WO1998045089A1 - Manufacturing method, polishing method and polishing device for semiconductor devices - Google Patents

Manufacturing method, polishing method and polishing device for semiconductor devices Download PDF

Info

Publication number
WO1998045089A1
WO1998045089A1 PCT/JP1998/001621 JP9801621W WO9845089A1 WO 1998045089 A1 WO1998045089 A1 WO 1998045089A1 JP 9801621 W JP9801621 W JP 9801621W WO 9845089 A1 WO9845089 A1 WO 9845089A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing pad
workpiece
scraping
pad
Prior art date
Application number
PCT/JP1998/001621
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Ookawa
Hiroyuki Kojima
Hidemi Sato
Takashi Nishiguchi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1998045089A1 publication Critical patent/WO1998045089A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, a polishing method, and a polishing apparatus.
  • the working surface of the polishing pad In the polishing step using a polishing pad, the working surface of the polishing pad generally deteriorates as the processing time increases. When the work surface of the polishing pad deteriorates, the actual polishing amount becomes smaller than the set polishing amount. Therefore, in the past, con- crete dressing and the like were implemented to prevent the work surface of the polishing pad from deteriorating.
  • con- crete dressing and the like were implemented to prevent the work surface of the polishing pad from deteriorating.
  • concurrent dressing a workpiece to be polished and a grindstone for dressing the polishing pad are placed on a rotating polishing pad to polish the workpiece and remove the polishing pad. Dressing will proceed at the same time.
  • Such concurrent dressing can be done by CMP It is also commonly used in equipment.
  • the polishing pad is greatly consumed by the dressing, and the polishing pad must be replaced in an early cycle. In this case, the cost of the polishing pad is increased, and the burden on the operator is increased.
  • the reason for the high consumption of the polishing pad is that, in concurrent dressing, the surface of the polishing pad is removed together with the deposits using a diamond whetstone.
  • the wear of the grinding wheel is severe, and the grinding wheel must be replaced in a fast cycle. In this case, the cost of the grinding wheel is increased, and the burden on the operator is increased.
  • the cause of the high wear of the grinding wheel is that the diamond abrasive grains fixed on the surface of the grinding wheel are worn.
  • interval dressing it is not necessary to install a wafer and a grindstone on the polishing pad at the same time, so the polishing pad can be downsized.However, deposits on the polishing pad surface during polishing are possible. As the polishing time elapses, the polishing efficiency decreases with the passage of polishing time, and the distribution of the polishing amount in the wafer surface fluctuates. You. This is an important issue related to the quality of semiconductor devices.
  • the wafer surface When the wafer surface is cut using a force or a byte that grinds the wafer surface using a grindstone, or when the wafer surface is wrapped using a polishing platen, the wafer surface is scratched using a polishing pad. When removing the wafer, the wafer needs to be polished.
  • the wafer is primarily polished using a polishing pad with a high elastic modulus to remove this scratch, and then a polishing pad with a lower elastic modulus is used. It is necessary to perform secondary polishing using
  • an object of the present invention is to provide a method of manufacturing a semiconductor device, a polishing method, and a polishing apparatus, which can obtain a stable polishing efficiency and reduce the consumption of a polishing pad. It is in. Disclosure of the invention
  • a method for manufacturing a semiconductor device comprising: supplying a slurry to a polishing pad to polish a substrate; The particles for scraping off the deposits on the surface and the slurry are supplied to the polishing pad surface separately or as a mixture, and the surface to be processed of the substrate and the polishing pad surface are relatively positioned.
  • a method for manufacturing a semiconductor device which comprises polishing a substrate to be moved.
  • a method of manufacturing a semiconductor device having a step of polishing a substrate, wherein a grinding fluid or a slurry is supplied to the surface of the grindstone.
  • the first polishing is performed on the substrate by relatively moving the grindstone and the substrate, and the particles and the slurry for removing the deposits for removing the deposits on the surface of the polishing pad are formed.
  • a method of manufacturing a semiconductor device having a step of polishing a substrate, wherein the slurry is formed on a surface of a polishing plate made of metal or resin.
  • the first polishing is performed on the substrate by moving the polishing platen and the substrate relatively to each other, and the particles and slurry for removing the deposits for scraping the deposits on the surface of the polishing pad are supplied.
  • the second polishing is performed on the substrate by supplying the polishing pad surface separately or as a mixture to the polishing pad surface and relatively moving the polishing pad surface and the processed surface of the substrate.
  • a method for manufacturing a conductive device is provided.
  • a semiconductor device manufacturing method for supplying a slurry to a polishing pad and polishing a substrate.
  • the particles for scraping out the deposits on the polishing pad surface and the slurry are supplied separately or as a mixture to the polishing pad surface, and the work surface of the substrate and the polishing pad surface are compared with each other.
  • the first polishing is applied to the substrate, and the polishing pad used in the first polishing step is also subjected to the second polishing using the second polishing pad having a small surface rigidity.
  • the particles for removing deposits for removing deposits on the surface of the polishing pad and the slurry are used. Are supplied separately or as a mixture onto the polishing pad surface, and the workpiece and the polishing pad surface are relatively moved while pressing the workpiece surface of the workpiece against the polishing pad surface.
  • a mixture of the particles for removing the deposits and the slurry for scraping off the deposits on the surface of the polishing pad is provided on the surface of the polishing pad.
  • a base a rotatable polishing plate, and a rotation center of the polishing plate provided on the polishing plate and provided on the surface thereof
  • a polishing pad having a plurality of drain passages formed concentrically around a center, wherein the arm is fixed to the base, and the arm is aligned with an arrangement pitch of the plurality of drain passages.
  • a polishing apparatus comprising: a plurality of scraping pieces attached to a polishing table; wherein each of the plurality of scraping pieces scrapes deposits from each drainage channel when the polishing platen rotates. Is provided.
  • a chemical mechanical polishing apparatus for chemically and mechanically removing and flattening irregularities on the surface of a workpiece.
  • a supply device for supplying a mixture of the particles for scraping the deposits and the slurry for scraping the deposits on the surface of the polishing pad onto the surface of the polishing pad, holding the workpiece and holding the workpiece.
  • a chemical mechanical polishing apparatus is provided, comprising at least a holding member for pressing against a surface of a polishing pad, and a device for relatively moving the workpiece and the polishing pad. .
  • a grinding fluid or a slurry is used in a polishing method using a grindstone and a polishing pad.
  • Particles for deposit removal for supplying first to the surface of the grindstone and relatively moving the grindstone and the workpiece to perform the first polishing on the workpiece and scraping the deposit on the polishing pad surface
  • the slurry are supplied separately or as a mixture to the surface of the polishing pad to move the surface of the polishing pad and the surface of the workpiece relative to each other.
  • the slurry is made of metal or resin.
  • the first polishing is performed on the workpiece by supplying the workpiece to the surface of the polishing table and moving the polishing table and the workpiece relative to each other, and a deposit for scraping off the deposit on the polishing pad surface.
  • the polishing particles and the slurry are supplied separately or as a mixture to the surface of the polishing pad to relatively move the surface of the polishing pad and the workpiece.
  • the polishing method of the present invention for achieving the above object, in the polishing method for supplying a slurry to the polishing pad and polishing the workpiece, The particles for scraping out the deposits and the slurry are supplied to the surface of the polishing pad separately or as a mixture to move the surface of the workpiece and the surface of the polishing pad relatively.
  • the workpiece is subjected to the first polishing, and the polishing pad used in the first polishing step is also subjected to the second polishing using the second polishing pad having a small surface rigidity.
  • the polishing method characterized by performing the polishing of the above is provided.
  • FIG. 1 is a block diagram showing a polishing apparatus according to an embodiment of the present invention
  • FIG. 2 is a block diagram schematically showing the polishing apparatus of FIG. 1 as viewed from above
  • FIG. 3 is an explanatory view showing the appearance of the surface of the polishing pad of the polishing apparatus.
  • FIG. 3 (a) is an explanatory view showing the appearance of the polishing pad of the polishing apparatus of FIG. 1 according to the present invention.
  • FIG. 3 (b) is an explanatory view showing a state on a polishing pad of a conventional polishing apparatus.
  • FIG. 4 is a diagram (part 1) showing the results of a comparison experiment between the polishing apparatus of the present invention shown in FIG. 1 and a conventional polishing apparatus, and FIG.
  • FIG. 5 shows the polishing apparatus of the present invention shown in FIG. Fig. 6 shows the results of a comparative experiment between the polishing apparatus of the present invention and the conventional polishing apparatus shown in Fig. 1, and Fig. 6 shows the results of a comparative experiment between the polishing apparatus of the present invention and the conventional polishing apparatus.
  • FIG. 7 is a diagram (part 4) showing the results of a comparison experiment between the polishing apparatus of the present invention shown in FIG. 1 and a conventional polishing apparatus
  • FIG. FIG. 5 is a diagram (part 5) showing the results of a comparative experiment between the polishing apparatus of the present invention of FIG. 1 and a conventional polishing apparatus
  • FIG. 9 shows a polishing apparatus of another embodiment of the present invention.
  • FIG. 7 is a diagram (part 4) showing the results of a comparison experiment between the polishing apparatus of the present invention shown in FIG. 1 and a conventional polishing apparatus
  • FIG. 5 is a diagram (part 5) showing the results of a comparative experiment between the polishing apparatus
  • FIG. 10 is a schematic configuration diagram showing a processing process of performing roughing and finishing using a polishing apparatus according to still another embodiment of the present invention.
  • FIG. 11 is a schematic configuration diagram showing a machining process for performing rough machining and finish machining using a polishing apparatus according to still another embodiment of the present invention.
  • FIG. 1 shows a main part of the polishing apparatus of the present embodiment.
  • This polishing apparatus is a so-called chemical mechanical polishing apparatus (CMP apparatus).
  • CMP apparatus chemical mechanical polishing apparatus
  • a chuck 3 for holding a workpiece 1 via an elastic body 2 and a polishing pad 4 are detachable.
  • a polishing platen 5 attached to the base, a base 6 surrounding the lower surface and side surfaces of the polishing platen 5 so as not to hinder the rotation of the polishing platen 5, and a polishing pad surface (work surface).
  • a working fluid supply device 10 for supplying a working fluid 7;
  • An electric field generating device 20 for generating an electric field in a specific region including a part of the polishing pad 4 is shown.
  • the polishing apparatus also includes a first rotation mechanism for rotating the polishing table 5, a second rotation mechanism for rotating the chuck 3, and a feeding mechanism for moving the chuck 3 in the X direction.
  • a pressing mechanism for pressing the workpiece 1 against the polishing pad surface is provided.
  • the first rotating mechanism includes a servomotor and a speed reducer, and transmits the output of the servomotor to the rotating shaft of the polishing table 5 via the speed reducer to rotate the polishing table 5.
  • the feed mechanism also includes a servo motor and a speed reducer.
  • the output of the servo motor is transmitted to the spline formed on the ball screw for chuck feed via the speed reducer, and the chuck 3 is moved in the X direction.
  • Move to The pressing mechanism moves the chuck 3 in the z direction using an air cylinder, and presses the workpiece 1 against the polishing pad surface.
  • the workpiece 1 is, for example, a silicon wafer in a stage where wirings are being multi-layered, and a SiO 2 interlayer insulating film is formed on the surface thereof. Under the interlayer insulating film, a wiring group having a fine pattern is formed. For this reason, a level difference occurs in the interlayer insulating film between a portion where the wiring exists and a portion where the wiring does not exist.
  • the present polishing apparatus is used to flatten the unevenness of the surface of the interlayer insulating film or to polish a metal film constituting a wiring group.
  • a mixture of the slurry 7 and particles for scraping out deposits for scraping out deposits on the surface of the polishing pad is used in the slurry.
  • the function and effect of the sediment scraping particles will be described later in detail.
  • a slurry having a solid phase reactivity with a member having a surface to be processed is used.
  • an alkaline solution containing about 20% by weight of SiO 2 abrasive grains (silica abrasive grains) having a particle size of about 30 nm may be used.
  • the polishing pad 4 is formed of a material having excellent wear resistance and chemical resistance.
  • a polishing pad made of a rigid foamed polyurethane-based synthetic resin is used. The surface of the polishing pad has a predetermined surface roughness, and a plurality of minute concave portions corresponding to the surface roughness are formed on the surface.
  • the machining fluid supply device 10 includes a tank 11 for temporarily storing a machining fluid 7 (ie, a mixture of slurry and sediment scraping particles) sent from outside, and a sediment scraping particle in the tank 11 ⁇ . ⁇ ⁇ Agitator 12 for agitating these so that the abrasive grains do not settle, pump 14 for pumping the machining fluid in tank 11 from supply pipe 13, and supply of machining fluid per unit time Adjusting the volume is configured with a valve 15 '.
  • the slurry and sediment scraping particles may be supplied separately, taking care to mix well on the polishing pad surface.
  • the electric field generator 20 includes a disk-shaped electrode plate 21 disposed directly below the polishing pad 4, a rail 22 attached to the base 6, and a motor drive not shown. It is fixed to the table 23 and the table 23 that moves directly along the rail 22 and moves in the radial direction (X direction) of the polishing pad 4 while maintaining a certain distance from the surface of the polishing pad. It comprises an electrode plate 24, a power supply 25 built in the base 6, and a switch 26. The power supply 25 and the electrode plate 21 are electrically connected via a slip ring 8 attached to the rotating shaft of the polishing platen 5, and this electrical connection is made by the polishing platen. It is maintained while 5 is rotating. As shown in FIG.
  • the moving area 24a of the electrode plate 24 and the moving area 3a of the chuck 3 are set so as not to overlap with each other. Then, when the switch 26 is turned on, an electric field is formed between the electrode plates 21 and 24. The strength of the electric field is adjusted by increasing or decreasing the voltage of the power supply 25. In addition, when the position of the electrode plate 24 is moved in the X direction, an electric field is generated, and the region moves accordingly.
  • the configuration of the electric field generator 20 is not limited to that described above. Instead of moving the electrode plates 24 along the rails 22, a plurality of electrode plates 24 are previously set on the rails 22 at regular intervals. Then, any one of these electrode plates may be selected and an electric field may be generated there. In the electric field generator 20 of the present embodiment, the table 23 slides on the rail 22. However, if this sliding portion can be omitted, the durability of the device is improved structurally.
  • a processing liquid 7 is supplied onto the surface of the polishing pad using these components, and a wafer is provided on the surface of the polishing pad.
  • the process of pressing the surface to be processed 1 and the process of relatively moving the surface of the polishing pad and the surface of the wafer 1 to be processed are simultaneously performed, for example, by the mechanical and chemical polishing action of the processing liquid 7.
  • fine irregularities on the surface to be processed are removed, and finally, the surface to be processed is mirror-finished.
  • the deposits generated by the polishing are scraped off from the surface of the polishing pad by the deposit scraping particles.
  • FIG. 3 (a) shows how the deposits on the polishing pad surface are scraped out.
  • a working fluid 7 is supplied between the surface of the polishing pad 4 and the surface to be processed of the wafer 1.
  • the working liquid 7 is composed of a liquid 71 serving as a solvent, abrasive grains 72 for polishing, and particles 73 for scraping out deposits.
  • the sediment scraping particles 73 are made of a polymer (for example, having a longitudinal elastic modulus of about 2 to 3 Gp). It is a spherical member made of acrylic resin or ethylene resin.
  • polishing of the surface to be processed of the wafer 1 is mainly realized by the abrasive grains 72 present at a contact portion between the surface to be processed and the surface of the polishing pad 4. This is the same for conventional CMP equipment.
  • FIG. 3 (b) shows the state of the surface state of the polishing pad 4 in the conventional CMP apparatus.
  • chips and the like generated during polishing are deposited on the concave and convex portions of the surface of the polishing pad 4 as deposits 74, and polishing is conventionally performed.
  • Pad 4 was clogged.
  • debris is generated around the convex portion on the surface of the polishing pad 4, so that deposits also accumulate on this convex portion.
  • a dedicated grindstone grindstone 30 in FIG. 2
