Other versions
JPH0775829B2 (en
Inventor
Osamu Imanaka
今中 治
Toshiji Kurobe
黒部 利次
Kunio Nakada
中田 邦夫
Shuji Ueda
修治 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60230167A priority Critical patent/JPH0775829B2/en
Publication of JPS6288566A publication Critical patent/JPS6288566A/en
Publication of JPH0775829B2 publication Critical patent/JPH0775829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce working cost by arranging a polisher provided on the front layer of an electrode board and a workpiece moved relatively to said polisher in polishing liquid to attract and hold abrasives to the surface of the polisher by cataphoresis under the influence of electric field. CONSTITUTION:A polisher provided on the front surface of a turnable electrode board 10 with a fine nap material 9 and a workpiece 8 pressed against the surface of the polisher by predetermined pressure to be relatively moved are arranged in polishing liquid 13 suspending fine abrasive grains 11. An electrode plate 12 is provided in the polishing liquid 13 opposedly to the electrode 10. Under the influence of electric field between both electrodes 10, 12 the fine abrasive grains 11 in the polishing liquid 13 are concentrated on the surface of polisher by the cataphoresis to promote polishing so that extremely high speed working can be carried out without losing advantages of non-contact polishing method and mass productivity improved while a satisfactory finished polished surface can be efficiently attained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、St  ウェハー、結晶フェライト、光学ガ
ラス等の硬脆性材料の精密研磨方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a precision polishing method for hard and brittle materials such as St wafers, crystalline ferrites, optical glasses, etc.

従来の技術 従来、硬脆性材料の加工には、ダイヤモンド砥石等によ
る研削加工、S iC、A I 203等の遊離砥粒を
用い鋳鉄等のラップによるラッピングの加工法がとられ
、さらに研磨法としては、ポリシャとして、Cu、Sn
等の軟質金属2人工皮革、ポリウレタン、ピッチなどを
用いたポリシングが行なわれている。
Conventional technology Conventionally, hard and brittle materials have been processed by grinding with a diamond grindstone or the like, lapping with cast iron or the like using free abrasive grains such as SiC or AI 203, and further polishing methods. is Cu, Sn as polisher.
Polishing is performed using soft metals such as 2 artificial leather, polyurethane, pitch, etc.

しかしながら、前記、研磨加工、ラッピングはいずれも
大きな応力場により材料内に先夜する転位やクラックの
活性化を伴なった破壊による加工。
However, the above-mentioned polishing and lapping are all destructive processes accompanied by the activation of dislocations and cracks in the material due to a large stress field.

塑性変形に基づく加工であるため、塑性変形の現象精度
が仕上面精度となる。したがって、脆性破砕により形成
された表面下に、マイクロクラック等の加工影響層が大
きく残留する。
Since processing is based on plastic deformation, the phenomenon accuracy of plastic deformation is the finished surface accuracy. Therefore, a large processing-affected layer such as microcracks remains under the surface formed by brittle fracture.

又、前記ボリシングに於ては、前記脆性破砕が規模のか
なり小さい状態で生じたり、あるいは熱等による塑性流
動現象となる。このため、被加工物表層は変質層となり
、残留応力もかなり犬となる。
Further, in the borizing, the brittle fracture may occur on a considerably small scale, or a plastic flow phenomenon may occur due to heat or the like. Therefore, the surface layer of the workpiece becomes a deteriorated layer, and the residual stress becomes considerably large.

電子部品材料あるいは、高精度光学部品に於ては、材料
そのものの持つ性質を変えることなく研磨を行なうこと
、又、高精度の形状を確保すること等が必要であり、こ
れを実現する加工法として以前から種々の精密研磨法が
提案され、一部実用化されているものもある。しかし、
非接触研磨法と称されるこれらの研磨法は、非接触故に
研磨速度が著しく遅く特殊の用途に限られて使用されて
いるのが現状である。この低加工性の向上を図るべく電
磁場を援用した研磨法が提案された。
For electronic component materials or high-precision optical components, it is necessary to perform polishing without changing the properties of the material itself, and to ensure a highly accurate shape, and processing methods to achieve this are necessary. Various precision polishing methods have been proposed for some time, and some of them have been put into practical use. but,
These polishing methods, which are referred to as non-contact polishing methods, have extremely slow polishing speeds because they are non-contact, and are currently used only for special purposes. In order to improve this low workability, a polishing method using an electromagnetic field has been proposed.