  • This in-process dressing is a process in which diamond abrasive grains are fixed to the surface of a grindstone, and while the diamond abrasive grains are pressed against the polishing pad, the grindstone and the polishing pad slide. This is the operation to remove the waste together with the sediment.
  • the deposit is moved in the concave portion on the surface of the polishing pad 4 or so as to move from the concave portion to the concave portion. Since the scraping particles 73 roll, the sediment 74 is scraped off. Therefore, clogging of the polishing pad 4 due to the deposits 74 hardly occurs in this portion, and a decrease in polishing efficiency can be prevented. In addition, sediment scraping particles 7 Since the roller 3 rolls on the surface of the polishing pad 4, the surface of the polishing pad 4 is not shaved, and the consumption of the polishing pad 4 is significantly suppressed.
  • the deposit scraping particles 73 are attracted in the electric field generated between the electrode 21 and the electrode 24, the deposit is deposited on the surface of the polishing pad 4.
  • the scraping particles 73 stay to some extent.
  • the density of the particles 73 for excavating the sediment in the machining liquid 7 increases, the frequency of contact between the surface of the polishing pad 4 and the particles 73 for exposing the sediment increases, and the particles for exposing the sediment increase. 7
  • the effect of eliminating blind spots by 3 is improved.
  • the difference between the present polishing apparatus and the conventional polishing apparatus CMP apparatus
  • a comparative experiment was performed by actually operating the present polishing apparatus and the conventional polishing apparatus.
  • polishing time 1 O min (However, the polishing efficiency is measured every 2 minutes)
  • Depth of multiple minute parts existing on the surface of the polishing pad 30 to 40 ⁇ m
  • V, T k —T k '(Equation 1)
  • V ⁇ 10 00 (Vmax— Vmin) / (2 Vave) (Equation 2) where k is a natural number of 49 or less, Vmax is the maximum polishing amount, Vmin is the minimum polishing amount, and Vave is the average polishing amount. It is.
  • Dressing member Diamond whetstone placed on polishing pad Dressing timing: Only during or before polishing Dressing time: Same time as polishing time
  • Sediment scraping time Same time as polishing time
  • Each mark (a) in the figure shows a change in the polishing efficiency of a conventional polishing apparatus when dressing is continuously performed during polishing.
  • Each mark in (g) shows the change in the polishing efficiency of a conventional polishing apparatus when dressing is performed only before polishing.
  • Each mark in (c) shows the transition of the polishing efficiency when the particle diameter of the particles for scraping out deposits is 8 m and the concentration is 5% by weight in the polishing apparatus of the present embodiment.
  • Each mark in (d) shows the transition of the polishing efficiency when the particle size of the sediment scraping particles is 8 ⁇ m and the concentration is 10% by weight.
  • Each mark in (e) shows the change in the polishing efficiency when the particle size of the sediment extraction particles is 8 ⁇ m and the concentration is 1% by weight.
  • the average value of the polishing efficiency is about ⁇ 18 ⁇ m / min, which is 10% lower than the average value of (a) in comparison with (a). did.
  • the average value of the polishing efficiency was about 0.16 ⁇ m / min, which was about 20% lower than the average value of (a) in comparison with (a).
  • the stability of polishing efficiency is good. It was equivalent to (a). This clearly shows that the particles for scraping off sediment had an effect of eliminating clogging.
  • the polishing efficiency was stable, but the average value of the polishing efficiency was about 0, 12 m / min.
  • the average value of the polishing efficiency in (a) was It has been reduced by about 40%. This is due to the fact that the particle size of the particles for scraping out deposits is larger than the depth of the minute recesses on the surface of the polishing pad, so that the polishing pad surface is less likely to contact the surface to be processed and the polishing efficiency is reduced. Seem. Therefore, in order to improve the polishing efficiency, the size of the particles for scraping out the deposits must be at least as small as the average depth of the plurality of recesses present on the surface of the polishing pad. is there.
  • Figs. 5 (a) and (b) show the surface profile of the polishing pad when dressing is performed before polishing and not during polishing ((g) in Fig. 4). The measurement results are shown.
  • the surface profile file in Fig. 5 (a) is the one immediately after dressing, and the surface profile in Fig. 5 (b) is the one after 10 minutes from the start of polishing. In this way, if no dressing work is performed during the polishing operation, the polishing The eye moves rapidly on the head.
  • Fig. 5 (c) shows the surface profile when the particles for excavating the sediment and the electric field generator were used (in the case of (b) in Fig. 4). 10 minutes after the start of polishing, but almost no clogging and almost the same state as the profile immediately after dressing (Fig. 5 (a)) .
  • the sixth diagram (a), as with the 4 (a), the during polishing continuously in polishing efficiency in case of performing Doretsushingu transition is the indicated c the 6 (b) is As in (b) of Fig. 4, the change in polishing efficiency when using 8 ⁇ particles for scraping out deposits and an electric field generator is shown. C As is clear from the figure, (b) The polishing efficiency of (a) is stable at about the same level as (a), and even if polishing is performed for a long period of time, the effect of the particles for scraping off the deposits is sufficiently exhibited.
  • the initial thickness of the polishing pad before polishing was about 1.3 mm in both cases (a) and (b) of FIG.
  • the polishing time exceeded 100 minutes, the polishing pad was cut, and the thickness of the polishing pad in the radial direction at the portion where the wafer passed was measured using a micrometer. . After that, the difference from the initial thickness was determined for each measurement result, and the consumption of the polishing pad was calculated based on the average value.
  • the consumed amount under the condition (a) was about 150 ⁇ m.
  • the amount of consumption under the condition (b) was about 10 ⁇ m.
  • polishing efficiency in the wafer surface was equivalent to that obtained when continuous dressing was performed ((a) in FIG. 7).
  • the distribution of the polishing efficiency in the wafer surface can be arbitrarily changed by moving the position of the electrode 24.
  • FIG. 8 shows a change in the thickness of the polishing pad when a large number of wafers are polished, where the most remarkable effect is exhibited in the present embodiment.
  • the measurement was performed by cutting the polishing pad and measuring with a micrometer as described above.
  • ⁇ Fig. 8 (a) shows the case of (a) in Fig. 4 (that is, the dressing was continuously performed during polishing). The transition of the thickness of the polishing pad is shown.
  • FIG. 8 (c), in the fourth diagram of (c) (i.e., the particle size of the deposited writers out and for particles with 8 m, when the concentration of 5 wt. / 0)
  • the transition of the thickness of the polishing pad is shown.
  • the polishing apparatus of the present embodiment shows that the polishing pad thickness hardly changes even when 100 wafers are polished. The consumption of the polishing pad is completely suppressed.
  • the polishing pad becomes thinner as the number of sheets increases. This means that the maintenance time in the semiconductor manufacturing process is much shorter in the present embodiment than in the conventional example.
  • the comparative experiment between the polishing apparatus of the present embodiment and the conventional polishing apparatus has been described. Separately, the experiment was performed by applying the polishing apparatus of the present embodiment to a multilayer wiring process of a semiconductor device. .
  • the surface roughness of the interlayer insulating film was measured to be 0.3 nm or less as a result of measuring the surface roughness of the interlayer insulating film by using a contact surface roughness meter and an atomic force microscope. Was confirmed.
  • the surface roughness of the interlayer insulating film at the step was measured using a contact surface roughness meter and an atomic force microscope. It was confirmed that the surface was flattened to 0 5 ⁇ m or less.
  • the above measured values are values that can satisfy the conditions required for an interlayer film of an ultrafine line having a line width of 0.15 m.
  • the application of the present polishing apparatus to the multilayer wiring process is only an example shown for evaluating the apparatus performance. Therefore, needless to say, even if the present polishing apparatus is introduced into a polishing process of another component (for example, an optical element or the like) requiring high shape accuracy, the same beneficial effect can be achieved.
  • another component for example, an optical element or the like
  • FIG. 1 Another embodiment of the polishing apparatus according to the present invention is shown in FIG. 1
  • a polishing pad 104 formed with a plurality of concentric drainage channels (drainage grooves) 104a is attached to the upper surface of the polishing platen 105.
  • This groove is formed, for example, with a groove width of about 100 m and a groove depth of about 300 to 400 ⁇ m.
  • polishing pad 104 having such a form has existed in the past, when the polishing process was performed using the polishing pad, as the polishing time elapses, the above-described processing was performed in the groove 104a. Debris accumulates and clogs the grooves, lowering polishing efficiency.
  • an arm 102 provided with a plurality of scraping pieces (for example, thin resin pieces having sharp pointed ends) 101 is provided.
  • the arm 102 is fixed to a translation table 103 movable in the z direction.
  • the mounting pitch of the scraping pieces 101 matches the pitch of the concentric grooves of the polishing pad.
  • the linear motion table 103 moves in the z direction and pushes each piece 101 into the groove 104a of the polishing pad 104. .
  • the tip of the scraping piece 101 slides at the bottom of the groove 104a, and the sediment in the groove is scraped out.
  • the arm 102 with a scraping piece may be attached to, for example, the polishing apparatus shown in FIG. In this case, the arm 102 with a scraping piece is installed at a position indicated by a dotted line in FIG. 2, for example.
  • Polishing apparatus of the present embodiment Even if polishing was continued without dressing with a grindstone, the inside of the groove was not clogged. In this case, the effect of eliminating the clogging inside the groove was the same between the case where the scraping piece was continuously slid and the case where it was slid for 30 seconds every 10 minutes. .
  • FIG. 10 (a) shows a first polishing mechanism of the polishing apparatus of the present embodiment.
  • This grinding device is a so-called grinding machine when using a grindstone, and a lapping machine when using a lap surface plate.
  • the workpiece 1 is made of an elastic body 2 b
  • a chuck 3b which is held through a hole, and a polishing platen 5b to which a grindstone 4b (or a lap platen 4c) is removably attached as main components, are provided.
  • the machining fluid 7b is supplied on the surface (work surface) of the grinding wheel 4b (or the lap surface plate 4c).
  • a base that surrounds the lower surface and side surfaces of the polishing table 5b so as not to hinder the rotation of the polishing table 5b.
  • the first rotation mechanism includes a servomotor and a speed reducer, and outputs the output of the servomotor via the speed reducer.
  • the feed mechanism also includes a servo motor and a speed reducer.
  • the output of the servo motor is transmitted to the spline formed on the ball screw for chuck feed via the speed reducer, and the chuck 3 b is moved to X Move in the direction.
  • the pressurizing mechanism moves the chuck 3b in the z-direction with the aid of a cylinder, and presses the workpiece 1 against the grindstone surface or the lap surface.
  • the workpiece 1 is, for example, a silicon wafer in a stage in which wiring is multi-layered, and an SiO 2 interlayer insulating film is formed on the surface thereof. Under the interlayer insulating film, a group of wires having a fine pattern is formed. For this reason, a level difference occurs in the interlayer insulating film between a portion where the wiring exists and a portion where the wiring does not exist.
  • the first polishing mechanism is used to flatten the unevenness of the surface of the interlayer insulating film or to polish a metal film constituting a wiring group.
  • a slurry is used as the working fluid 7b.
  • a slurry with a solid surface reactivity with a member having a surface to be processed is used.
  • a particle size of about 3 0 nm of S i 0 2 abrasive grains obtained by mixing (silica abrasive grains) from about 2 0% by weight and a particle size about 1 0 0 nm of C E_ ⁇ 2 abrasive use those mixed with (oxidation parsley um abrasive grains) from about 2 0% by weight.
  • a material obtained by mixing alumina abrasive grains in an acid solution is used.
  • the grindstone 4b is formed of a material having a low elastic modulus so that scratches do not occur on the wafer surface during processing.
  • a grindstone formed of cerium oxide abrasive grains is used.
  • the whetstone surface has a predetermined surface roughness and flatness.
  • the machining fluid supply device includes a tank for storing the machining fluid 7b sent from outside, a stirrer for stirring the abrasive fluid so as not to settle in the tank, and a machining fluid in the tank. It has a pump for sending 7b from the supply pipe 13b and a valve for adjusting the supply amount of machining fluid per unit time.
  • FIG. 10 (b) shows a second polishing mechanism of the polishing apparatus of the present embodiment.
  • the second polishing mechanism is a so-called chemical mechanical polishing apparatus (CMP apparatus), and has the same configuration as the polishing apparatus shown in FIG.
  • CMP apparatus chemical mechanical polishing apparatus
  • roughing is performed by the polishing apparatus shown in FIG. 10 (a), and finishing is performed by the polishing apparatus shown in FIG. 10 (b).
  • the first polishing mechanism uses the above components to supply a machining fluid 7b onto the surface of the grindstone 4b (or the lap surface plate 4c).
  • the processing to remove the fine irregularities on the surface to be processed is performed by the mechanical and chemical polishing action of the processing liquid 7b. This is rough processing of the work surface of the work 1 by the first polishing mechanism.
  • a process of supplying a working fluid 7 onto the surface of the polishing pad 4 using the above-described constituent elements The process of pressing the surface to be processed of the wafer 1 against the surface of the polishing pad 4 and the process of moving the surface of the polishing pad 4 and the surface to be processed of the wafer 1 relative to each other are simultaneously executed.
  • Mechanical and chemical polishing with the processing liquid 7 By the action, fine irregularities on the surface to be processed are removed, and finally, the surface to be processed is mirror-finished.
  • This book second polishing In the mechanical part, in particular, the surface to be processed is finished.
  • FIG. 11 (a) shows a first polishing mechanism of the polishing apparatus of the present embodiment.
  • This polishing apparatus is a so-called chemical mechanical polishing apparatus (CMP apparatus), and polishes the surface of a wafer by the same method as the polishing apparatus shown in FIG.
  • CMP apparatus chemical mechanical polishing apparatus
  • FIG. 11 (b) shows a second polishing mechanism of the polishing apparatus of the present embodiment.
  • the second polishing mechanism is a so-called chemical mechanical polishing device (CMP device).
  • CMP device chemical mechanical polishing device
  • a chuck 3 c for holding the workpiece 1 through the elastic body 2 c and a soft A polishing platen 5c to which the polishing pad 4d is detachably attached, and a supply pipe 13c for supplying the machining fluid 7c onto the surface (work surface) of the soft polishing pad 4d. It is shown.
  • Fig. 11 (b) includes the following components.
  • a base surrounding the lower surface and side surfaces of the polishing platen 5c so as not to hinder the rotation of the polishing platen 5c, and a first rotating mechanism for rotating the polishing platen 5c, and the chuck 3c are rotated.
  • the first rotating mechanism is composed of a servomotor and a speed reducer.
  • the output of the servomotor is transmitted to the rotating shaft of the polishing table 5c via a speed reducer, and the polishing table 5c is rotated.
  • the feed mechanism also includes a servo motor and a speed reducer, and transmits the output of the servo motor to the spline formed on the ball screw for chuck feed through the speed reducer _.
  • Move to The pressurizing mechanism moves the chuck 3c in the z direction with an air cylinder, and presses the workpiece 1 against the soft polishing pad.
  • FIG. 11 (a) the workpiece 1 is subjected to a first polishing step by the same processing as in FIG.
  • the soft polishing pad 4d used in the second polishing step shown in FIG. 11 (b) is formed of a material having excellent wear resistance and chemical resistance.
  • a polishing pad made of a soft foamed polyurethane-based synthetic resin is used.
  • the surface of the polishing pad has a predetermined surface roughness, and a plurality of minute concave portions corresponding to the surface roughness are formed on the surface.
  • This second polishing mechanism is also a so-called chemical mechanical polishing device (CMP device), and is different from the polishing pad of the polishing device shown in FIG. 1 (FIG. 11 (a)).
  • CMP device chemical mechanical polishing device
  • a soft polishing pad with a low elastic modulus is provided, and the surface of a wafer rough-processed by the polishing device shown in Fig. 11 (a) is polished.
  • processing for supplying the working liquid 7c onto the surface of the soft polishing pad 4d and processing for pressing the surface to be processed of the wafer 1 against the surface of the soft polishing pad 4d are performed.
  • the process of relatively moving the surface of the soft polishing pad 4d and the surface to be processed of the wafer 1 is performed, and fine irregularities on the surface to be processed are mechanically and chemically polished by the processing liquid 7c.
  • the surface to be processed is finally mirror-finished (finished).
  • Industrial applicability As described above in detail, according to the present invention, clogging of the polishing pad is suppressed by the action of the particles for scraping out deposits during polishing, the polishing efficiency is stabilized, and the polishing pad is stabilized. This significantly reduces the amount of power consumption, and significantly reduces maintenance time in the manufacturing process for semiconductors and other products.
  • the present invention is suitable for use in a semiconductor manufacturing process having a polishing step.

Abstract

A method of manufacturing semiconductor devices involving the polishing step, which realizes a stable finishing removal rate and achieves a reduction of consumption of the polishing pad. In this method, a mixture of grains for scraping out deposition with slurry is fed to the polishing pad and the polishing pad and the workpiece are moved relative to each other. Therefore even if the polishing waste tends to be deposited on the polishing pad, the waste is raked out by the action of the raking grains.

Description

明 細 書 半導体デバイスの製造方法及び研磨方法並びに研磨装置 技術分野  TECHNICAL FIELD Manufacturing method of semiconductor device, polishing method and polishing apparatus
この発明は、 半導体デバイスの製造方法及び研磨方法並びに研磨装置 に関する。 背景技術  The present invention relates to a method for manufacturing a semiconductor device, a polishing method, and a polishing apparatus. Background art
今日、 半導体デバイスの製造分野では、 素子の微細化と集積する素子 数の増大化が進み、 配線を多層化することが常識となっている。 配線を 多層化する場合、 層間絶緣膜を介して配線をただ重ねるだけでは、 層間 絶縁膜の表面に凹凸が生じ、 露光処理等に影響を及ぼすことになる。 し たがって、 多層配線技術では、 層間絶緣膜 (例えば S i o2 膜) の平坦 度を如何に改善できるかが、 主要課題とされている。 Today, in the field of semiconductor device manufacturing, the miniaturization of elements and the increase in the number of integrated elements have progressed, and it has become common sense to use multi-layer wiring. In the case of multi-layered wiring, simply overlapping the wiring via the interlayer insulating film causes irregularities on the surface of the interlayer insulating film, which affects the exposure processing and the like. Therefore, how to improve the flatness of the interlayer insulating film (eg, Sio 2 film) is a major issue in multilayer wiring technology.
層間絶縁膜の平坦度の改善手法と しては、 例えば、 層間絶縁膜との固 相反応性に富んだ研磨液を用いて層間絶縁膜の表面を研磨する CM P (Chemical Mechanical Pol ishing) 技術力 知られてレヽる。  As a method of improving the flatness of the interlayer insulating film, for example, a CMP (Chemical Mechanical Polishing) technology in which the surface of the interlayer insulating film is polished using a polishing liquid having a high solid phase reactivity with the interlayer insulating film. Power is known.
さて、 研磨パッ ドを用いた研磨工程においては、 一般に、 加工時間が 長くなるにつれて、 研磨パッ ドの作業面が劣化する。 研磨パッ ドの作業 面が劣化すると、 設定研磨量よ リ も実研磨量が小さくなる。 そこで、 従 来では、 コンカ レン ト ドレッシング等を実施して、 研磨パッ ドの作業面 の劣化を防いでいた。 コンカ レン ト ドレッシングでは、 回転する研磨パ ッ ドの上に、 研磨対象である被加工物と、 研磨パッ ドを ドレッシングす るための砥石を配置して、 被加工物の研磨と研磨パッ ドのドレッシング を同時に進めていく。 このようなコンカレント ドレッシングは、 C M P 装置でも一般に行われている。 In the polishing step using a polishing pad, the working surface of the polishing pad generally deteriorates as the processing time increases. When the work surface of the polishing pad deteriorates, the actual polishing amount becomes smaller than the set polishing amount. Therefore, in the past, con- crete dressing and the like were implemented to prevent the work surface of the polishing pad from deteriorating. In concurrent dressing, a workpiece to be polished and a grindstone for dressing the polishing pad are placed on a rotating polishing pad to polish the workpiece and remove the polishing pad. Dressing will proceed at the same time. Such concurrent dressing can be done by CMP It is also commonly used in equipment.
しかし、 前述のコンカレン ト ドレッシングは、 研磨能率の安定化には 向いているものの、 ドレッシングによる研磨パッ ドの消耗が激しく 、 研 磨パッ ドを早いサイクルで交換しなければならない。 この場合、 研磨パ ッ ドのコス トがかかると共に、 作業者の負担も増大する。 研磨パッ ドの 消耗が激しい原因は、 コンカレン ト ドレッシングでは、 ダイヤモンドの 砥石によって研磨パッ ドの表面を堆積物と共に削リ取っているためであ る。  However, while the above-mentioned concurrent dressing is suitable for stabilizing the polishing efficiency, the polishing pad is greatly consumed by the dressing, and the polishing pad must be replaced in an early cycle. In this case, the cost of the polishing pad is increased, and the burden on the operator is increased. The reason for the high consumption of the polishing pad is that, in concurrent dressing, the surface of the polishing pad is removed together with the deposits using a diamond whetstone.
また、 砥石の消耗も激しく、 砥石を早いサイクルで交換しなければな らない。 この場合、 砥石のコス トがかかると共に、 作業者の負担も増大 する。 砥石の消耗が激しい原因は、 砥石の表面に固定されているダイヤ モンド砥粒が磨耗するためである。  In addition, the wear of the grinding wheel is severe, and the grinding wheel must be replaced in a fast cycle. In this case, the cost of the grinding wheel is increased, and the burden on the operator is increased. The cause of the high wear of the grinding wheel is that the diamond abrasive grains fixed on the surface of the grinding wheel are worn.
また、 コンカレン ト ドレッシングをはじめとする砥石を用いたドレッ シング手法は、 砥石から砥粒が脱落するため、 この砥粒によって被加工 面にスクラッチが入ってしまう。 これは、 半導体デバイスの製造方法と して、 基板 (ウェハ) を研磨する場合においては、 半導体デバイスの品 質に関わる重大な問題である。  In the dressing method using a grindstone, such as concurrent dressing, abrasive grains fall off the grindstone, and the abrasive grains scratch the surface to be processed. This is a serious problem related to the quality of a semiconductor device when a substrate (wafer) is polished as a semiconductor device manufacturing method.
また、 コンカレン ト ドレッシングを行うためには、 研磨パッ ド上でゥ ェハと千渉しない位置に砥石を設置する場所が必要であるため、 研磨パ ッ ドの小型化が困難である。 そのため、 研磨装置の小型化も困難である。 これは、 半導体デバイスの製造ラインでの研磨装置の設置面積の有効利 用に関わる重要な問題である。  In addition, in order to perform concurrent dressing, it is necessary to provide a place on the polishing pad where a grindstone is installed so as not to interfere with the wafer. Therefore, it is difficult to reduce the size of the polishing pad. Therefore, it is difficult to reduce the size of the polishing apparatus. This is an important issue related to the effective use of the installation area of a polishing apparatus in a semiconductor device manufacturing line.
一方、 インターバルドレッシングを行えば、 研磨パッ ド上にウェハと 砥石を同時に設置する必要がないため、 研磨パッ ドの小型化が可能であ るが、 研磨中に研磨パッ ドの表面に堆積物が生じるため、 研磨時間の経 過とともに研磨能率の低下が生じ、 ウェハ面内の研磨量の分布が変動す る。 これは、 半導体デバイスの品質に関わる重要な問題である。 On the other hand, if interval dressing is used, it is not necessary to install a wafer and a grindstone on the polishing pad at the same time, so the polishing pad can be downsized.However, deposits on the polishing pad surface during polishing are possible. As the polishing time elapses, the polishing efficiency decreases with the passage of polishing time, and the distribution of the polishing amount in the wafer surface fluctuates. You. This is an important issue related to the quality of semiconductor devices.
また、 砥石を用いてウェハ表面を研削する力 またはバイ トを用いて ウェハ表面を切削するか、 または研磨定盤を用いてウェハ表面をラッピ ングする場合、 研磨パッ ドを用いてウェハ表面のスクラツチを除去する 場合、 ウェハを研磨する必要がある。  When the wafer surface is cut using a force or a byte that grinds the wafer surface using a grindstone, or when the wafer surface is wrapped using a polishing platen, the wafer surface is scratched using a polishing pad. When removing the wafer, the wafer needs to be polished.
また、 研磨後にウェハ表面にスクラッチを生じた場合には、 このスク ラツチを除去するために、 弾性率の高い研磨パッ ドを用いてウェハを一 次研磨した後に、 さらに弾性率の低い研磨パッ ドを用いて二次研磨をす る必要がある。  If scratches occur on the wafer surface after polishing, the wafer is primarily polished using a polishing pad with a high elastic modulus to remove this scratch, and then a polishing pad with a lower elastic modulus is used. It is necessary to perform secondary polishing using
このような問題を解決するために、 本発明の目的は、 安定した研磨能 率が得られ、 しかも、 研磨パッ ドの消耗が低減される半導体デバイスの 製造方法及び研磨方法並びに研磨装置を提供することにある。 発明の開示  In order to solve such a problem, an object of the present invention is to provide a method of manufacturing a semiconductor device, a polishing method, and a polishing apparatus, which can obtain a stable polishing efficiency and reduce the consumption of a polishing pad. It is in. Disclosure of the invention
上記目的を達成するための本発明の半導体デバイスの製造方法の一態 様によれば、 研磨パッ ドにスラリ一を供給し基板を研磨するようになし た半導体デバイスの製造方法において、 研磨パッ ド表面の堆積物をかき 出すための堆積物かき出し用粒子と前記スラ リーを別々に又は混合物と して研磨パッ ド表面に供給し、 基板の被加工面と前記研磨パッ ド表面と を相対的に移動させることにょリ基板を研磨することを特徴とする半導 体デバイスの製造方法が提供される。  According to one embodiment of the present invention, there is provided a method for manufacturing a semiconductor device, comprising: supplying a slurry to a polishing pad to polish a substrate; The particles for scraping off the deposits on the surface and the slurry are supplied to the polishing pad surface separately or as a mixture, and the surface to be processed of the substrate and the polishing pad surface are relatively positioned. There is provided a method for manufacturing a semiconductor device, which comprises polishing a substrate to be moved.
また、 上記目的を達成するための本発明の半導体デバイスの製造方法 の一態様によれば、 基板を研磨する工程を有する半導体デバイスの製造 方法において、 研削液またはスラ リ一を砥石表面に供給して前記砥石と 前記基板を相対的に移動させることによ リ基板に第 1の研磨を施し、 研 磨パッ ド表面の堆積物をかき出すための堆積物かき出し用粒子とスラリ —を別々に又は混合物と して研磨パッ ド表面に供給して前記研磨パッ ド 表面と基板の被加工面とを相対的に移動させることによリ基板に第 2の 研磨を施すことを特徴とする半導体デバイスの製造方法が提供される。 According to one aspect of the present invention, there is provided a method of manufacturing a semiconductor device having a step of polishing a substrate, wherein a grinding fluid or a slurry is supplied to the surface of the grindstone. The first polishing is performed on the substrate by relatively moving the grindstone and the substrate, and the particles and the slurry for removing the deposits for removing the deposits on the surface of the polishing pad are formed. Are supplied to the surface of the polishing pad separately or as a mixture to relatively move the surface of the polishing pad and the surface to be processed of the substrate, thereby performing the second polishing on the substrate. A method for manufacturing a semiconductor device is provided.
また、 上記目的を達成するための本発明の半導体デバイスの製造方法 の一態様によれば、 基板を研磨する工程を有する半導体デバイスの製造 方法において、 スラ リーを金属あるいは樹脂製の研磨定盤表面に供給し て前記研磨定盤と前記基板を相対的に移動させることにょリ基板に第 1 の研磨を施し、 研磨パッ ド表面の堆積物をかき出すための堆積物かき出 し用粒子とスラリーを別々に又は混合物と して研磨パッ ド表面に供給し て前記研磨パッ ド表面と基板の被加工面とを相対的に移動させることに よリ基板に第 2の研磨を施すことを特徴とする丰導体デバイスの製造方 法が提供される。  According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor device having a step of polishing a substrate, wherein the slurry is formed on a surface of a polishing plate made of metal or resin. The first polishing is performed on the substrate by moving the polishing platen and the substrate relatively to each other, and the particles and slurry for removing the deposits for scraping the deposits on the surface of the polishing pad are supplied. The second polishing is performed on the substrate by supplying the polishing pad surface separately or as a mixture to the polishing pad surface and relatively moving the polishing pad surface and the processed surface of the substrate. (4) A method for manufacturing a conductive device is provided.
また、 上記目的を達成するための本発明の半導体デバイスの製造方法 の一態様によれば、 研磨パッ ドにスラリ一を供給し基板を研磨するよう になした半導体デバイスの製造方法において、 研磨パッ ド表面の堆積物 をかき出すための堆積物かき出し用粒子と前記スラリ一を別々に又は混 合物と して研磨パッ ド表面に供給して基板の被加工面と前記研磨パッ ド 表面とを相対的に移動させることにょリ基板に第 1の研磨を施し、 該第 1の研磨工程で用いる研磨パッ ドょリも表面の剛性が小さい第 2の研磨 パッ ドを用いて基板に第 2の研磨を施すことを特徴とする半導体デバイ スの製造方法が提供される。  According to another aspect of the present invention, there is provided a semiconductor device manufacturing method for supplying a slurry to a polishing pad and polishing a substrate. The particles for scraping out the deposits on the polishing pad surface and the slurry are supplied separately or as a mixture to the polishing pad surface, and the work surface of the substrate and the polishing pad surface are compared with each other. The first polishing is applied to the substrate, and the polishing pad used in the first polishing step is also subjected to the second polishing using the second polishing pad having a small surface rigidity. A method of manufacturing a semiconductor device, characterized by performing the following.
更に、 上記目的を達成するための本発明の研磨方法の一態様によれば、 研磨パッ ドを用いる研磨方法において、 研磨パッ ド表面の堆積物をかき 出すための堆積物かき出し用粒子とスラリ一を別々に又は混合物と して 研磨パッ ド表面上に供給し、 被加工物の被加工面を前記研磨パッ ド表面 に押し付けながら該被加工物と該研磨パッ ド表面とを相対的に移動させ ることによ リ被加工物を研磨することを特徴とする研磨方法が提供され る。 Further, according to one aspect of the polishing method of the present invention for attaining the above object, in a polishing method using a polishing pad, the particles for removing deposits for removing deposits on the surface of the polishing pad and the slurry are used. Are supplied separately or as a mixture onto the polishing pad surface, and the workpiece and the polishing pad surface are relatively moved while pressing the workpiece surface of the workpiece against the polishing pad surface. Thus, there is provided a polishing method characterized by polishing a workpiece.
更に、 上記目的を達成するための本発明の研磨装置の一態様によれば—, 研磨パッ ド表面の堆積物をかき出すための堆積物かき出し用粒子とスラ リーとの混合物を研磨パッ ド表面上;こ供給するための供給装置と、 被加 ェ物を保持し該被加工物を研磨パッ ド表面に押し付ける保持部材と、 前 記被加工物と前記研磨パッ ドとを相対的に移動させる装置とを少なく と も備えたことを特徴とする研磨装置が提供される。  Further, according to one embodiment of the polishing apparatus of the present invention for achieving the above object, a mixture of the particles for removing the deposits and the slurry for scraping off the deposits on the surface of the polishing pad is provided on the surface of the polishing pad. A supply device for supplying the workpiece, a holding member that holds the workpiece and presses the workpiece against the surface of the polishing pad, and a device that relatively moves the workpiece and the polishing pad. A polishing apparatus characterized by having at least:
更に、 上記目的を達成するための本発明の研磨装置の一態様によれば、 ベースと、 回転可能な研磨定盤と、 前記研磨定盤上に設けられその表面 に前記研磨定盤の回転中心を中心と して複数の排水路が同心円状に形成 されている研磨パッ ドとを備えた研磨装置において、 前記ベースに固定 されたアームと、 前記複数の排水路の配列ピツチに合わせて前記アーム に取り付けられた複数のかき出し片を備え、 前記複数のかき出し片のそ れぞれが、 前記研磨定盤の回転時において各排水路の堆積物をかき出す ように構成したことを特徴とする研磨装置が提供される。  Further, according to one embodiment of the polishing apparatus of the present invention for achieving the above object, a base, a rotatable polishing plate, and a rotation center of the polishing plate provided on the polishing plate and provided on the surface thereof A polishing pad having a plurality of drain passages formed concentrically around a center, wherein the arm is fixed to the base, and the arm is aligned with an arrangement pitch of the plurality of drain passages. A polishing apparatus, comprising: a plurality of scraping pieces attached to a polishing table; wherein each of the plurality of scraping pieces scrapes deposits from each drainage channel when the polishing platen rotates. Is provided.
更に、 上記目的を達成するための本発明の化学的機械的研磨装置の一 態様によれば、 被加工物表面の凹凸を化学的かつ機械的に除去して平坦 化する化学的機械的研磨装置において、 研磨パッ ド表面の堆積物をかき 出すための堆積物かき出し用粒子とスラ リーとの混合物を研磨パッ ド表 面上に供給する供給装置と、 被加工物を保持し該被加工物を研磨パッ ド 表面に押し付け.る保持部材と、 前記被加工物と前記研磨パッ ドとを相対 的に移動させる装置とを少なく とも備えたことを特徴とする化学的機械 的研磨装置が提供される。  Further, according to one embodiment of the chemical mechanical polishing apparatus of the present invention for achieving the above object, a chemical mechanical polishing apparatus for chemically and mechanically removing and flattening irregularities on the surface of a workpiece is provided. A supply device for supplying a mixture of the particles for scraping the deposits and the slurry for scraping the deposits on the surface of the polishing pad onto the surface of the polishing pad, holding the workpiece and holding the workpiece. A chemical mechanical polishing apparatus is provided, comprising at least a holding member for pressing against a surface of a polishing pad, and a device for relatively moving the workpiece and the polishing pad. .