微粉砥粒を液中に懸濁させると、両者の誘電率の差に基
づいて粒子は自然に帯電する。この研磨液に電極を挿入
し電圧を印加すると、粒子は帯電状態に応じて電極方向
に移動する。すなわち、粒子は電気泳動する。本現象を
援用した精密研磨法の検討が行われた(黒部・今中ほか
、昭和66年年度様学会春季大会学術講演会論文集、P
777)。
When fine abrasive grains are suspended in a liquid, the particles are naturally charged based on the difference in dielectric constant between the two. When an electrode is inserted into this polishing liquid and a voltage is applied, the particles move toward the electrode depending on the charged state. That is, the particles undergo electrophoresis. A precision polishing method utilizing this phenomenon was investigated (Kurobe, Imanaka et al., Proceedings of the 1986 Spring Conference of the Japan Society of Fine Arts, p.
777).

研磨装置として第4図および第5図に示す2通りの方法
が開発され、それぞれ装置I、装装置と呼称されている
As a polishing apparatus, two methods shown in FIGS. 4 and 5 have been developed, and are respectively called apparatus I and polishing apparatus.

第4図に示す装置Iにおいて、1は加工液、2は下部回
転軸2aに支持されて回転するポリシャ、3は被加工物
、4はブラシ、5は上部回転軸6aに支持されて回転す
る被加工物ホルダ、6は研磨槽である。この装置lは、
被研磨材を貼布した上部回転軸と対向電極をなす下部回
転軸を研磨槽中に浸漬してそれらを相対運動させて研磨
を行う形式であり、電気泳動により砥粒を被加工物側に
集中させて研磨を行うものである。
In the apparatus I shown in FIG. 4, 1 is a machining fluid, 2 is a polisher that rotates while being supported by a lower rotating shaft 2a, 3 is a workpiece, 4 is a brush, and 5 is rotating while being supported by an upper rotating shaft 6a. The workpiece holder 6 is a polishing tank. This device l is
In this method, polishing is performed by immersing the upper rotating shaft covered with the material to be polished and the lower rotating shaft forming the counter electrode in a polishing tank and moving them relative to each other. Polishing is performed in a concentrated manner.

第5図に示す装置■において、5Cは被加工物ホルダ、
7は電極である。この装置■は、加工物と電極を別個に
独立させて液中に設定しており、研磨槽の大きさに応じ
て幾つもの加工物を液中に浸漬できる特徴を有している
In the apparatus ■ shown in FIG. 5, 5C is a workpiece holder;
7 is an electrode. This device (2) has the workpiece and the electrode set separately in the liquid, and has the feature that a number of workpieces can be immersed in the liquid depending on the size of the polishing tank.

発明が解決しようとする問題点 しかしながら上記のような研磨装置では、以下に示す問
題点がある。
Problems to be Solved by the Invention However, the polishing apparatus described above has the following problems.

装置Iおよび装置■の場合、被加工物と対向電極である
ポリシャ2との間隙を均一にしかも適切な間隔で保つ必
要があり、もしも間隙が勾配を有していると研磨状態も
不均一なものとなるため、本研磨法は必然的に高精度な
高価な機械を必要とする。また装置Iと装置■は、共に
在来の非接触研磨法より加工速度は向上したとはいえ、
接触研妄法に比べるとかなり遅く、量産性の観点からは
依然問題を内包しているといえる。また、研磨原理から
みて本研磨法は平面研磨に限定されるという側面を有し
ている。電子部品材料やレンズ等の光学部品材料などの
量産部品には曲面を有するものが多く、それらの部材に
対しては本研磨法はあまり効果がないように思われる。
In the case of apparatus I and apparatus II, it is necessary to keep the gap between the workpiece and the polisher 2, which is the counter electrode, uniform and at an appropriate distance. If the gap has a slope, the polishing condition may be uneven. Therefore, this polishing method necessarily requires a high-precision and expensive machine. Furthermore, although both Device I and Device II have improved processing speeds compared to conventional non-contact polishing methods,
It is considerably slower than the contact delirium method, and it can be said that it still has problems from the perspective of mass production. Furthermore, in view of the polishing principle, this polishing method has the aspect that it is limited to flat surface polishing. Many mass-produced parts, such as electronic component materials and optical component materials such as lenses, have curved surfaces, and this polishing method does not seem to be very effective for these components.