更に、 上記目的を達成するための本発明の研磨方法の一態様によれば、 砥石と研磨パッ ドを用いた研磨方法において、 研削液またはスラ リーを 砥石表面に供給して前記砥石と被加工物を相対的に移動させることによ リ被加工物に第 1の研磨を施し、 研磨パッ ド表面の堆積物をかき出すた めの堆積物かき出し用粒子とスラリーを別々に又は混合物と して研磨パ ッ ド表面に供給して前記研磨パッ ド表面と被加工物の被加工面とを相対 的に移動させることにょリ被加工物に第 2の研磨を施すことを特徴とす る研磨方法が提供される。 Further, according to one embodiment of the polishing method of the present invention for achieving the above object, in a polishing method using a grindstone and a polishing pad, a grinding fluid or a slurry is used. Particles for deposit removal for supplying first to the surface of the grindstone and relatively moving the grindstone and the workpiece to perform the first polishing on the workpiece and scraping the deposit on the polishing pad surface And the slurry are supplied separately or as a mixture to the surface of the polishing pad to move the surface of the polishing pad and the surface of the workpiece relative to each other. There is provided a polishing method characterized by performing polishing.
更に、 上記目的を達成するための本発明の研磨方法の一態様によれば, 金属あるいは樹脂製の研磨定盤と研磨パッ ドを用いた研磨方法において, スラ リ一を金属あるいは樹脂製の研磨定盤表面に供給して前記研磨定盤 と前記被加工物を相対的に移動させることによ リ被加工物に第 1の研磨 を施し、 研磨パッ ド表面の堆積物をかき出すための堆積物かき出し用粒 子とスラリーを別々に又は混合物として研磨パッ ド表面に供給して前記 研磨パッ ド表面と前記被加工物とを相対的に移動させることにょリ被加 ェ物に第 2の研磨を施すことを特徴とする研磨方法が提供される。  Further, according to one aspect of the polishing method of the present invention for achieving the above object, in a polishing method using a metal or resin polishing platen and a polishing pad, the slurry is made of metal or resin. The first polishing is performed on the workpiece by supplying the workpiece to the surface of the polishing table and moving the polishing table and the workpiece relative to each other, and a deposit for scraping off the deposit on the polishing pad surface. The polishing particles and the slurry are supplied separately or as a mixture to the surface of the polishing pad to relatively move the surface of the polishing pad and the workpiece. There is provided a polishing method characterized by performing the polishing.
更に、 上記目的を達成するための本発明の研磨方法の一態様によれば、 研磨パッ ドにスラリ一を供給し被加工物を研磨するよ うになした研磨方 法において、 研磨パッ ド表面の堆積物をかき出すための堆積物かき出し 用粒子と前記スラリーを別々に又は混合物と して研磨パッ ド表面に供給 して被加工物の被加工面と前記研磨パッ ド表面とを相対的に移動させる ことによリ被加工物に第 1の研磨を施し、 該第 1の研磨工程で用いる研 磨パッ ドょ リ も表面の剛性が小さい第 2の研磨パッ ドを用いて被加工物 に第 2の研磨を施すことを特徴とする研磨方法が提供される。 図面の簡単な説明  Further, according to one embodiment of the polishing method of the present invention for achieving the above object, in the polishing method for supplying a slurry to the polishing pad and polishing the workpiece, The particles for scraping out the deposits and the slurry are supplied to the surface of the polishing pad separately or as a mixture to move the surface of the workpiece and the surface of the polishing pad relatively. In this way, the workpiece is subjected to the first polishing, and the polishing pad used in the first polishing step is also subjected to the second polishing using the second polishing pad having a small surface rigidity. The polishing method characterized by performing the polishing of the above is provided. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の一実施形態の研磨装置を示した構成図でぁリ、 第 2図は、 第 1図の研磨装置を上方から見た概略構成図でぁリ、 第 3図は、 研磨装置の研磨パッ ドの表面の様子を示した説明図でぁリ、 第 3図 ( a ) は、 本発明による第 1図の研磨装置の研磨パッ ド上の様子を示した説明 図であり、 第 3図 ( b ) は、 従来の研磨装置の研磨パッ ド上の様子を示 した説明図である。 第 4図は、 第 1図の本発明の研磨装置と従来の研磨 装置との比較実験の結果を示した図 (その 1 ) であり、 第 5図は、 第 1 図の本発明の研磨装置と従来の研磨装置との比較実験の結果を示した図 (その 2 ) であリ、 第 6図は、 第 1図の本発明の研磨装置と従来の研磨 装置との比較実験の結果を示した図 (その 3 ) であリ、 第 7図は、 第 1 図の本発明の研磨装置と従来の研磨装置との比較実験の結果を示した図 (その 4 ) であリ、 第 8図は、 第 1図の本発明の研磨装置と従来の研磨 装置との比較実験の結果を示した図 (その 5 ) であり、 第 9図は、 本発 明の他の実施形態の研磨装置を示した概略構成図であリ、 第 1 0図は、 本発明の更に他の実施形態の研磨装置を用いて、 粗加工と仕上げ加工を 行う加工プロセスを示した概略構成図でぁリ、 第 1 1図は、 本発明の更 に他の実施形態の研磨装置を用いて、 粗加工と仕上げ加工を行う加工プ 口セスを示した概略構成図である。 FIG. 1 is a block diagram showing a polishing apparatus according to an embodiment of the present invention, FIG. 2 is a block diagram schematically showing the polishing apparatus of FIG. 1 as viewed from above, and FIG. , FIG. 3 is an explanatory view showing the appearance of the surface of the polishing pad of the polishing apparatus. FIG. 3 (a) is an explanatory view showing the appearance of the polishing pad of the polishing apparatus of FIG. 1 according to the present invention. FIG. 3 (b) is an explanatory view showing a state on a polishing pad of a conventional polishing apparatus. FIG. 4 is a diagram (part 1) showing the results of a comparison experiment between the polishing apparatus of the present invention shown in FIG. 1 and a conventional polishing apparatus, and FIG. 5 shows the polishing apparatus of the present invention shown in FIG. Fig. 6 shows the results of a comparative experiment between the polishing apparatus of the present invention and the conventional polishing apparatus shown in Fig. 1, and Fig. 6 shows the results of a comparative experiment between the polishing apparatus of the present invention and the conventional polishing apparatus. FIG. 7 is a diagram (part 4) showing the results of a comparison experiment between the polishing apparatus of the present invention shown in FIG. 1 and a conventional polishing apparatus, and FIG. FIG. 5 is a diagram (part 5) showing the results of a comparative experiment between the polishing apparatus of the present invention of FIG. 1 and a conventional polishing apparatus, and FIG. 9 shows a polishing apparatus of another embodiment of the present invention. FIG. 10 is a schematic configuration diagram showing a processing process of performing roughing and finishing using a polishing apparatus according to still another embodiment of the present invention. FIG. 11 is a schematic configuration diagram showing a machining process for performing rough machining and finish machining using a polishing apparatus according to still another embodiment of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明をよ リ詳細に説述するために、 添付の図面に従ってこれを説明 する。  The present invention will be described in more detail with reference to the accompanying drawings.
第 1図には、 本実施形態の研磨装置の主要部が示されている。 この研 磨装置は、 いわゆる化学的機械的研磨装置 (C M P装置) であリ、 同図 には、 被加工物 1 を弾性体 2を介して保持するチャック 3 と、 研磨パッ ド 4が着脱可能に取リ付けられた研磨定盤 5と、 研磨定盤 5の回転に支 障のないように該研磨定盤 5の下面と側面を囲むベース 6 と、 研磨パッ ド表面 (作業面) 上に加工液 7を供給するための加工液供給装置 1 0と、 研磨パッ ド 4の一部を含んだ特定の領域に電界を発生させる電界発生装 置 2 0が示されている。 FIG. 1 shows a main part of the polishing apparatus of the present embodiment. This polishing apparatus is a so-called chemical mechanical polishing apparatus (CMP apparatus). In the figure, a chuck 3 for holding a workpiece 1 via an elastic body 2 and a polishing pad 4 are detachable. A polishing platen 5 attached to the base, a base 6 surrounding the lower surface and side surfaces of the polishing platen 5 so as not to hinder the rotation of the polishing platen 5, and a polishing pad surface (work surface). A working fluid supply device 10 for supplying a working fluid 7; An electric field generating device 20 for generating an electric field in a specific region including a part of the polishing pad 4 is shown.
本研磨装置は、 このほか、 研磨定盤 5を回転させるための第 1の回転 _ 機構、 チャック 3を回転させるための第 2の回転機構、 チャック 3を X 方向に移動させるための送リ機構、 被加工物 1 を研磨パッ ド表面に押し 当てるための加圧機構等を備えている。 これらの機構は、 従来の C M P 装置でも使用されておリ、 構造もよく知られているので、 図示は省略さ れている。 例えば、 第 1の回転機構は、 サーボモータと減速機を含んで 構成され、 サーボモータの出力を減速機を介して研磨定盤 5 の回転軸に 伝達し、 研磨定盤 5を回転させる。 また、 送リ機構も、 サーボモータと 減速機を含んで構成され、 サーボモータの出力を、 減速機を介して、 チ ャック送リ用ボールネジに形成されたスプラインに伝達し、 チャック 3 を X方向に移動させる。 加圧機構は、 エアシリ ンダでチヤック 3を z方 向に移動させ、 被加工物 1を研磨パッ ド表面に押し当てる。  The polishing apparatus also includes a first rotation mechanism for rotating the polishing table 5, a second rotation mechanism for rotating the chuck 3, and a feeding mechanism for moving the chuck 3 in the X direction. In addition, a pressing mechanism for pressing the workpiece 1 against the polishing pad surface is provided. These mechanisms are not shown in the drawings because they are also used in conventional CMP devices and their structures are well known. For example, the first rotating mechanism includes a servomotor and a speed reducer, and transmits the output of the servomotor to the rotating shaft of the polishing table 5 via the speed reducer to rotate the polishing table 5. The feed mechanism also includes a servo motor and a speed reducer.The output of the servo motor is transmitted to the spline formed on the ball screw for chuck feed via the speed reducer, and the chuck 3 is moved in the X direction. Move to The pressing mechanism moves the chuck 3 in the z direction using an air cylinder, and presses the workpiece 1 against the polishing pad surface.
被加工物 1は、 例えば、 配線を多層化している段階にあるシリ コンゥ ェハであリ、 表面に S i 0 2 の層間絶縁膜が形成されている。 層間絶縁 膜の下には、 微細なパターンを持つ配線群が形成されている。 このため、 層間絶緣膜には、 配線が存在する箇所と しない箇所で高低差が生じてい る。 本研磨装置では、 この層間絶縁膜の表面の凹凸を平坦化したリ、 あ るいは、 配線群を構成する金属膜を研磨する場合に使用される。 The workpiece 1 is, for example, a silicon wafer in a stage where wirings are being multi-layered, and a SiO 2 interlayer insulating film is formed on the surface thereof. Under the interlayer insulating film, a wiring group having a fine pattern is formed. For this reason, a level difference occurs in the interlayer insulating film between a portion where the wiring exists and a portion where the wiring does not exist. The present polishing apparatus is used to flatten the unevenness of the surface of the interlayer insulating film or to polish a metal film constituting a wiring group.
本発明においては、 加工液 7に、 スラ リーに研磨パッ ド表面の堆積物 をかき出すための堆積物かき出し用粒子を混ぜたものを用いる。 堆積物 かき出し用粒子の作用と効果については後で詳述する。 スラリ一には、 被加工面を有する部材と固相反応性に富んだものを使用する。 例えば、 S i 0 2 の絶縁膜を研磨する場合には、 アルカ リ性溶液に、 粒径約 3 0 n mの S i 0 2 砥粒 (シリカ砥粒) を約 2 0重量%混入したものや、 粒 径約 l O O n mの C e〇2 砥粒 (酸化セリ ウム砥粒) を約 2 0重量。 /0混 入したものを使用する。 一方、 S i 0 2 膜上の金属膜を研磨する場合に は、 例えば、 酸性溶液に、 アルミナ砥粒を混入したものを使用する。 研磨パッ ド 4は、 耐磨耗性と耐薬品性に優れた材料で形成する。 本実 施形態では、 硬質発泡ポリ ウレタン系の合成樹脂で形成された研磨パッ ドを使用する。 研磨パッ ド表面は、 予め定めた表面粗さを持ち、 それに 見合った微小な凹部が該表面に複数形成されている。 In the present invention, a mixture of the slurry 7 and particles for scraping out deposits for scraping out deposits on the surface of the polishing pad is used in the slurry. The function and effect of the sediment scraping particles will be described later in detail. A slurry having a solid phase reactivity with a member having a surface to be processed is used. For example, when polishing an SiO 2 insulating film, an alkaline solution containing about 20% by weight of SiO 2 abrasive grains (silica abrasive grains) having a particle size of about 30 nm may be used. , Grain About 2 0 wt diameter l OO nm of C E_〇 2 abrasive grains (oxide parsley um abrasive). Use the one mixed with / 0 . On the other hand, when polishing the metal film on the SiO 2 film, for example, a material obtained by mixing alumina abrasive grains in an acidic solution is used. The polishing pad 4 is formed of a material having excellent wear resistance and chemical resistance. In the present embodiment, a polishing pad made of a rigid foamed polyurethane-based synthetic resin is used. The surface of the polishing pad has a predetermined surface roughness, and a plurality of minute concave portions corresponding to the surface roughness are formed on the surface.
加工液供給装置 1 0は、 外部から送られた加工液 7 (すなわち、 スラ リーと堆積物かき出し用粒子との混合物) を一旦貯留するタンク 1 1 と、 タンク 1 1內で堆積物かき出し用粒子ゃ砥粒が沈殿しないようにこれら を撹拌する撹拌器 1 2と、 タンク 1 1內の加工液を供給管 1 3から送出 するためのポンプ 1 4と、 加工液の単位時間あたリの供給量を調節する バルブ 1 5を有して構成される'。 なお、 研磨パッ ド表面上でうまく混じ り合うように注意しながら、 スラ リーと堆積物かき出し用粒子を別々に 供給するようにしても構わない。  The machining fluid supply device 10 includes a tank 11 for temporarily storing a machining fluid 7 (ie, a mixture of slurry and sediment scraping particles) sent from outside, and a sediment scraping particle in the tank 11 內.撹 拌 Agitator 12 for agitating these so that the abrasive grains do not settle, pump 14 for pumping the machining fluid in tank 11 from supply pipe 13, and supply of machining fluid per unit time Adjusting the volume is configured with a valve 15 '. The slurry and sediment scraping particles may be supplied separately, taking care to mix well on the polishing pad surface.
電界発生装置 2 0は、 研磨パッ ド 4の真下に配置された円板状の電極 板 2 1 と、 ベース 6に取リ付けられたレール 2 2 と、 図示省略したモー タの駆動にょ リ、 レール 2 2に沿って直動するテーブル 2 3 と、 テープ ル 2 3に固定され、 研磨パッ ド表面と一定の間隔を保った状態で、 研磨 パッ ド 4の半径方向 (X方向) に移動する電極板 2 4 と、 ベース 6に内 蔵された電源 2 5と、 スィ ッチ 2 6を有して構成される。 電源 2 5 と電 極板 2 1は、 研磨定盤 5の回転軸に取リ付けられているスリ ップリ ング 8を介して電気的に接続されておリ、 この電気的接続は、 研磨定盤 5が 回転している間も維持される。 第 2図に示すよ うに、 電極板 2 4の移動 領域 2 4 a と、 チャック 3の移動領域 3 aは、 互いに重なることのない ように設定されている。 そして、 スィ ッチ 2 6を O Nにすると、 電極板 2 1 と電極板 2 4の間 に電界が形成される。 電界の強度は、 電源 2 5の電圧を増減することで 調節する。 また、 電極板 2 4の位置を X方向に動かすと、 電界を生じ ¾ 領域もこれに伴って移動する。 The electric field generator 20 includes a disk-shaped electrode plate 21 disposed directly below the polishing pad 4, a rail 22 attached to the base 6, and a motor drive not shown. It is fixed to the table 23 and the table 23 that moves directly along the rail 22 and moves in the radial direction (X direction) of the polishing pad 4 while maintaining a certain distance from the surface of the polishing pad. It comprises an electrode plate 24, a power supply 25 built in the base 6, and a switch 26. The power supply 25 and the electrode plate 21 are electrically connected via a slip ring 8 attached to the rotating shaft of the polishing platen 5, and this electrical connection is made by the polishing platen. It is maintained while 5 is rotating. As shown in FIG. 2, the moving area 24a of the electrode plate 24 and the moving area 3a of the chuck 3 are set so as not to overlap with each other. Then, when the switch 26 is turned on, an electric field is formed between the electrode plates 21 and 24. The strength of the electric field is adjusted by increasing or decreasing the voltage of the power supply 25. In addition, when the position of the electrode plate 24 is moved in the X direction, an electric field is generated, and the region moves accordingly.
なお、 電界発生装置 2 0の構成は、 上記したものに限らず、 電極板 2 4をレール 2 2に沿って移動させるかわリに、 あらかじめ、 複数の電極 板 2 4をレール 2 2に一定間隔で取リ付け、 これらの電極板の中から任 意のものを選択して、 そこに電界を発生させるようにしてもよい。 本実 施形態の電界発生装置 2 0は、 レール 2 2に対してテーブル 2 3が摺動 するが、 この摺動部分を省く ことができれば、 構造的に見て装置の耐久 性は向上する。  The configuration of the electric field generator 20 is not limited to that described above. Instead of moving the electrode plates 24 along the rails 22, a plurality of electrode plates 24 are previously set on the rails 22 at regular intervals. Then, any one of these electrode plates may be selected and an electric field may be generated there. In the electric field generator 20 of the present embodiment, the table 23 slides on the rail 22. However, if this sliding portion can be omitted, the durability of the device is improved structurally.