問題点を解決するための手段 上記問題点を解消するために本発明の精密研磨方法は、
電極盤表層に軟質の多孔質材料あるいは微細毛質材料を
設けたポリシャと、このポリシャ上に所定の低面圧力で
押し付けられ相対運動する被加工物とを研磨剤を液体に
懸濁した研磨液中に配置し、さらに、この研磨液中に上
記電極盤に対向させて電極板を設け、電場の影響下に於
て、研磨液中の研磨剤を前記ポリシャ表層に電気泳動に
より引き付け集中させるとともに保持させ、被加工物表
面に作用させるものである。
Means for Solving the Problems In order to solve the above problems, the precision polishing method of the present invention includes:
A polisher with a soft porous material or fine hair material provided on the surface of the electrode plate, and a workpiece that is pressed against the polisher with a predetermined low surface pressure and moves relative to each other are combined using a polishing solution containing an abrasive suspended in a liquid. Further, an electrode plate is provided in the polishing liquid opposite to the electrode plate, and under the influence of an electric field, the polishing agent in the polishing liquid is electrophoretically attracted and concentrated on the surface layer of the polisher. It is held and applied to the surface of the workpiece.

作  用 ポリシャを表層に設けた電極盤と、被加工物を設置して
いる周辺の研磨液中に上記電極盤と対向させて電極板を
設け、これらの両電極間に電圧を印加することから電場
の影響下で、研磨液中の微粒研磨剤が、ポリシャ表面に
電気泳動現象により集中し、保持され、この状態で被加
工物が設置され所定の低面圧力で押し付けられている部
分へ送り込まれ、被加工物に作用し研磨が進行すること
から、非接触研磨法の利点を失うことなく、しかも極め
て高速で加工出来、量産性を向上するとともに良好な研
磨仕上げ面を効率良く実現できる。
The process consists of an electrode plate with a working polisher on its surface, an electrode plate facing the electrode plate in the polishing liquid around the workpiece, and a voltage applied between these two electrodes. Under the influence of an electric field, the fine abrasive particles in the polishing liquid are concentrated and held on the surface of the polisher by electrophoresis, and in this state are fed to the part where the workpiece is installed and pressed with a predetermined low surface pressure. Since this process acts on the workpiece and polishing progresses, the advantages of the non-contact polishing method are not lost, and processing can be performed at extremely high speeds, improving mass productivity and efficiently achieving a good polished surface.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。第1図は、本発明の加工原理を示す模式図であ
る。8は被加工物、9は軟質微細毛質材料、1oは電極
盤であり、電極盤10と軟質微細毛質材料9はポリシャ
を構成する。まだ、11は微粒研磨剤、12は電極板、
13は研磨液である。ここでポリシャ側を陽極とし、電
極板12との間に直流電圧を印加し、電場を与える。こ
れにより、微粒研磨剤に電気泳動を生じさせ、軟質微細
毛質材料9の表面に微粒研磨剤を引き付け保持させた状
態にし、被加工物8に作用させ、研磨を行なう。この時
、被加工物8は軟質微細毛質材料9に極低荷重で押し付
けられる。
EXAMPLE An example of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing the processing principle of the present invention. 8 is a workpiece, 9 is a soft fine hair material, 1o is an electrode plate, and the electrode plate 10 and the soft fine hair material 9 constitute a polisher. Still, 11 is a fine abrasive, 12 is an electrode plate,
13 is a polishing liquid. Here, the polisher side is used as an anode, and a DC voltage is applied between it and the electrode plate 12 to provide an electric field. As a result, the fine abrasive particles undergo electrophoresis, and the fine abrasive particles are attracted to and held on the surface of the soft fine hair material 9, and are applied to the workpiece 8 to perform polishing. At this time, the workpiece 8 is pressed against the soft fine hair material 9 with an extremely low load.