以上、 本研磨装置の構成要素を機能別に説明したが、 本研磨装置では, これらの構成要素を用いて、 研磨パッ ド表面上に加工液 7を供給する処 理と、 研磨パッ ド表面にウェハ 1 の被加工面を押圧する処理と、 研磨パ ッ ド表面とウェハ 1 の被加工面を相対的に移動させる処理を例えば同時 に実行し、 加工液 7による機械的かつ化学的研磨作用によつて被加工面 の微細な凹凸を除去し、 最終的に、 該被加工面を鏡面仕上する。 そして、 この際、 本研磨装置では、 特に、 前述した堆積物かき出し用粒子によつ て、 研磨によって生じた堆積物が研磨パッ ド表面からかき出されること になる。  The components of the polishing apparatus have been described above according to their functions. In this polishing apparatus, a processing liquid 7 is supplied onto the surface of the polishing pad using these components, and a wafer is provided on the surface of the polishing pad. For example, the process of pressing the surface to be processed 1 and the process of relatively moving the surface of the polishing pad and the surface of the wafer 1 to be processed are simultaneously performed, for example, by the mechanical and chemical polishing action of the processing liquid 7. Then, fine irregularities on the surface to be processed are removed, and finally, the surface to be processed is mirror-finished. In this case, in this polishing apparatus, the deposits generated by the polishing are scraped off from the surface of the polishing pad by the deposit scraping particles.
研磨パッ ド表面の堆積物がかき出される様子を第 3図 ( a ) に示す。 第 3図 ( a ) において、 研磨パッ ド 4の表面とウェハ 1の被加工面と の間には、 加工液 7が供給されており、 この状態で、 研磨パッ ド 4とゥ ェハ 1 とが相対的に摺動している。 加工液 7は、 溶媒となる液体 7 1 と、 研磨用の砥粒 7 2 と、 堆積物かき出し用粒子 7 3から成る。 堆積物かき 出し用粒子 7 3は、 ポリマー (例えば、 縦弾性係数が約 2ないし 3 G p a のアク リル樹脂やエチレン樹脂) で形成された球形の部材である。 堆 積物かき出し用粒子 7 3を球形にすれば加工が簡単になるが、 必要なら ばチューブ状等、 球形以外の形にしてもよい。 ウェハ 1の被加工面の研 磨は、 主と して、 該被加工面と、 研磨パッ ド 4の表面との接触部分に存 在する砥粒 7 2によリ実現される。 これについては、 従来の C M P装置 でも同様である。 Figure 3 (a) shows how the deposits on the polishing pad surface are scraped out. In FIG. 3 (a), a working fluid 7 is supplied between the surface of the polishing pad 4 and the surface to be processed of the wafer 1. In this state, the polishing pad 4 and the wafer 1 are connected to each other. Are relatively sliding. The working liquid 7 is composed of a liquid 71 serving as a solvent, abrasive grains 72 for polishing, and particles 73 for scraping out deposits. The sediment scraping particles 73 are made of a polymer (for example, having a longitudinal elastic modulus of about 2 to 3 Gp). It is a spherical member made of acrylic resin or ethylene resin. If the particles 73 for excavating the deposit are formed into a spherical shape, the processing becomes easy. Polishing of the surface to be processed of the wafer 1 is mainly realized by the abrasive grains 72 present at a contact portion between the surface to be processed and the surface of the polishing pad 4. This is the same for conventional CMP equipment.
第 3図 ( b ) に、 従来の C M P装置における、 研磨パッ ド 4の表面状 態の様子を示す。 第 3図 ( b ) に示すよ うに、 従来では、 研磨時に生じ た削リ屑等が、 堆積物 7 4 と して研磨パッ ド 4の表面の凹部ゃ凸部に堆 積してしまい、 研磨パッ ド 4の目づまリが発生していた。 なお、 第 3図 ( b ) には明確に示されていないが、 研磨パッ ド 4の表面の凸部周辺で 削リ屑が発生するため、 この凸部にも堆積物が堆積する。  FIG. 3 (b) shows the state of the surface state of the polishing pad 4 in the conventional CMP apparatus. Conventionally, as shown in FIG. 3 (b), chips and the like generated during polishing are deposited on the concave and convex portions of the surface of the polishing pad 4 as deposits 74, and polishing is conventionally performed. Pad 4 was clogged. Although not clearly shown in FIG. 3 (b), debris is generated around the convex portion on the surface of the polishing pad 4, so that deposits also accumulate on this convex portion.
このよ うな研磨パッ ド表面の目づまリは、 研磨能率を著しく低下せし めるものであり、 従来は、 例えば、 専用の砥石 (第 2図の砥石 3 0 ) を 研磨パッ ド上に配置して、 研磨中において継続的にドレッシングを実施 する、 いわゆるインプロセス ドレッシングを実施することで防止してい た。 このインプロセス ドレッシングとは、 砥石の表面にダイヤモン ドの 砥粒を固定しておき、 このダイヤモンド砥粒を研磨パッ ドに押しつけな がら、 砥石と研磨パッ ドを摺動させ、 研磨パッ ドの表面を堆積物ととも に削リ取る作業のことである。  Such clogging of the polishing pad surface significantly reduces the polishing efficiency. Conventionally, for example, a dedicated grindstone (grindstone 30 in FIG. 2) is placed on the polishing pad. This was prevented by performing dressing continuously during polishing, so-called in-process dressing. This in-process dressing is a process in which diamond abrasive grains are fixed to the surface of a grindstone, and while the diamond abrasive grains are pressed against the polishing pad, the grindstone and the polishing pad slide. This is the operation to remove the waste together with the sediment.
一方、 本発明による一実施形態の研磨装置では、 第 3図 ( a ) に示す ように、 研磨パッ ド 4の表面の凹部内において、 あるいは、 凹部から凹 部へと移動するように、 堆積物かき出し用粒子 7 3が転動するため、 こ れに伴って堆積物 7 4がかき出されることになる。 したがって、 この部 分には、 堆積物 7 4による研磨パッ ド 4の目づまりがほとんど発生せず、 研磨能率の低下を防止することができる。 また、 堆積物かき出し粒子 7 3は、 研磨パッ ド 4の表面を転動するため、 研磨パッ ド 4の表面を削る ことがなく、 研磨パッ ド 4の消費が著しく抑制されることになる。 On the other hand, in the polishing apparatus according to one embodiment of the present invention, as shown in FIG. 3 (a), the deposit is moved in the concave portion on the surface of the polishing pad 4 or so as to move from the concave portion to the concave portion. Since the scraping particles 73 roll, the sediment 74 is scraped off. Therefore, clogging of the polishing pad 4 due to the deposits 74 hardly occurs in this portion, and a decrease in polishing efficiency can be prevented. In addition, sediment scraping particles 7 Since the roller 3 rolls on the surface of the polishing pad 4, the surface of the polishing pad 4 is not shaved, and the consumption of the polishing pad 4 is significantly suppressed.
また、 本実施形態の研磨装置では、 電極 2 1 と電極 2 4 との間に発生. した電界内に堆積物かき出し用粒子 7 3が引き寄せられるため、 研磨パ ッ ド 4の表面上に堆積物かき出し用粒子 7 3がある程度滞留する。 加工 液 7中において堆積物かき出し用粒子 7 3の密度が高くなれば、 その分 だけ、 研磨パッ ド 4の表面と堆積物かき出し用粒子 7 3 との接触頻度が 増加し、 堆積物かき出し用粒子 7 3による目づまリ解消効果が向上する。 つぎに、 本研磨装置と従来の研磨装置 (CMP装置) との差異を具体 的に検証する。 ここでは、 本研磨装置と従来の研磨装置をそれぞれ実際 に稼動して比較実験を行なった。  Further, in the polishing apparatus of the present embodiment, since the deposit scraping particles 73 are attracted in the electric field generated between the electrode 21 and the electrode 24, the deposit is deposited on the surface of the polishing pad 4. The scraping particles 73 stay to some extent. As the density of the particles 73 for excavating the sediment in the machining liquid 7 increases, the frequency of contact between the surface of the polishing pad 4 and the particles 73 for exposing the sediment increases, and the particles for exposing the sediment increase. 7 The effect of eliminating blind spots by 3 is improved. Next, the difference between the present polishing apparatus and the conventional polishing apparatus (CMP apparatus) will be specifically verified. Here, a comparative experiment was performed by actually operating the present polishing apparatus and the conventional polishing apparatus.
まず、 実験試験で設定した各種条件をまとめて記載し、 その後、 具体 的な実験内容について説明する。  First, various conditions set in the experimental test are described together, and then the specific contents of the experiment are described.
<共通項目 > <Common items>
〇研磨対象 : 表面に層間絶縁膜が形成された 6インチ S i ウェハ 〇研磨条件 :  対 象 Polishing target: 6 inch Si wafer with interlayer insulating film formed on the surface 〇Polishing condition:
研磨定盤の回転数: 2 0 r /m i n  Rotation speed of polishing platen: 20 r / min
チャックの回転数: 2 0 r /m i n  Number of rotations of chuck: 20 r / min
チャックの送リ速度 : 5 mm/ s e c  Chuck feeding speed: 5 mm / sec
研磨加工時間 : 1 O m i n (ただし、 2分ごとに研磨能率を測定)  Polishing time: 1 O min (However, the polishing efficiency is measured every 2 minutes)
1 0 0 m i n (ただし、 1 0分ごとに研磨能率を 測定)  100 min (however, the polishing efficiency is measured every 10 minutes)
研磨荷重 : 6 0 k g f  Polishing load: 60 kg f
スラリー : シリ力砥粒を含んだアル力リ溶液  Slurry: Al solution containing abrasive grains
砥粒の粒径 : 3 0 n m  Abrasive grain size: 30 nm
研磨パッ ドの表面に複数存在する微小な 部の深さ : 3 0〜4 0 μ m Depth of multiple minute parts existing on the surface of the polishing pad: 30 to 40 μm
〇研磨量の算出方法 :研磨加工開始前に、 光干渉式膜厚計を用いて、 方法 Calculation method of polishing amount: Before starting polishing, use a light interference type film thickness meter.
4 9箇所の層間絶緣膜の膜厚 (T 1、 · · · Τ 4 9) を測定し、 研磨加 ェ後、 同位置の膜厚 (Τ 1 ' · · · Τ 4 9 ' ) を測定し、 (数式 1 ) を 用いて、 研磨量 Vk を算出した。 また、 さらに、 (数式 2) を用いて、 研磨量 Vk のばらつき AVを算出した。 4 Measure the thickness of the interlayer insulation film at 9 locations (T1, ··· Τ49), and after polishing, measure the film thickness at the same position (Τ1 '· · · Τ49'). , using (equation 1) to calculate the amount of polishing V k. Still, using the (equation 2) to calculate the variation AV amount of polishing V k.
V, = Tk —Tk' (数式 1 )V, = T k —T k '(Equation 1)
△ V = ± 1 0 0 (Vmax— Vmin) / ( 2 Vave) (数式 2 ) ここで、 kは 4 9以下の自然数、 Vmaxは最大研磨量、 Vminは最小研 磨量、 Vaveは平均研磨量である。 △ V = ± 10 00 (Vmax— Vmin) / (2 Vave) (Equation 2) where k is a natural number of 49 or less, Vmax is the maximum polishing amount, Vmin is the minimum polishing amount, and Vave is the average polishing amount. It is.
く従来の研磨装置のみに関係する項目 > Items related to conventional polishing equipment only>
〇研磨パッ ドのドレツシング条件 :  〇 Dressing conditions for polishing pad:
ドレッシング部材 : 研磨パッ ド上に配置されるダイャモンド砥石 ドレッシングのタイミ ング :研磨中もしくは研磨前のみ ドレッシング時間 : 研磨時間と同時間  Dressing member: Diamond whetstone placed on polishing pad Dressing timing: Only during or before polishing Dressing time: Same time as polishing time
研磨前にドレッシングを行なう場合は、 3 0 s e c  If dressing before polishing, 30 sec
<本実施形態の研磨装置のみに関係する項目 >  <Items related only to the polishing apparatus of the present embodiment>
〇研磨パッ ドの堆積物かき出し条件 :  条件 Polishing conditions for polishing pad deposits:
堆積物かき出し部材 : ポリマーで形成された球形の堆積物かき出 し用 子  Sediment scraping member: Spherical sediment scraping element made of polymer
堆積物かき出しタイ ミング : 研磨中  Sediment removal timing: polishing
堆積物かき出し時間 : 研磨時間と同時間  Sediment scraping time: Same time as polishing time
堆積物かき出し用粒子の粒径 : 8、 6 0 m  Particle size of sediment scraping particles: 8, 60 m
堆積物かき出し用粒子の濃度 : 1、 5、 1 0重量。 /0 Concentration of sediment scraping particles: 1, 5, 10 weight. / 0
〇電界発生装置の印加電圧 : 1 0 0 V まず、 研磨能率が研磨時間に対してどのように推移するかを調べた。 実験結果を第 4図に示す。 ここでは、 1 0分間研磨を行い、 2分毎の研 磨能率 (研磨量 V/研磨時間 T) を算出した。 印 加 Applied voltage of electric field generator: 100 V First, we examined how the polishing efficiency changes with the polishing time. Figure 4 shows the experimental results. Here, polishing was performed for 10 minutes, and the polishing efficiency (polishing amount V / polishing time T) was calculated every 2 minutes.
同図の ( a ) の各印は、 研磨中において継続的にドレッシングを行つ た場合における、 従来の研磨装置の研磨能率の推移を示している。 ( g) の各印は、 研磨前にのみドレッシングを行った場合における、 従来の研 磨装置の研磨能率の推移を示している。 ( c ) の各印は、 本実施形態の 研磨装置において、 堆積物かき出し用粒子の粒径を 8 mと し、 その濃 度を 5重量%と した場合の研磨能率の推移を示している。 ( d) の各印 は、 堆積物かき出し用粒子の粒径を 8 μ mとし、 その濃度を 1 0重量% と した場合の研磨能率の推移を示している。 ( e ) の各印は、 堆積物か き出し用粒子の粒径を 8 μ mと し、 その濃度を 1重量%と した場合の研 磨能率の推移を示している。 ( f ) の各印は、 堆積物かき出し用粒子の 粒径を 6 0 μ mと し、 その濃度を 1 0重量。 /0と した場合の研磨能率の推 移を示している。 ( b) の各印は、 堆積物かき出し用粒子の粒径を 8 μ m、 その濃度を 5重量%と し、 電界発生装置で電界を発生させた場合の 研磨能率の推移を示している。 Each mark (a) in the figure shows a change in the polishing efficiency of a conventional polishing apparatus when dressing is continuously performed during polishing. Each mark in (g) shows the change in the polishing efficiency of a conventional polishing apparatus when dressing is performed only before polishing. Each mark in (c) shows the transition of the polishing efficiency when the particle diameter of the particles for scraping out deposits is 8 m and the concentration is 5% by weight in the polishing apparatus of the present embodiment. Each mark in (d) shows the transition of the polishing efficiency when the particle size of the sediment scraping particles is 8 μm and the concentration is 10% by weight. Each mark in (e) shows the change in the polishing efficiency when the particle size of the sediment extraction particles is 8 μm and the concentration is 1% by weight. Each mark in (f) indicates that the particle size for sediment scraping is 60 μm and the concentration is 10 weight. It shows the progress of the polishing efficiency when / 0 is set. Each mark in (b) shows the transition of the polishing efficiency when the particle size of the sediment scraping particles is 8 μm and the concentration is 5% by weight and an electric field is generated by an electric field generator.
そして、 本実験によれば、 ( a ) において、 研磨能率は安定し、 かつ、 その平均値も約 0. 2 / mZm i nと高い値を示した。 一方、 ( g) で は、 最終的な研磨能率が、 初期値と比較して、 該初期値の約 4 0パーセ ント分低減した。  According to this experiment, in (a), the polishing efficiency was stable, and the average value was as high as about 0.2 / mZmin. On the other hand, in (g), the final polishing efficiency was reduced by about 40% of the initial value as compared with the initial value.
また、 ( c ) では、 研磨能率の平均値は、 約◦ . 1 8 μ m/m i nと なリ、 ( a ) と比較して、 ( a ) の研磨能率の平均値の 1 0 %分低減し た。 ( d ) では、 研磨能率の平均値は約 0. 1 6 μ m/m i nとなり、 ( a ) と比較して、 (a ) の研磨能率の平均値の約 2 0 %分低減した。 しかし、 ( c ) 、 ( d ) では、 研磨能率の安定性がよく、 この点は、 ( a ) と同等であった。 これは、 堆積物かき出し用粒子による目詰まリ 解消効果が発揮されたことを明確に示している。 In addition, in (c), the average value of the polishing efficiency is about ◦ 18 μm / min, which is 10% lower than the average value of (a) in comparison with (a). did. In (d), the average value of the polishing efficiency was about 0.16 μm / min, which was about 20% lower than the average value of (a) in comparison with (a). However, in (c) and (d), the stability of polishing efficiency is good. It was equivalent to (a). This clearly shows that the particles for scraping off sediment had an effect of eliminating clogging.
一方、 ( e ) では、 最終的な研磨能率が、 初期値と比較して、 該初期 値の約 2 0 %分低減した。 これは、 堆積物かき出し用粒子の濃度が少な いために、 研磨パッ ド 4の目づまリが発生したことを示している。  On the other hand, in (e), the final polishing efficiency was reduced by about 20% of the initial value as compared with the initial value. This indicates that the polishing pad 4 was clogged due to the low concentration of the particles for scraping out the sediment.
なお、 ( f ) では、 研磨能率は安定したが、 研磨能率の平均値は約 0 , 1 2 m/m i nとなリ、 ( a ) と比較して、 ( a ) の研磨能率の平均 値の約 4 0 %分低減した。 これは、 研磨パッ ド表面の微小凹部の深さよ リ も堆積物かき出し用粒子の粒径が大きいために、 研磨パッ ド表面が被 加工面に接触しづらくなリ、 研磨能率が低減したものと思われる。 した がって、 研磨能率を向上させるためには、 堆積物かき出し用粒子の粒径 は、 少なく とも、 研磨パッ ド表面上に存在する複数の凹部の平均の深さ ょリも小さくする必要がある。  In (f), the polishing efficiency was stable, but the average value of the polishing efficiency was about 0, 12 m / min. Compared to (a), the average value of the polishing efficiency in (a) was It has been reduced by about 40%. This is due to the fact that the particle size of the particles for scraping out deposits is larger than the depth of the minute recesses on the surface of the polishing pad, so that the polishing pad surface is less likely to contact the surface to be processed and the polishing efficiency is reduced. Seem. Therefore, in order to improve the polishing efficiency, the size of the particles for scraping out the deposits must be at least as small as the average depth of the plurality of recesses present on the surface of the polishing pad. is there.
( b ) では、 研磨能率の安定性と平均値が ( a ) と同等であった。 こ れは、 堆積物かき出し用粒子の粒径と濃度を最適値に設定して所定の電 界を発生させれば、 従来の研磨方法と全く 同じように研磨能率を推移さ せることができることを示している。  In (b), the stability and average value of the polishing efficiency were equivalent to (a). This means that if the particle size and concentration of sediment scraping particles are set to optimal values and a predetermined electric field is generated, the polishing efficiency can be changed in exactly the same way as in the conventional polishing method. Is shown.
■つぎに、 研磨パッ ドの表面ブロファィルの測定結果を第 5図に示す。 ここでは、 触針式の表面粗さ計を用いて研磨パッ ドの表面プロファイル を測定し、 堆積物かき出し用粒子の効果を調べた。  ■ Next, Fig. 5 shows the measurement results of the surface profile of the polishing pad. Here, the surface profile of the polishing pad was measured using a stylus-type surface roughness meter, and the effect of the particles for scraping out deposits was examined.
第 5図 ( a ) 、 ( b ) には、 研磨前に ドレッシングを行い、 研磨中は ドレッシングを行わない場合 (第 4図の ( g ) の場合) の、 研磨パッ ド の表面プ cファイルの測定結果が示されている。 第 5図 ( a ) の表面ブ 口ファイルは、 ドレッシング直後のもので、 第 5図 ( b ) の表面プロフ アイルは、 研磨を開始して 1 0分が経過した時点のものである。 このよ うに、 研磨作業中において全く ドレッシング作業を行わないと、 研磨パ ッ ド上では急速に目づまリが進行する。 Figs. 5 (a) and (b) show the surface profile of the polishing pad when dressing is performed before polishing and not during polishing ((g) in Fig. 4). The measurement results are shown. The surface profile file in Fig. 5 (a) is the one immediately after dressing, and the surface profile in Fig. 5 (b) is the one after 10 minutes from the start of polishing. In this way, if no dressing work is performed during the polishing operation, the polishing The eye moves rapidly on the head.
一方、 第 5図 ( c ) には、 堆積物かき出し用粒子と電界発生装置を用 いた場合 (第 4図の (b ) の場合) の表面プロファイルが示されている < この表面プロファィルは、 研磨を開始して 1 0分が経過した時点のもの であるが、 ほとんど目詰ま り しておらず、 ドレッシング直後のプロファ ィル (第 5図 ( a ) ) とほぼ同じ状態を維持している。  On the other hand, Fig. 5 (c) shows the surface profile when the particles for excavating the sediment and the electric field generator were used (in the case of (b) in Fig. 4). 10 minutes after the start of polishing, but almost no clogging and almost the same state as the profile immediately after dressing (Fig. 5 (a)) .
つぎに、 研磨作業を長時間行った場合の研磨能率に関する図を第 6図 に示す。 ここでは、 1 0 0分間研磨を行い、 1 0分ごとの研磨能率を算 出した。  Next, FIG. 6 shows a diagram regarding the polishing efficiency when the polishing operation is performed for a long time. Here, polishing was performed for 100 minutes, and the polishing efficiency was calculated every 100 minutes.
第 6図の ( a ) には、 第 4図の ( a ) と同じく、 研磨中において継続 的にドレツシングを行った場合における研磨能率の推移が示されている c 同 6の (b ) には、 第 4図の ( b ) と同じく、 8 μ πιの堆積物かき出し 用粒子と電界発生装置を使用した場合の研磨能率の推移が示されている c 同図から明らかなように、 (b ) の研磨能率は、 ( a ) と同程度に安 定しておリ、 研磨作業を長時間にわたって行なった場合であっても、 堆 積物かき出し用粒子の効果は十分に発揮されている。 The sixth diagram (a), as with the 4 (a), the during polishing continuously in polishing efficiency in case of performing Doretsushingu transition is the indicated c the 6 (b) is As in (b) of Fig. 4, the change in polishing efficiency when using 8 μπι particles for scraping out deposits and an electric field generator is shown. C As is clear from the figure, (b) The polishing efficiency of (a) is stable at about the same level as (a), and even if polishing is performed for a long period of time, the effect of the particles for scraping off the deposits is sufficiently exhibited.
つぎに、 第 6図の ( a ) 、 ( b ) における研磨パッ ドの消耗量の評価 結果を述べる。 本実施形態の効果は、 この研磨パッ ドの消耗量に顕著に 表れている。  Next, the evaluation results of the amount of consumption of the polishing pad in (a) and (b) of FIG. 6 are described. The effect of the present embodiment is remarkably reflected in the consumption of the polishing pad.
研磨前の研磨パッ ドの初期厚さは、 第 6図の ( a ) 、 ( b ) のいずれ の場合も約 1 . 3 mmであった。 そして、 研磨時間が 1 0 0分を越えた 時点で研磨パッ ドを切断し、 ウェハが通過した部分の、 研磨パッ ドの半 径方向の 1 0箇所の厚さをマイクロメータを用いて測定した。 その後、 各測定結果について、 初期厚さとの差を求め、 これらの平均値をもとに 研磨パッ ドの消耗量を算出した。  The initial thickness of the polishing pad before polishing was about 1.3 mm in both cases (a) and (b) of FIG. When the polishing time exceeded 100 minutes, the polishing pad was cut, and the thickness of the polishing pad in the radial direction at the portion where the wafer passed was measured using a micrometer. . After that, the difference from the initial thickness was determined for each measurement result, and the consumption of the polishing pad was calculated based on the average value.
その結果、 ( a ) の条件での消耗量は約 1 5 0 μ mであった。 一方、 ( b ) の条件での消耗量は約 1 0 μ mであった。 As a result, the consumed amount under the condition (a) was about 150 μm. on the other hand, The amount of consumption under the condition (b) was about 10 μm.
これは、 砥石による継続的な ドレッシングを行う と、 研磨パッ ドは著 しく消耗するが、 堆積物かき出し用粒子を用いた場合は、 研磨パッ ドの. 消耗が大幅に (今回は約 1 / 1 5 ) に低減されることを示している。 な お、 研磨パッ ドは、 研磨加工中に圧縮されて変形するため、 実際には、 第 6図の (b ) における実際の消耗量は前述の値よリ もさらに小さくな る。  This is because the polishing pad is significantly consumed by continuous dressing with a grindstone, but the polishing pad is significantly consumed when particles for scraping out are used. 5). Since the polishing pad is compressed and deformed during polishing, the actual consumption in FIG. 6 (b) is actually smaller than the above-mentioned value.
つぎに、 ウェハ面内の研磨能率の分布を第 7図に示す。  Next, the distribution of the polishing efficiency within the wafer surface is shown in FIG.
研磨中に継続して ドレッシングを実施した場合 (第 4図の ( a ) の場 合) 、 ウェハ面内の研磨能率のばらつきは、 第 7図の ( a ) に示すよう に約 ± 3 %であった。 これに対し、 研磨前にのみドレッシングした場合 (第 4図の ( g ) の場合) 、 ウェハ面内の研磨能率のばらつきは、 第 7 図の ( g ) に示すよ うに約 ± 7 %であった。 また、 第 7図の ( g) では、 ウェハの中心での研磨能率の低下が顕著であった。 このため、 第 7図の ( b ) では、 電極 2 4をレール 2 2のほぼ中央に配置して、 電極 2 4と ウェハの中心部とがほぼ同心円上に位置するようにし、 この状態で、 印 加電圧 1 0 0 Vで電界を生じさせ、 第 4図 (b ) と同様、 堆積物かき出 し用粒子の粒径が 8 μ m、 その濃度が 5重量%の加工液を用いて研磨を 行った。  When dressing is performed continuously during polishing (in the case of (a) in Fig. 4), the variation in polishing efficiency in the wafer surface is about ± 3% as shown in (a) in Fig. 7. there were. On the other hand, when dressing is performed only before polishing (case (g) in FIG. 4), the variation in polishing efficiency within the wafer surface is about ± 7% as shown in (g) in FIG. Was. In (g) of FIG. 7, the polishing efficiency was significantly reduced at the center of the wafer. For this reason, in (b) of FIG. 7, the electrode 24 is arranged substantially at the center of the rail 22 so that the electrode 24 and the center of the wafer are positioned substantially concentrically. An electric field is generated at an applied voltage of 100 V, and as in Fig. 4 (b), polishing is performed using a machining fluid with a particle size of 8 μm and a concentration of 5% by weight for scraping out sediments. Was conducted.
この結果、 ウェハ面内の研磨能率は、 継続的なドレッシングを行った 場合 (第 7図の ( a ) ) と同等になった。  As a result, the polishing efficiency in the wafer surface was equivalent to that obtained when continuous dressing was performed ((a) in FIG. 7).
このよ うに、 本実施形態の研磨装置によれば、 電極 2 4の位置を動か すことで、 ウェハ面内の研磨能率の分布を任意に変えることができるよ うになる。  As described above, according to the polishing apparatus of the present embodiment, the distribution of the polishing efficiency in the wafer surface can be arbitrarily changed by moving the position of the electrode 24.
つぎに、 本実施形態において最も顕著な効果が発揮されるところの、 多数のウェハを研磨した場合の研磨パッ ドの厚さの推移を第 8図に示す。 測定は、 前述と同様、 研磨パッ ドを切断してマイクロメータで測定した < 第 8図 ( a ) には、 第 4図の ( a ) の場合 (すなわち、 研磨中におい て継続的に ドレッシングを行った場合) の研磨パッ ドの厚さの推移が示. されている。 Next, FIG. 8 shows a change in the thickness of the polishing pad when a large number of wafers are polished, where the most remarkable effect is exhibited in the present embodiment. The measurement was performed by cutting the polishing pad and measuring with a micrometer as described above. <Fig. 8 (a) shows the case of (a) in Fig. 4 (that is, the dressing was continuously performed during polishing). The transition of the thickness of the polishing pad is shown.
第 8図 ( c ) には、 第 4図の ( c ) の場合 (すなわち、 堆積物かき出 し用粒子の粒径を 8 mと し、 その濃度を 5重量。 /0と した場合) の研磨 パッ ドの厚さの推移が示されている。 The FIG. 8 (c), in the fourth diagram of (c) (i.e., the particle size of the deposited writers out and for particles with 8 m, when the concentration of 5 wt. / 0) The transition of the thickness of the polishing pad is shown.
このよ うに、 第 4図の ( c ) の条件下では、 本実施形態の研磨装置は. ウェハを 1 0 0枚研磨した場合であっても、 研磨パッ ドの厚さがほとん ど変化せず、 研磨パッ ドの消耗が完全に抑制されている。 一方、 第 4図 の ( a ) の条件下における従来の研磨装置は、 枚数が増えるにつれて研 磨パッ ドが薄く なる。 これは、 と リもなおさず、 半導体製造プロセスに おけるメ ンテナンス時間が、 本実施形態では、 従来例と比較して極めて 少なくなることを意味するものである。  Thus, under the condition (c) of FIG. 4, the polishing apparatus of the present embodiment shows that the polishing pad thickness hardly changes even when 100 wafers are polished. The consumption of the polishing pad is completely suppressed. On the other hand, in the conventional polishing apparatus under the condition (a) in FIG. 4, the polishing pad becomes thinner as the number of sheets increases. This means that the maintenance time in the semiconductor manufacturing process is much shorter in the present embodiment than in the conventional example.
以上、 本実施形態の研磨装置と、 従来の研磨装置との比較実験につい て述べたが、 これとは別に、 本実施形態の研磨装置を半導体装置の多層 配線プロセスに適用して実験を行った。  As described above, the comparative experiment between the polishing apparatus of the present embodiment and the conventional polishing apparatus has been described. Separately, the experiment was performed by applying the polishing apparatus of the present embodiment to a multilayer wiring process of a semiconductor device. .
その結果、 層間絶縁膜の研磨量のばらつきが ± 2. 7 %以下に押さえ られていることが確認できた。 また、 接触式表面粗さ計と原子間力顕微 鏡にょ リ、 層間絶縁膜の表面粗さを測定した結果、 層間絶縁膜の表面粗 さ Rm a xが 0. 3 n m以下に抑制されていることが確認された。 さら に、 接触式の表面粗さ測定器と原子間力顕微鏡にょリ、 段差部における 層間絶緣膜の表面の凹凸高さを測定した結果、 当初 0. 7 mであった 凹凸高さが 0. 0 5 μ m以下まで平坦化されていることが確認された。 以上の測定値は、 線幅 0. 1 5 mの超微細線の層間膜に要求される 条件を満たすことができる値である。 なお、 本研磨装置の多層配線プロセスへの適用は、 装置性能を評価す るために示した一例に過ぎない。 従って、 高い形状精度を要求される他 の部品 (例えば、 光学素子等) の研磨工程に本研磨装置を導入しても、 これと同等な有益な効果が達成されることは言うまでもない。 As a result, it was confirmed that the variation in the polishing amount of the interlayer insulating film was suppressed to ± 2.7% or less. The surface roughness of the interlayer insulating film was measured to be 0.3 nm or less as a result of measuring the surface roughness of the interlayer insulating film by using a contact surface roughness meter and an atomic force microscope. Was confirmed. In addition, the surface roughness of the interlayer insulating film at the step was measured using a contact surface roughness meter and an atomic force microscope. It was confirmed that the surface was flattened to 0 5 μm or less. The above measured values are values that can satisfy the conditions required for an interlayer film of an ultrafine line having a line width of 0.15 m. The application of the present polishing apparatus to the multilayer wiring process is only an example shown for evaluating the apparatus performance. Therefore, needless to say, even if the present polishing apparatus is introduced into a polishing process of another component (for example, an optical element or the like) requiring high shape accuracy, the same beneficial effect can be achieved.
次に、 本発明に係る研磨装置の他の実施形態を第 9図に示す。  Next, another embodiment of the polishing apparatus according to the present invention is shown in FIG.
同図において、 研磨定盤 1 0 5の上面には、 同心円状の排水路 (排水 用の溝) 1 0 4 aが複数本形成されている研磨パッ ド 1 0 4が貼リ付け られている。 この溝は、 例えば、 溝幅約 1 0 0 m、 溝の深さ約 3 0 0 〜 4 0 0 μ mに形成されている。  In the same figure, a polishing pad 104 formed with a plurality of concentric drainage channels (drainage grooves) 104a is attached to the upper surface of the polishing platen 105. . This groove is formed, for example, with a groove width of about 100 m and a groove depth of about 300 to 400 μm.
このような形態の研磨パッ ド 1 0 4 自体は従来から存在するが、 この 研磨パッ ドを用いて研磨加工を行う と、 研磨時間の経過とともに、 溝 1 0 4 a の中に、 前述した加工屑等が堆積し、 溝が目詰まリ し、 研磨能率 が低下する。  Although the polishing pad 104 having such a form has existed in the past, when the polishing process was performed using the polishing pad, as the polishing time elapses, the above-described processing was performed in the groove 104a. Debris accumulates and clogs the grooves, lowering polishing efficiency.
そこで、 本研磨装置では、 かき出し片 (例えば、 先端が尖った薄い樹 脂片) 1 0 1 を複数本備えたアーム 1 0 2を設けている。 アーム 1 0 2 は、 z方向に移動可能な直動テーブル 1 0 3に固定されている。 かき出 し片 1 0 1の取リ付けピッチは、 研磨パッ ドの同心溝のピッチに一致し ている。 そして、 研磨定盤 1 ◦ 5の回転中、 直動テーブル 1 0 3は z方 向に移動し、 各かき出し片 1 0 1 を研磨パッ ド 1 0 4の溝 1 0 4 aに押 しっける。 これによ リ、 かき出し片 1 0 1の先端部が溝 1 0 4 aの底部 で摺動し、 溝内の堆積物が外部にかき出される。 なお、 このかき出し片 付きアーム 1 0 2は、 例えば、 第 1図に示した研磨装置に取リ付けても 構わない。 この場合、 かき出し片付きアーム 1 0 2は、 例えば第 2図の —点鎖線に示すような位置に設置される。  Therefore, in this polishing apparatus, an arm 102 provided with a plurality of scraping pieces (for example, thin resin pieces having sharp pointed ends) 101 is provided. The arm 102 is fixed to a translation table 103 movable in the z direction. The mounting pitch of the scraping pieces 101 matches the pitch of the concentric grooves of the polishing pad. During the rotation of the polishing table 1◦5, the linear motion table 103 moves in the z direction and pushes each piece 101 into the groove 104a of the polishing pad 104. . As a result, the tip of the scraping piece 101 slides at the bottom of the groove 104a, and the sediment in the groove is scraped out. The arm 102 with a scraping piece may be attached to, for example, the polishing apparatus shown in FIG. In this case, the arm 102 with a scraping piece is installed at a position indicated by a dotted line in FIG. 2, for example.
ここで、 かき出し片付きアーム 1 0 2を備えていない従来の研磨装置 と、 本実施形態の研磨装置の比較実験の結果を記述する。 従来の研磨装置 : 幅約 1 0 0 μ mの同心溝を形成した研磨パッ ドを用 いて実際に研磨加工を行ったところ、 砥石を用いて継続的な ドレツシン グを実施したにもかかわらず、 研磨時間 1 0 0分後には、 溝の内部が目 づまリ した。 Here, the results of a comparative experiment of a conventional polishing apparatus without the arm 102 with a scraping piece and the polishing apparatus of the present embodiment will be described. Conventional polishing equipment: When polishing was actually performed using a polishing pad with concentric grooves with a width of about 100 μm, despite continuous dressing using a grindstone, After 100 minutes of polishing time, the inside of the groove was noticeable.
本実施形態の研磨装置 : 砥石による ドレッシングを行なわずに研磨を 続けても、 溝の内部の目づまリは生じなかった。 この場合、 継続的にか き出し片を摺動させた場合と、 1 0分おきに、 3 0秒間摺動させた場合 とで、 溝の内部の目づまリの解消効果は同じであった。  Polishing apparatus of the present embodiment: Even if polishing was continued without dressing with a grindstone, the inside of the groove was not clogged. In this case, the effect of eliminating the clogging inside the groove was the same between the case where the scraping piece was continuously slid and the case where it was slid for 30 seconds every 10 minutes. .
次に、 本発明に係る研磨装置の更に他の実施形態を第 1 0図に示す。 第 1 0図 ( a ) には、 本実施形態の研磨装置の第一の研磨機構部が示 されている。 この研磨装置は、 砥石を用いた場合には、 いわゆる研削盤 であリ、 ラップ定盤を用いた場合にはラップ盤でぁリ、 同図には、 被加 ェ物 1 を弾性体 2 bを介して保持するチヤック 3 b と、 砥石 4 b (また はラップ定盤 4 c ) が着脱可能に取リ付けられた研磨定盤 5 bを、 主構 成要素と して備えてぉリ、 砥石 4 b (あるいはラップ定盤 4 c ) の表面 (作業面) 上に加工液 7 bが供給されている。  Next, still another embodiment of the polishing apparatus according to the present invention is shown in FIG. FIG. 10 (a) shows a first polishing mechanism of the polishing apparatus of the present embodiment. This grinding device is a so-called grinding machine when using a grindstone, and a lapping machine when using a lap surface plate. In the figure, the workpiece 1 is made of an elastic body 2 b A chuck 3b, which is held through a hole, and a polishing platen 5b to which a grindstone 4b (or a lap platen 4c) is removably attached as main components, are provided. The machining fluid 7b is supplied on the surface (work surface) of the grinding wheel 4b (or the lap surface plate 4c).