第2図は、本発明の精密研磨法を行なう研磨装置の一実
施例である。第2図において8は、Si単結晶、光学ガ
ラス等の被加工物、14はその貼り付けホルダーであり
、15は貼り付けホルダー14を支持し貼り付けホルダ
ー14に接着されて回転する軸受部材で、この軸受部材
15に対し貼り付けホルダー14は軸方向に自由に摺動
可能である。この軸受部材16は、駆動モーター16に
より、ベルト17を介して10 rpm −50Orp
m  で回転する。1日は回転テーブルであり、駆動モ
ーター19によりベル)20を介して10〜600rp
mで回転する。21は白金、ステンレス等の電離等を起
こしにくい材料の電極盤である。この電極盤21と回転
テーブル18とは、非導電性フィルム22を介して絶縁
されている。電極盤21の表層には軟質微細毛質人工皮
革23を設けた。なお、軟質微細毛質人工皮革23のか
わりに、軟質の多孔質材料である発泡ポリウレタンシー
トを用いることもできる。研磨液24は、A12Q3.
Ceち等の0.1μm程度の研磨剤をアルコールあるい
は水に懸濁して用いた。26は電極盤21との間に電場
を形成するだめの電極である。26はブラシ、27は電
圧計、28は電流計であり、○〜5ooVを印加する。
FIG. 2 shows an embodiment of a polishing apparatus for carrying out the precision polishing method of the present invention. In FIG. 2, 8 is a workpiece such as Si single crystal or optical glass, 14 is a holder for attaching the workpiece, and 15 is a bearing member that supports the attaching holder 14 and is attached to the attaching holder 14 to rotate. The attachment holder 14 can freely slide in the axial direction with respect to the bearing member 15. This bearing member 16 is driven by a drive motor 16 through a belt 17 at a speed of 10 rpm -50 Orp.
Rotates at m. 1st is a rotary table, driven by a drive motor 19 through a bell) 20 from 10 to 600 rpm
Rotate at m. 21 is an electrode plate made of a material that does not easily cause ionization, such as platinum or stainless steel. This electrode plate 21 and rotary table 18 are insulated via a non-conductive film 22. A soft fine hairy artificial leather 23 was provided on the surface layer of the electrode plate 21. Note that instead of the soft fine hair artificial leather 23, a foamed polyurethane sheet that is a soft porous material can also be used. The polishing liquid 24 is A12Q3.
An abrasive having a diameter of about 0.1 μm, such as Cechi, was suspended in alcohol or water. Reference numeral 26 denotes an electrode that forms an electric field between it and the electrode plate 21. 26 is a brush, 27 is a voltmeter, and 28 is an ammeter, which applies ○ to 5ooV.

但し、29は研磨機本体ペースであり、30は被加工物
に所定の押し付け荷重を与える重りである。
However, 29 is a polishing machine body pace, and 30 is a weight that applies a predetermined pressing load to the workpiece.

以上のように構成された研磨装置に於て、以下、その動
作を説明する。
The operation of the polishing apparatus configured as described above will be explained below.

まず、貼り付けホルダー14に被加工物8を接着貼り付
けし、前加工を研削あるいはラッピング等により施し、
軸受部材16にセットする。この時、被加工物をポリシ
ャに所定の圧力で押し付けるだめに重り3Qをセットす
る。さらに研磨@24中に電場を形成させるため、所定
の電圧を電極盤21を陽極とし電極26との間に印加す
る。この電場で、研磨液中のA4゜03.CeO2等の
微粒砥粒に電気泳動を生じさせ、軟質微細毛質人工皮革
23の表面に引き付け保持させる。この状態で回転テー
ブル18及び、被加工物8を、それぞれ所定の回転数で
回転させ、研磨を行なう。
First, the workpiece 8 is adhesively attached to the attachment holder 14, and pre-processed by grinding or lapping.
Set it on the bearing member 16. At this time, a weight 3Q is set to press the workpiece against the polisher with a predetermined pressure. Furthermore, in order to form an electric field during polishing@24, a predetermined voltage is applied between the electrode plate 21 and the electrode 26 using the electrode plate 21 as an anode. With this electric field, A4°03. Fine abrasive grains such as CeO2 are caused to undergo electrophoresis and are attracted to and held on the surface of the soft, fine hairy artificial leather 23. In this state, the rotary table 18 and the workpiece 8 are rotated at predetermined rotational speeds to perform polishing.

この研磨機を用いて、φ8oの光学ガラスBK−7を研
磨した結果を第3図に示す。第3図において31は、電
圧を印加せずに研磨したもので、押し付け圧力は172
/cr1iで、ポリシャの回転数。
FIG. 3 shows the results of polishing optical glass BK-7 with a diameter of 8 o using this polishing machine. In Fig. 3, 31 is polished without applying voltage, and the pressing pressure is 172.
/cr1i is the rotation speed of the polisher.

被加工物の回転数はいずれも60rpmである。The rotational speed of each workpiece was 60 rpm.

BはAと同様の研磨結果で、押し付け圧力が35?/c
rAの場合である。C,DはそれぞれA、  Bと同様
の条件で、電極間に130Vの電圧を印加した場合であ
り、極めて大きな効果があられれていることがわかる。
B has the same polishing result as A, but the pressing pressure is 35? /c
This is the case for rA. C and D are the cases where a voltage of 130 V was applied between the electrodes under the same conditions as A and B, respectively, and it can be seen that a very large effect was obtained.

以上のように本実施例によれば、R,nax○、α万μ
m以下の良好な研磨面が容易に得られ、又、研磨速度が
極めて速くなり、効率的に研磨加工を行なうことが出来
る。
As described above, according to this embodiment, R, nax○, α million μ
A good polished surface of less than m can be easily obtained, the polishing speed becomes extremely high, and polishing can be carried out efficiently.

なお、上記実施例は平面研磨についてのものであるが、
本発明の研磨法においては、加工時に砥粒が被加工物に
作用する物理的メカニズムは、接触研磨法と基本的に同
様であるため、曲面の研磨にも適用でき、同様の効果が
得られることは言うまでもない。
Note that although the above example is about surface polishing,
In the polishing method of the present invention, the physical mechanism in which abrasive grains act on the workpiece during processing is basically the same as that in the contact polishing method, so it can be applied to polishing curved surfaces and the same effects can be obtained. Needless to say.

発明の効果 このように本発明は、電極盤表層に軟質の多孔質材料あ
るいは、微細毛質材料を設けたポリシャと、このポリシ
ャ上に所定の低面圧力で押し付けられ相対運動する被加
工物とを、研磨剤を液体に懸濁した研磨液中に配置し、
さらに、この研磨液中に上記電極盤に対向させて電極板
を設け、電場の影響下に於て研磨中の研磨剤を前記ポリ
シャ表面に電気泳動により引き付け集中させるとともに
、これを保持させ、被加工物表面に作用させることによ
り、非接触研磨法の利点を失うことなく、しかも被加工
物への研磨剤の有効な作用により研磨速度が著しく増加
するため、量産性が向上し、加工コストを容易に低減で
きる。また、本発明の研磨法においては、加工時に砥粒
が被加工物に作用する物理的メカニズムは、接触研磨法
と基本的に同様であるだめ、曲面の研磨にも適用でき、
同様の効果を得ることができる。
Effects of the Invention As described above, the present invention comprises a polisher in which a soft porous material or a fine hair material is provided on the surface layer of an electrode plate, and a workpiece that is pressed against the polisher with a predetermined low surface pressure and moves relative to the polisher. is placed in a polishing liquid in which an abrasive is suspended in a liquid,
Furthermore, an electrode plate is provided in this polishing liquid opposite to the electrode plate, and under the influence of an electric field, the polishing agent being polished is attracted and concentrated on the surface of the polisher by electrophoresis, and is held and By applying the abrasive to the surface of the workpiece, the advantages of non-contact polishing methods are not lost, and the effective action of the abrasive on the workpiece significantly increases the polishing speed, improving mass productivity and reducing processing costs. Can be easily reduced. In addition, in the polishing method of the present invention, the physical mechanism by which abrasive grains act on the workpiece during processing is basically the same as that in the contact polishing method, so it can also be applied to polishing curved surfaces.
A similar effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の加工原理を示す模式図、第2図は本発
明を用いた研磨装置の一実施例を示す正研磨を行なう研
磨装置の斜視図である。 13.24・・・・・・研磨液、8・・・・・・被加工
物、10゜21・・・・・・電極盤、9,23・・・・
・・軟質微細毛質材料、12.26・・・・・・電極板
、11・・・・・・微粒研磨剤。
FIG. 1 is a schematic diagram showing the processing principle of the present invention, and FIG. 2 is a perspective view of a polishing device for performing normal polishing, showing an embodiment of the polishing device using the present invention. 13.24... Polishing liquid, 8... Workpiece, 10°21... Electrode plate, 9,23...
... Soft fine hair material, 12.26 ... Electrode plate, 11 ... Fine abrasive.