なお、 第 1 0図 ( a ) には図示されていないが、 次のような構成も含 むものである。 例えば、 研磨定盤 5 bの回転に支障のないよ うに該研磨 定盤 5 bの下面と側面を囲むベース、 供給管 1 3 bを介して加工液 7 b を供給する加工液供給装置、 研磨定盤 5 bを回転させるための第 1の回 転機構、 チャック 3 bを回転させるための第 2の回転機構、 チャック 3 bを X方向に移動させるための送リ機構、 被加工物 1を研磨パッ ド表面 に押し当てるための加圧機構等を備えている。 これらの機構は、 図示省 略されているが、 従来の研削盤、 ラップ盤でも使用されておリ、 構造も よく知られているものばかりである。 例えば、 第 1の回転機構は、 サー ボモータと減速機を含んで構成され、 サーボモータの出力を減速機を介 して研磨定盤 5 bの回転軸に伝達し、 研磨定盤 5 bを回転させる。 また. 送リ機構も、 サーボモータと減速機を含んで構成され、 サーボモータの 出力を、 減速機を介して、 チャック送リ用ボールネジに形成されたスプ ラインに伝達し、 チャック 3 bを X方向に移動させる。 加圧機構は、 ェ ァシリ ンダでチャック 3 bを z方向に移動させ、 被加工物 1 を砥石表面 あるいはラップ定盤表面に押し当てる。 Although not shown in FIG. 10 (a), the following configuration is also included. For example, a base that surrounds the lower surface and side surfaces of the polishing table 5b so as not to hinder the rotation of the polishing table 5b. A first rotating mechanism for rotating the platen 5b, a second rotating mechanism for rotating the chuck 3b, a feeding mechanism for moving the chuck 3b in the X direction, and a workpiece 1 It has a pressure mechanism for pressing against the polishing pad surface. Although these mechanisms are not shown in the drawings, they are also used in conventional grinding machines and lapping machines, and their structures are well known. For example, the first rotation mechanism includes a servomotor and a speed reducer, and outputs the output of the servomotor via the speed reducer. Then, it is transmitted to the rotating shaft of the polishing table 5b, and the polishing table 5b is rotated. The feed mechanism also includes a servo motor and a speed reducer. The output of the servo motor is transmitted to the spline formed on the ball screw for chuck feed via the speed reducer, and the chuck 3 b is moved to X Move in the direction. The pressurizing mechanism moves the chuck 3b in the z-direction with the aid of a cylinder, and presses the workpiece 1 against the grindstone surface or the lap surface.
被加工物 1は、 例えば配線を多層化している段階にあるシリ コンゥェ ハであり、 表面に S i 0 2 の層間絶緣膜が形成されている。 層間絶縁膜 の下には、 微細なパターンを持つ配線群が形成されている。 このため、 層間絶縁膜には、 配線が存在する箇所と しない箇所で高低差が生じてい る。 本第一の研磨機構部では、 この層間絶縁膜の表面の凹凸を平坦化し たり、 あるいは、 配線群を構成する金属膜を研磨する場合に使用される。 加工液 7 bには、 スラ リーを用いる。 スラ リーには、 被加工面を有す る部材と固相反応性に富んだものを使用する。 例えば、 S i o 2 の絶縁 膜を研磨する場合には、 アルカリ性溶液に、 粒径約 3 0 n mの S i 0 2 砥粒 (シリカ砥粒) を約 2 0重量%混入したものや、 粒径約 1 0 0 n m の C e〇2 砥粒 (酸化セリ ウム砥粒) を約 2 0重量%混入したものを使 用する。 一方、 S i 0 2 膜上の金属膜を研磨する場合には、 例えば、 酸 性溶液に、 アルミナ砥粒を混入したものを使用する。 The workpiece 1 is, for example, a silicon wafer in a stage in which wiring is multi-layered, and an SiO 2 interlayer insulating film is formed on the surface thereof. Under the interlayer insulating film, a group of wires having a fine pattern is formed. For this reason, a level difference occurs in the interlayer insulating film between a portion where the wiring exists and a portion where the wiring does not exist. The first polishing mechanism is used to flatten the unevenness of the surface of the interlayer insulating film or to polish a metal film constituting a wiring group. A slurry is used as the working fluid 7b. A slurry with a solid surface reactivity with a member having a surface to be processed is used. For example, in the case of polishing an insulating film S io 2 is an alkaline solution, a particle size of about 3 0 nm of S i 0 2 abrasive grains obtained by mixing (silica abrasive grains) from about 2 0% by weight and a particle size about 1 0 0 nm of C E_〇 2 abrasive use those mixed with (oxidation parsley um abrasive grains) from about 2 0% by weight. On the other hand, when polishing a metal film on the SiO 2 film, for example, a material obtained by mixing alumina abrasive grains in an acid solution is used.
砥石 4 bは、 加工中にウェハ表面にスクラッチが生じないような弾性 率の小さい材料で形成する。 本実施形態では、 酸化セリ ウム砥粒で形成 された砥石を使用する。 砥石表面は、 予め定めた表面粗さと平面度を持 つている。  The grindstone 4b is formed of a material having a low elastic modulus so that scratches do not occur on the wafer surface during processing. In this embodiment, a grindstone formed of cerium oxide abrasive grains is used. The whetstone surface has a predetermined surface roughness and flatness.
また、 砥石 4 bのかゎリにラップ定盤 4 cを用いる場合には、 金属、 プラスチックやゴム等の弾性率の小さい材料、 あるいは金属とプラスチ ックゃゴムの複合材料で形成されたラップ定盤を使用する。 加工液供給装置と しては、 外部から送られた加工液 7 bを一且貯留す るタンクと、 タンク内で砥粒が沈殿しないようにこれらを撹拌する撹拌 器と、 タンク内の加工液 7 bを供給管 1 3 bから送出するためのポンプ と、 加工液の単位時間あたリの供給量を調節するバルブを有して構成さ れる。 When the lapping plate 4c is used for polishing the grinding wheel 4b, a lapping plate formed of a material having a low elastic modulus such as metal, plastic or rubber, or a composite material of metal and plastic / rubber is used. Use a board. The machining fluid supply device includes a tank for storing the machining fluid 7b sent from outside, a stirrer for stirring the abrasive fluid so as not to settle in the tank, and a machining fluid in the tank. It has a pump for sending 7b from the supply pipe 13b and a valve for adjusting the supply amount of machining fluid per unit time.
第 1 0図 ( b ) には、 本実施形態の研磨装置の第二の研磨機構部が示 されている。 この第二の研磨機構部は、 いわゆる化学的機械的研磨装置 ( C M P装置) であり、 第 1図に示した研磨装置と同様の装置構成をも つものである。  FIG. 10 (b) shows a second polishing mechanism of the polishing apparatus of the present embodiment. The second polishing mechanism is a so-called chemical mechanical polishing apparatus (CMP apparatus), and has the same configuration as the polishing apparatus shown in FIG.
そして、 この実施形態においては、 第 1 0図 ( a ) に示す研磨装置で 粗加工を行ない、 第 1 0図 (b ) に示す研磨装置で仕上げ加工を行なう ものである。  In this embodiment, roughing is performed by the polishing apparatus shown in FIG. 10 (a), and finishing is performed by the polishing apparatus shown in FIG. 10 (b).
以下、 これを詳細に説明する。 第一の研磨機構部 (第 1 0図 ( a ) ) では、 以上の構成要素を用いて、 砥石 4 b (あるいはラップ定盤 4 c ) の表面上に加工液 7 bを供給する処理と、 砥石 4 b (あるいはラップ定 盤 4 c ) の表面にウェハ 1の被加工面を押圧する処理と、 砥石 4 b (あ るいはラップ定盤 4 c ) の表面とウェハ 1の被加工面を相对的に移動さ せる処理を同時に実行し、 加工液 7 bによる機械的かつ化学的研磨作用 によって被加工面の微細な凹凸を除去する。 これは、 本第一の研磨機構 部による、 被加工物 1の被加工面への粗加工である。  Hereinafter, this will be described in detail. The first polishing mechanism (FIG. 10 (a)) uses the above components to supply a machining fluid 7b onto the surface of the grindstone 4b (or the lap surface plate 4c). A process of pressing the work surface of the wafer 1 against the surface of the grinding wheel 4 b (or the lap surface plate 4 c), and a process of pressing the surface of the grinding wheel 4 b (or the lap surface plate 4 c) with the surface of the wafer 1. At the same time, the processing to remove the fine irregularities on the surface to be processed is performed by the mechanical and chemical polishing action of the processing liquid 7b. This is rough processing of the work surface of the work 1 by the first polishing mechanism.
さらに、 本第二の研磨機構部 (第 1 0図 (b ) ) では、 以上の構成要 素を用いて、 研磨パッ ド 4の表面上に加工液 7を供給する処理と、 研磨 パッ ド 4の表面にウェハ 1の被加工面を押圧する処理と、 研磨パッ ド 4 の表面とウェハ 1の被加工面を相対的に移動させる処理を同時に実行し. 加工液 7による機械的かつ化学的研磨作用によつて被加工面の微細な凹 凸を除去し、 最終的に、 該被加工面を鏡面仕上する。 この本第二の研磨 機構部では、 特に、 被加工面の仕上げ加工がなされることになる。 Further, in the second polishing mechanism section (FIG. 10 (b)), a process of supplying a working fluid 7 onto the surface of the polishing pad 4 using the above-described constituent elements, The process of pressing the surface to be processed of the wafer 1 against the surface of the polishing pad 4 and the process of moving the surface of the polishing pad 4 and the surface to be processed of the wafer 1 relative to each other are simultaneously executed. Mechanical and chemical polishing with the processing liquid 7 By the action, fine irregularities on the surface to be processed are removed, and finally, the surface to be processed is mirror-finished. This book second polishing In the mechanical part, in particular, the surface to be processed is finished.
このように、 本発明は、 2段階の研磨作業において、 第 2の研磨工程 に本発明を適用することもできる。 _ 更に、 本発明に係る研磨装置のその他の実施形態を第 1 1図に示す。 この実施形態は、 第 1の研磨工程と して、 第 1図に示した堆積物のかき 出し研磨を実施し、 第 2の研磨工程と して、 第 1図に示した研磨パッ ド よリも表面の剛性が小さい研磨パッ ドを用いて、 被加工面の仕上げ加工 を行なうものである。  Thus, the present invention can also be applied to the second polishing step in a two-stage polishing operation. FIG. 11 shows another embodiment of the polishing apparatus according to the present invention. In this embodiment, as the first polishing step, the deposit shown in FIG. 1 is scraped and polished, and as the second polishing step, the polishing pad shown in FIG. In this method, the surface to be processed is finished using a polishing pad with low surface rigidity.
第 1 1図 ( a ) には、 本実施形態の研磨装置の第一の研磨機構部が示 されている。 この研磨装置は、 いわゆる化学的機械的研磨装置 (C M P 装置) であリ、 第 1図に示した研磨装置と同様の方式で、 ウェハの表面 を研磨加工する。  FIG. 11 (a) shows a first polishing mechanism of the polishing apparatus of the present embodiment. This polishing apparatus is a so-called chemical mechanical polishing apparatus (CMP apparatus), and polishes the surface of a wafer by the same method as the polishing apparatus shown in FIG.
第 1 1図 ( b ) には、 本実施形態の研磨装置の第二の研磨機構部が示 されている。 この第二の研磨機構部は、 いわゆる化学的機械的研磨装置 ( C M P装置) であリ、 同図には、 被加工物 1 を弾性体 2 c を介して保 持するチヤック 3 c と、 軟質研磨パッ ド 4 dが着脱可能に取リ付けられ た研磨定盤 5 c と、 軟質研磨パッ ド 4 dの表面 (作業面) 上に加工液 7 cを供給するための供給管 1 3 c とが示されている。  FIG. 11 (b) shows a second polishing mechanism of the polishing apparatus of the present embodiment. The second polishing mechanism is a so-called chemical mechanical polishing device (CMP device). In the figure, a chuck 3 c for holding the workpiece 1 through the elastic body 2 c and a soft A polishing platen 5c to which the polishing pad 4d is detachably attached, and a supply pipe 13c for supplying the machining fluid 7c onto the surface (work surface) of the soft polishing pad 4d. It is shown.
第 1 1図 ( b ) には図示されていないが、 次の構成要素を含む。 研磨 定盤 5 cの回転に支障のないように研磨定盤 5 cの下面と側面を囲むベ —スと、 研磨定盤 5 cを回転させるための第 1の回転機構、 チャック 3 cを回転させるための第 2の回転機構、 チャック 3 cを X方向に移動さ せるための送り機構、 被加工物 1 を軟質研磨パッ ド表面に押し当てるた めの加圧機構等を備えている。 これらの機構は、 従来の C M P装置でも 使用されておリ、 構造もよく知られているものばかリであるので、 図示 を省略する。 なお、 例えば、 第 1 の回転機構は、 サーボモータと減速機 を含んで構成され、 サーボモータの出力を減速機を介して研磨定盤 5 c の回転軸に伝達し、 研磨定盤 5 c を回転させる。 また、 送り機構も、 サ ーボモータと減速機を含んで構成され、 サーボモータの出力を、 減速機 _ を介して、 チヤック送リ用ボールネジに形成されたスプラインに伝達し. チャック 3 cを X方向に移動させる。 加圧機構は、 エアシリ ンダでチヤ ック 3 cを z方向に移動させ、 被加工物 1を軟質研磨パッ ドに押し当て る。 Although not shown in Fig. 11 (b), it includes the following components. A base surrounding the lower surface and side surfaces of the polishing platen 5c so as not to hinder the rotation of the polishing platen 5c, and a first rotating mechanism for rotating the polishing platen 5c, and the chuck 3c are rotated. A second rotating mechanism for moving the chuck 3c in the X direction, a pressing mechanism for pressing the workpiece 1 against the surface of the soft polishing pad, and the like. These mechanisms are not shown in the drawings because they are used in a conventional CMP apparatus and have a well-known structure. For example, the first rotating mechanism is composed of a servomotor and a speed reducer. The output of the servomotor is transmitted to the rotating shaft of the polishing table 5c via a speed reducer, and the polishing table 5c is rotated. The feed mechanism also includes a servo motor and a speed reducer, and transmits the output of the servo motor to the spline formed on the ball screw for chuck feed through the speed reducer _. Move to The pressurizing mechanism moves the chuck 3c in the z direction with an air cylinder, and presses the workpiece 1 against the soft polishing pad.
第 1 1図 ( a ) においては、 被加工物 1は、 第 1図と同様な処理によ リ、 第 1の研磨工程が実施される。  In FIG. 11 (a), the workpiece 1 is subjected to a first polishing step by the same processing as in FIG.
第 1 1図 ( b ) に示した第 2の研磨工程で用いられる軟質研磨パッ ド 4 dは、 耐磨耗性と耐薬品性に優れた材料で形成する。 本実施形態では, 軟質発泡ポリ ウレタン系の合成樹脂で形成された研磨パッ ドを使用する。 研磨パッ ド表面は、 予め定めた表面粗さを持ち、 それに見合った微小な 凹部が該表面に複数形成されている。  The soft polishing pad 4d used in the second polishing step shown in FIG. 11 (b) is formed of a material having excellent wear resistance and chemical resistance. In the present embodiment, a polishing pad made of a soft foamed polyurethane-based synthetic resin is used. The surface of the polishing pad has a predetermined surface roughness, and a plurality of minute concave portions corresponding to the surface roughness are formed on the surface.
この第二の研磨機構部も、 いわゆる化学的機械的研磨装置 (C M P装 置) であり、 第 1図 (第 1 1図 ( a ) ) に示した研磨装置の備える研磨 パッ ドよリも、 弾性率の低い軟質研磨パッ ドを備え、 第 1 1図 ( a ) に 示す研磨装置で粗加工を行ったウェハの表面を研磨加工する。  This second polishing mechanism is also a so-called chemical mechanical polishing device (CMP device), and is different from the polishing pad of the polishing device shown in FIG. 1 (FIG. 11 (a)). A soft polishing pad with a low elastic modulus is provided, and the surface of a wafer rough-processed by the polishing device shown in Fig. 11 (a) is polished.
即ち、 第二の研磨機構部では、 軟質研磨パッ ド 4 dの表面上に加工液 7 cを供給する処理と、 軟質研磨パッ ド 4 dの表面にウェハ 1 の被加工 面を押圧する処理と、 軟質研磨パッ ド 4 dの表面とウェハ 1 の被加工面 を相対的に移動させる処理を同時に実行し、 加工液 7 cによる機械的か つ化学的研磨作用によって被加工面の微細な凹凸を除去し、 最終的に、 該被加工面を鏡面仕上 (仕上げ加工) がなされることになる。 産業上の利用可能性 以上詳しく説明したように、 本発明によれば、 研磨時の堆積物かき出 し用粒子の作用にょリ研磨パッ ドの目づまリが抑制され、 研磨能率が安 定化すると共に、 研磨パッ ドの消耗量が格段に減少し、 半導体等の製造 プロセスにおけるメ ンテナンス時間が大幅に削減される。 That is, in the second polishing mechanism, processing for supplying the working liquid 7c onto the surface of the soft polishing pad 4d and processing for pressing the surface to be processed of the wafer 1 against the surface of the soft polishing pad 4d are performed. At the same time, the process of relatively moving the surface of the soft polishing pad 4d and the surface to be processed of the wafer 1 is performed, and fine irregularities on the surface to be processed are mechanically and chemically polished by the processing liquid 7c. After removal, the surface to be processed is finally mirror-finished (finished). Industrial applicability As described above in detail, according to the present invention, clogging of the polishing pad is suppressed by the action of the particles for scraping out deposits during polishing, the polishing efficiency is stabilized, and the polishing pad is stabilized. This significantly reduces the amount of power consumption, and significantly reduces maintenance time in the manufacturing process for semiconductors and other products.
また、 従来のドッレシングのよ うに、 砥石からの砥粒の脱落がないた め、 被加工面に脱落砥粒によるスクラッチが入らず、 半導体デバイスを はじめとする被加工物の信頼性を向上させることができるようになる。 このよ うに、 本発明は、 研磨工程を有する半導体製造プロセスに用い るのに適している。  Also, unlike conventional dressing, the abrasive grains do not fall off from the grindstone, so the scratches due to the dropped abrasive grains do not enter the work surface and improve the reliability of the workpiece, including semiconductor devices. Will be able to Thus, the present invention is suitable for use in a semiconductor manufacturing process having a polishing step.