Claims (1)

【特許請求の範囲】[Claims] 旋回可能な電磁盤の表層に軟質の多孔質材料あるいは微
細毛質材料を設けたポリシャと、前記ポリシャの表面上
に所定の低面圧力で押し付けられ相対運動する被加工物
とを、研磨剤を懸濁した研磨液中に配置し、さらに、こ
の研磨液中に前記電極盤に対向させて電極板を設け、電
場の影響下に於て、研磨液中の研磨剤を前記ポリシャの
表面に電気泳動により引き付け保持させ、被加工物表面
に作用させることを特徴とする精密研磨方法。
A polisher in which a soft porous material or fine hair material is provided on the surface layer of a rotatable electromagnetic disc and a workpiece that is pressed against the surface of the polisher and moves relative to each other with a predetermined low surface pressure are heated using an abrasive. The polisher is placed in a suspended polishing liquid, and further, an electrode plate is provided in this polishing liquid opposite to the electrode plate, and under the influence of an electric field, the polishing agent in the polishing liquid is electrically applied to the surface of the polisher. A precision polishing method characterized by attracting and holding by electrophoresis and applying it to the surface of the workpiece.
JP60230167A 1985-10-16 1985-10-16 Precision polishing method Expired - Lifetime JPH0775829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60230167A JPH0775829B2 (en) 1985-10-16 1985-10-16 Precision polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230167A JPH0775829B2 (en) 1985-10-16 1985-10-16 Precision polishing method

Publications (2)

Publication Number Publication Date
JPS6288566A true JPS6288566A (en) 1987-04-23
JPH0775829B2 JPH0775829B2 (en) 1995-08-16

Family

ID=16903648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230167A Expired - Lifetime JPH0775829B2 (en) 1985-10-16 1985-10-16 Precision polishing method

Country Status (1)

Country Link
JP (1) JPH0775829B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045089A1 (en) * 1997-04-09 1998-10-15 Hitachi, Ltd. Manufacturing method, polishing method and polishing device for semiconductor devices
KR100396052B1 (en) * 2001-06-15 2003-08-27 한국기계연구원 Equipment for planarization machining
KR100408932B1 (en) * 1996-11-18 2003-12-11 가부시키가이샤 히타치세이사쿠쇼 Abrading method for semiconductor device
CN108436748A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of blade edge liquid metal burnishing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163055A (en) * 1981-03-25 1982-10-07 Toyo Kenmazai Kogyo Kk Surface polishing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163055A (en) * 1981-03-25 1982-10-07 Toyo Kenmazai Kogyo Kk Surface polishing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408932B1 (en) * 1996-11-18 2003-12-11 가부시키가이샤 히타치세이사쿠쇼 Abrading method for semiconductor device
WO1998045089A1 (en) * 1997-04-09 1998-10-15 Hitachi, Ltd. Manufacturing method, polishing method and polishing device for semiconductor devices
KR100396052B1 (en) * 2001-06-15 2003-08-27 한국기계연구원 Equipment for planarization machining
CN108436748A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of blade edge liquid metal burnishing device
CN108436748B (en) * 2018-05-21 2024-04-23 浙江工业大学 Blade edge liquid metal burnishing device

Also Published As

Publication number Publication date
JPH0775829B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US5032238A (en) Method of and apparatus for electropolishing and grinding
US6420265B1 (en) Method for polishing semiconductor device
JP3909619B2 (en) Apparatus and method for mirror processing of magnetic disk substrate
JPH11291165A (en) Polishing device and polishing method
JPS6288566A (en) Precision polishing method
JP2001353648A (en) Device and method of grinding elid mirror surface of large diameter work
JPH11347843A (en) Electrolytic composite polishing method for metal pipe peripheral face and photosensitive drum substrate formed by this method
WO2005095053A1 (en) Linearly advancing polishing method and apparatus
JPS6341706B2 (en)
JPS62152676A (en) Manufacture of diamond grindstone
JPS6322257A (en) Face grinding method and device for machining flat workpiece
JP3845209B2 (en) Lens polishing method and apparatus
JP3703632B2 (en) Truing and dressing equipment for grinding tools
KR960005296B1 (en) Device and method for centerless grinding cylinderical surfaces externally
US3327430A (en) Internal cam finishing apparatus
JP2001088016A (en) Electrophoresis polishing agent and manufacture of formed body using it and optical device
JPH04201178A (en) Polishing device and polishing method
JPH06335855A (en) Parallel plane working jig
JP2001347447A (en) Tape polishing device
JPS5695578A (en) Polishing device
JPH10138124A (en) Grinding method, and its device
JPH01216764A (en) Polishing device and polishing method
JP2001121408A (en) Electrophoretic polishing method and electrophoretic abrasive
JPH01153277A (en) Polishing tool
JPH1158230A (en) Dressing device of grinding tool

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term