Claims

δ冃 求 の 範 囲 . 研磨パッ ドにスラリ一を供給し基板を研磨するようになした半導体 デバイスの製造方法において、 研磨パッ ド表面の堆積物をかき出すた めの堆積物かき出し用粒子と前記スラリーを別々に又は混合物として 研磨パッ ド表面に供給し、 基板の被加工面と前記研磨パッ ド表面とを 相対的に移動させることにより基板を研磨することを特徴とする半導 体デバイスの製造方法。 In a method for manufacturing a semiconductor device in which a slurry is supplied to a polishing pad and a substrate is polished, the particles for scraping out deposits for scraping out deposits on the surface of the polishing pad and the above-mentioned range. Manufacturing a semiconductor device, wherein the slurry is supplied to the polishing pad surface separately or as a mixture, and the substrate is polished by relatively moving the surface to be processed of the substrate and the polishing pad surface. Method.
. 基板を研磨する工程を有する半導体デバイスの製造方法において、 研削液またはスラリーを砥石表面に供給して前記砥石と前記基板を相 対的に移動させることによリ基板に第 1の研磨を施し、 研磨パッ ド表 面の堆積物をかき出すための堆積物かき出し用粒子とスラリーを別々 に又は混合物として研磨パッ ド表面に供給して前記研磨パッド表面と 基板の被加工面とを相対的に移動させることにょリ基板に第 2の研磨 を施すことを特徴とする半導体デバイスの製造方法。 In a method for manufacturing a semiconductor device having a step of polishing a substrate, a first polishing is performed on the substrate by supplying a grinding liquid or a slurry to the surface of the grinding wheel to move the grinding stone and the substrate relative to each other. The particles for scraping off the deposits on the surface of the polishing pad and the slurry are supplied separately or as a mixture to the surface of the polishing pad to move the polishing pad surface and the surface to be processed of the substrate relatively. A method of manufacturing a semiconductor device, wherein a second polishing is performed on the substrate.
. 基板を研磨する工程を有する半導体デバイスの製造方法において、 スラリーを金属あるいは樹脂製の研磨定盤表面に供給して前記研磨定 盤と前記基板を相对的に移動させることにょリ基板に第 1の研磨を施 し、 研磨パッ ド表面の堆積物をかき出すための堆積物かき出し用粒子 とスラリーを別々に又は混合物として研磨パッ ド表面に供給して前記 研磨パッ ド表面と基板の被加工面とを相対的に移動させることによリ 基板に第 2の研磨を施すことを特徴とする半導体デバイスの製造方法 c . 研磨パッ ドにスラリーを供給し基板を研磨するようになした半導体 デバイスの製造方法において、 研磨パッ ド表面の堆積物をかき出すた めの堆積物かき出し用粒子と前記スラリーを別々に又は混合物として 研磨パッ ド表面に供給して基板の被加工面と前記研磨パッ ド表面とを 相対的に移動させることにょリ基板に第 1の研磨を施し、 該第 1 の研 磨工程で用いる研磨パッ ドょリ も表面の剛性が小さい第 2の研磨パッ ドを用いて基板に第 2の研磨を施すことを特徴とする半導体デバイス の製造方法。 A method for manufacturing a semiconductor device having a step of polishing a substrate, comprising: supplying a slurry to a surface of a polishing plate made of metal or resin to move the polishing plate and the substrate relative to each other; The polishing pad surface is polished, and the particles for removing the deposits and the slurry for scraping off the deposits on the surface of the polishing pad are supplied to the surface of the polishing pad separately or as a mixture. A second polishing of the substrate by relatively moving the substrate c . A method of manufacturing a semiconductor device wherein the substrate is polished by supplying a slurry to a polishing pad. A method of processing a substrate by separately or as a mixture supplying the particles for scraping the deposit for scraping the deposit on the surface of the polishing pad and the slurry to the surface of the polishing pad. And said polishing pad surface The first polishing is performed on the substrate by relatively moving the substrate, and the polishing pad used in the first polishing step is also subjected to the second polishing using the second polishing pad having a small surface rigidity. A method for manufacturing a semiconductor device, comprising: polishing a semiconductor device.
5 . 研磨パッ ドを用いる研磨方法において、 研磨パッ ド表面の堆積物を かき出すための堆積物かき出し用粒子とスラ リーを別々に又は混合物 として研磨パッ ド表面上に供給し、 被加工物の被加工面を前記研磨パ ッ ド表面に押し付けながら該被加工物と該研磨パッ ド表面とを相対的 に移動させることにょリ被加工物を研磨することを特徴とする研磨方 法。 5. In a polishing method using a polishing pad, the particles for scraping off the deposits on the surface of the polishing pad and the slurry are supplied separately or as a mixture onto the surface of the polishing pad, and the workpiece is processed. A polishing method characterized in that a workpiece is polished by relatively moving the workpiece and the polishing pad surface while pressing a processing surface against the polishing pad surface.
6 . 請求の範囲 5項記載の研磨方法において、 前記研磨パッ ドの表面は 予め定めた表面粗さを有してぉリ、 前記堆積物かき出し用粒子は、 前 記研磨パッ ドの表面に存在する複数の凹部の平均の深さよ りも小さい 粒径を持つことを特徴とする研磨方法。  6. The polishing method according to claim 5, wherein the surface of the polishing pad has a predetermined surface roughness, and the deposit scraping particles are present on the surface of the polishing pad. A polishing method characterized by having a particle size smaller than the average depth of the plurality of recesses to be formed.
7 . 請求の範囲 5項または 6項記載の研磨方法において、 前記スラ リー には、 溶媒となる液体と、 砥粒が含まれてぉリ、 前記堆積物かき出し 用粒子は、 前記砥粒よリ も大きな粒径を有することを特徴とする研磨 方法。 7. The polishing method according to claim 5 or 6, wherein the slurry includes a liquid serving as a solvent and abrasive grains, and the particles for scraping off the deposits are more than the abrasive grains. A polishing method characterized by having a large particle size.
8 . 請求の範囲 5項記載の研磨方法において、 前記堆積物かき出し用粒 子は、 ポリマーで形成されていることを特徴とする研磨方法。  8. The polishing method according to claim 5, wherein the sediment scraping particles are formed of a polymer.
9 . 請求の範囲 8項記載の研磨方法において、 前記ポリマ一は、 縦弾性 係数が 2ないし 4 G p aであることを特徴とする研磨方法。  9. The polishing method according to claim 8, wherein the polymer has a longitudinal elastic modulus of 2 to 4 GPa.
1 0 . 請求の範囲 5項記載の研磨方法において、 前記堆積物かき出し用 粒子は、 球形であることを特徴とする研磨方法。  10. The polishing method according to claim 5, wherein the sediment scraping particles are spherical.
1 1 . 請求の範囲 5項記載の研磨方法において、 前記研磨パッ ドの周囲 に電界を供給し、 前記堆積物かき出し用粒子を前記研磨パッ ド表面上 に滞留させることを特徴とする研磨方法。 11. The polishing method according to claim 5, wherein an electric field is supplied to a periphery of the polishing pad, and the particles for scraping off the deposit are formed on the surface of the polishing pad. A polishing method characterized in that the polishing is carried out on a polishing surface.
2 . 研磨パッ ドを用いて被加工物の被加工面の凹凸を化学的かつ機械 的に除去して平坦化する研磨方法において、 研磨パッ ド表面の堆積物. をかき出すための堆積物かき出し用粒子とスラリーを別々に又は混合 物と して研磨パッ ド表面上に供給し、 被加工物の被加工面を前記研磨 パッ ド表面に押し付けながら該被加工物と該研磨パッ ド表面とを相対 的に移動させることによ リ被加工物を処理することを特徴とする化学 的機械的研磨方法。  2. In a polishing method that uses a polishing pad to chemically and mechanically remove the unevenness of the surface of the workpiece and flatten it, it is used to remove deposits on the surface of the polishing pad. The particles and the slurry are supplied separately or as a mixture onto the surface of the polishing pad, and the surface of the workpiece and the surface of the polishing pad are relatively moved while pressing the surface of the workpiece against the surface of the polishing pad. A chemical-mechanical polishing method characterized by treating an object to be reworked by moving the workpiece mechanically.
3 . 研磨パッ ド表面の堆積物をかき出すための堆積物かき出し用粒子 とスラリーとの混合物を研磨パッ ド表面上に供給するための供給装置 と、 被加工物を保持し該被加工物を研磨パッ ド表面に押し付ける保持 部材と、 前記被加工物と前記研磨パッ ドとを相対的に移動させる装置 とを少なく とも備えたことを特徴とする研磨装置。 3. A supply device for supplying a mixture of the particles for removing the deposits and the slurry for scraping the deposits on the surface of the polishing pad onto the surface of the polishing pad, and holding the workpiece and polishing the workpiece. A polishing apparatus, comprising: at least a holding member for pressing against a pad surface; and a device for relatively moving the workpiece and the polishing pad.
4 . 請求の範囲 1 3項記載の研磨装置において、 前記堆積物かき出し 用粒子を前記研磨パッ ド表面上に滞留させておくための電界を発生さ せる電界発生装置をさらに備えることを特徴とする研磨装置。4. The polishing apparatus according to claim 13, further comprising: an electric field generator for generating an electric field for retaining the particles for scraping out the deposits on the surface of the polishing pad. Polishing equipment.
5 . ベースと、 回転可能な研磨定盤と、 前記研磨定盤上に設けられそ の表面に前記研磨定盤の回転中心を中心と して複数の排水路が同心円 状に形成されている研磨パッ ドとを備えた研磨装置において、  5. A base, a rotatable polishing plate, and a polishing plate provided on the polishing plate and having a plurality of drainage channels formed concentrically on the surface thereof around the rotation center of the polishing platen. In a polishing apparatus provided with a pad,
前記ベースに固定されたアームと、 前記複数の排水路の配列ピッチ に合わせて前記アームに取リ付けられた複数のかき出し片を備え、 前 記複数のかき出し片が、 前記研磨定盤の回転時において排水路の堆積 物をかき出すように構成したことを特徴とする研磨装置。  An arm fixed to the base, and a plurality of scraping pieces attached to the arm in accordance with an arrangement pitch of the plurality of drainage channels, wherein the plurality of scraping pieces are used when the polishing platen is rotated. The polishing apparatus according to any one of claims 1 to 3, wherein the sediment in the drainage channel is scraped out.
6 . 被加工物表面の凹凸を化学的かつ機械的に除去して平坦化する化 学的機械的研磨装置において、 6. Chemical-mechanical polishing equipment that removes irregularities on the surface of the workpiece chemically and mechanically and planarizes it.
研磨パッ ド表面の堆積物をかき出すための堆積物かき出し用粒子と スラ リーとの混合物を研磨パッ ド表面上に洪給する供給装置と、 被加 ェ物を保持し該被加工物を研磨パッ ド表面に押し付ける保持部材と、 前記被加工物と前記研磨パッ ドとを相対的に移動させる装置とを少な く とも備えたことを特徴とする化学的機械的研磨装置。 Particles for scraping off deposits on the polishing pad surface A supply device for pouring the mixture with the slurry onto the polishing pad surface, a holding member for holding the workpiece and pressing the workpiece against the polishing pad surface, the workpiece and the polishing pad A chemical mechanical polishing apparatus, characterized by at least a device for relatively moving the polishing machine.
1 7 . 砥石と研磨パッ ドを用いた研磨方法において、 研削液またはスラ リ一を砥石表面に供給して前記砥石と被加工物を相対的に移動させる ことによリ被加工物に第 1の研磨を施し、 研磨パッ ド表面の堆積物を かき出すための堆積物かき出し用粒子とスラリーを別々に又は混合物 と して研磨パッ ド表面に供給して前記研磨パッ ド表面と被加工物の被 加工面とを相対的に移動させることによリ被加工物に第 2の研磨を施 すことを特徴とする研磨方法。 17. In a polishing method using a grindstone and a polishing pad, a grinding liquid or a slurry is supplied to the grindstone surface to relatively move the grindstone and the workpiece, thereby forming a first work piece on the work piece. The polishing pad is polished, and the particles for removing the deposits and the slurry for scraping off the deposits on the surface of the polishing pad are supplied separately or as a mixture to the surface of the polishing pad, and the surface of the polishing pad and the workpiece are processed. A polishing method, wherein a second polishing is performed on a workpiece by relatively moving the processing surface.
1 8 . 金属あるいは樹脂製の研磨定盤と研磨パッ ドを用いた研磨方法に おいて、 スラリーを金属あるいは樹脂製の研磨定盤表面に供給して前 記研磨定盤と前記被加工物を相対的に移動させることによリ被加工物 に第 1の研磨を施し、 研磨パッ ド表面の堆積物をかき出すための堆積 物かき出し用粒子とスラ リ一を別々に又は混合物と して研磨パッ ド表 面に供給して前記研磨パッ ド表面と前記被加工物とを相対的に移動さ せることによリ被加工物に第 2の研磨を施すことを特徴とする研磨方 法。 18. In a polishing method using a metal or resin polishing plate and a polishing pad, the slurry is supplied to the surface of the metal or resin polishing plate and the polishing plate and the workpiece are separated. The workpiece is firstly polished by relatively moving the workpiece, and particles for scraping the deposit and the slurry for scraping the deposit on the surface of the polishing pad are separately or as a mixture. A polishing method, wherein a second polishing is performed on the workpiece by supplying the polishing pad surface to the workpiece and moving the polishing pad surface and the workpiece relatively.
1 9 . 研磨パッ ドにスラ リーを供給し被加工物を研磨するよ うになした 研磨方法において、 研磨パッ ド表面の堆積物をかき出すための堆積物 かき出し用粒子と前記スラリーを別々に又は混合物と して研磨パッ ド 表面に供給して被加工物の被加工面と前記研磨パッ ド表面とを相対的 に移動させることによリ被加工物に第 1の研磨を施し、 該第 1の研磨 工程で用いる研磨パッ ドより も表面の剛性が小さい第 2の研磨パッ ド を用いて被加工物に第 2の研磨を施すことを特徴とする研磨方法。 19. A polishing method in which a slurry is supplied to a polishing pad to polish a workpiece, wherein the particles for depositing for scraping off deposits on the surface of the polishing pad and the slurry are separately or mixed. The first polishing is performed on the workpiece by supplying the polishing pad surface and moving the workpiece surface of the workpiece relative to the polishing pad surface. A polishing method, characterized in that a workpiece is subjected to a second polishing using a second polishing pad having a lower surface rigidity than a polishing pad used in a polishing step.
PCT/JP1998/001621 1997-04-09 1998-04-08 Manufacturing method, polishing method and polishing device for semiconductor devices WO1998045089A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/90939 1997-04-09
JP9093997 1997-04-09

Publications (1)

Publication Number Publication Date
WO1998045089A1 true WO1998045089A1 (en) 1998-10-15

Family

ID=14012431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001621 WO1998045089A1 (en) 1997-04-09 1998-04-08 Manufacturing method, polishing method and polishing device for semiconductor devices

Country Status (1)

Country Link
WO (1) WO1998045089A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288566A (en) * 1985-10-16 1987-04-23 Osamu Imanaka Precision polishing method
JPH06190714A (en) * 1992-09-24 1994-07-12 Ebara Corp Polishing device
JPH07108453A (en) * 1992-01-24 1995-04-25 Kyushu Electron Metal Co Ltd Dressing method for abrasive cloth for semiconductor wafer
JPH0811049A (en) * 1994-06-29 1996-01-16 Hitachi Ltd Polishing device and polishing method
JPH08267354A (en) * 1995-03-31 1996-10-15 Nec Corp Wafer polishing device
JPH09285957A (en) * 1996-04-18 1997-11-04 Hitachi Ltd Abrasive material and polishing method and device using the same
JPH104070A (en) * 1996-06-14 1998-01-06 Matsushita Electric Ind Co Ltd Chemical-mechanical polishing
JPH10156704A (en) * 1996-12-03 1998-06-16 Toshiba Mach Co Ltd Polishing method and device therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288566A (en) * 1985-10-16 1987-04-23 Osamu Imanaka Precision polishing method
JPH07108453A (en) * 1992-01-24 1995-04-25 Kyushu Electron Metal Co Ltd Dressing method for abrasive cloth for semiconductor wafer
JPH06190714A (en) * 1992-09-24 1994-07-12 Ebara Corp Polishing device
JPH0811049A (en) * 1994-06-29 1996-01-16 Hitachi Ltd Polishing device and polishing method
JPH08267354A (en) * 1995-03-31 1996-10-15 Nec Corp Wafer polishing device
JPH09285957A (en) * 1996-04-18 1997-11-04 Hitachi Ltd Abrasive material and polishing method and device using the same
JPH104070A (en) * 1996-06-14 1998-01-06 Matsushita Electric Ind Co Ltd Chemical-mechanical polishing
JPH10156704A (en) * 1996-12-03 1998-06-16 Toshiba Mach Co Ltd Polishing method and device therefor

Similar Documents

Publication Publication Date Title
US5919082A (en) Fixed abrasive polishing pad
US6387289B1 (en) Planarizing machines and methods for mechanical and/or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6656019B1 (en) Grooved polishing pads and methods of use
CN1400636A (en) Composite grinding pad for grinding semiconductor wafer and its production method
US6439978B1 (en) Substrate polishing system using roll-to-roll fixed abrasive
US6489243B2 (en) Method for polishing semiconductor device
TWI446993B (en) Polishing method and polishing apparatus
KR100832768B1 (en) Wafer polishing apparatus and method for polishing wafers
US6824451B2 (en) Process for the abrasive machining of surfaces, in particular of semiconductor wafers
US6663472B2 (en) Multiple step CMP polishing
KR20010021351A (en) Polishing method and apparatus
JP2002066905A (en) Manufacturing method for semiconductor device and device therefor
JP3658986B2 (en) Semiconductor device manufacturing method, polishing method, and polishing apparatus
US20020074311A1 (en) Methods of endpoint detection for wafer planarization
WO1998045089A1 (en) Manufacturing method, polishing method and polishing device for semiconductor devices
JP2565385B2 (en) Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool
JP4601317B2 (en) Polishing tool and manufacturing method thereof
JP2001088008A (en) Polishing method and device
JP2004017214A (en) Pad conditioning device, pad conditioning method, and polishing device
TW527262B (en) Method for improving curvature of the polished surface by chemical mechanical polishing
KR200274610Y1 (en) CMP with a Modified Dresser
JPH10553A (en) Chemical and mechanical polishing method and device thereof, and manufacture of semiconductor device
JPH10109263A (en) Method and device for chemical mechanical polish
JP2001219363A (en) Abrasive pad, method of manufacturing abrasive pad, and method of manufacturing work piece by using abrasive pad
KR20050071125A (en) Method and device for supply of slurry in cmp process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase