JPS62227067A - High toughness resistance welded tube having superior sour resistance - Google Patents

High toughness resistance welded tube having superior sour resistance

Info

Publication number
JPS62227067A
JPS62227067A JP6851086A JP6851086A JPS62227067A JP S62227067 A JPS62227067 A JP S62227067A JP 6851086 A JP6851086 A JP 6851086A JP 6851086 A JP6851086 A JP 6851086A JP S62227067 A JPS62227067 A JP S62227067A
Authority
JP
Japan
Prior art keywords
resistance
toughness
steel
welded tube
resistance welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6851086A
Other languages
Japanese (ja)
Other versions
JPH0553857B2 (en
Inventor
Kiyotake Matsumoto
松本 聖毅
Wataru Kabasawa
樺沢 弥
Masayuki Suehisa
末久 正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6851086A priority Critical patent/JPS62227067A/en
Publication of JPS62227067A publication Critical patent/JPS62227067A/en
Publication of JPH0553857B2 publication Critical patent/JPH0553857B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a high toughness resistance welded tube having superior sour resistance by vanishing platy crushed Ca oxide type inclusions present in the butted part of a resistance welded tube and in the heat-affected zones on both sides of the butted part. CONSTITUTION:The composition of a resistance welded tube is composed of, by weight, 0.01-0.35% C, 0.02-0.5% Si, 0.1-1.8% Mn, 0.001-0.1% Al, <=0.001% Ca, <=0.02% P, <=0.0012% S [P(%)+25XS(%)<=0.04], one or more among 0.2-0.6% Cu, 0.1-1% Ni and 0.2-3% Cr, one or more among 0.1-1% Mo, 0.01-0.15% Nb, 0.01-0.15% V and 0.01-0.1% Ti and the balance Fe with inevitable impurities.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐サワー性の優れた高靭性電縫鋼管に係り、
さらに詳しくは、例えば石油・天然ガス掘削あるいは輸
送において、湿潤硫化水素を含む環境下にあっても割れ
抵抗が高(、かつ特に極寒地での使用に適した低温靭性
の優れた電縫鋼管に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a high toughness electric resistance welded steel pipe with excellent sour resistance.
In more detail, we will discuss electric resistance welded steel pipes that have high cracking resistance even in environments containing wet hydrogen sulfide (and have excellent low-temperature toughness, especially suitable for use in extremely cold regions, for example, in oil and natural gas drilling or transportation). .

(従来の技術)。(Conventional technology).

近年、生産される石油・天然ガス中には硫化水素を含む
場合が非常に多く、さらに海水、淡水などの水が共存す
る場合には、鋼表面で起こる腐食に基づく減肉だけでな
く、腐食によって鋼表面で発生した水素が鋼中に侵入す
ることによって破壊をおこすことがあり、問題となって
いる。
In recent years, the petroleum and natural gas produced often contain hydrogen sulfide, and when water such as seawater and fresh water coexists, it not only causes thinning due to corrosion that occurs on the steel surface, but also corrosion. This poses a problem as hydrogen generated on the steel surface can penetrate into the steel and cause destruction.

この破壊は、高張力鋼に古くから認められる硫化物応力
割れとは異なり、外部からの付加応力がなくとも発生が
認められる。この破壊は、環境中から侵入した水素が母
材中に存在する圧延方向に長く伸びたMnSなどのA系
硫化物系介在物と地鉄との境界に集積してガス化し、そ
のガス圧によって発生するもので、前記MnSなどのA
系硫化物系介在物が鋭い切欠となり、これを割れの核と
して板面平行割れに成長し、この板面平行割れが板厚方
向に連絡されるものである。この種の割れを以下「水素
ふ(れ割れjと呼ぶ。こうした水素ふくれ割れに対する
抵抗の高い鋼について従来から様様な研究がなされ、種
々の鋼が提案されている。
This fracture is different from sulfide stress cracking, which has long been recognized in high-strength steel, and can occur even without any externally applied stress. This fracture occurs when hydrogen that has entered from the environment accumulates at the boundary between the steel base and A-based sulfide inclusions such as MnS that are present in the base metal and extend in the rolling direction, and is gasified by the gas pressure. A of the above-mentioned MnS etc.
The sulfide-based inclusions form sharp notches, which serve as crack nuclei to grow into parallel cracks on the plate surface, and these parallel cracks are connected in the thickness direction of the plate. This type of cracking is hereinafter referred to as ``hydrogen bulging cracking.'' Various studies have been conducted on steels that have high resistance to hydrogen bulging cracking, and various steels have been proposed.

それらは、例えば特公昭57−17065号公報或いは
特公昭57−16184号公報などにその代表例がみら
れる如り、CuやCo添加による割れ防止、極低S化に
よるMnSの減少、Ca或いは希土類元素などの添加に
よるSの固定などを利用するものであって、これらの技
術によって現在名にかなり厳しい環境にまで耐え得る鋼
が開発されている。
These include, for example, the prevention of cracking by adding Cu or Co, the reduction of MnS by extremely low S content, and the reduction of MnS by adding Ca or rare earth elements, as seen in, for example, Japanese Patent Publication No. 57-17065 or Japanese Patent Publication No. 57-16184. These techniques utilize methods such as fixing S by adding elements, etc., and steels that can withstand even harsh environments have been developed using these techniques.

一方において、近年、石油・天然ガスが産出される地域
はアラスカ、ソ連、北極海といった極寒地にまで広がっ
ており、こうした地域で使用されるラインパイプには、
母材および電縫溶接部の両方において、低温靭性の優れ
ていることが要求される。このような場合には、産出流
体中に硫化水素を含む場合には低温靭性とともに耐サワ
ー性も必要であることは言うまでもない。
On the other hand, in recent years, areas where oil and natural gas are produced have expanded to include extremely cold regions such as Alaska, the Soviet Union, and the Arctic Ocean, and the line pipes used in these areas are
Excellent low-temperature toughness is required for both the base metal and the electric resistance welded part. In such a case, it goes without saying that if the produced fluid contains hydrogen sulfide, not only low-temperature toughness but also sour resistance is required.

電縫鋼管においては、一般に溶接部の靭性が母材に比べ
て低下するため、電縫溶接部も含めて靭性の優れた電縫
鋼管についても従来から様々な研究がなされ、種々の方
法及び鋼管が提案されている。それらは、例えば特開昭
54〜136512号公報、特開昭5’7−14082
3号公報、特公昭58−53707号公報或いは特公昭
5B−53708号公報などにその代表例がみられる如
く、熱延工程の仕上温度及び巻取温度の制限による素材
の靭性向上、電縫溶接後の冷却速度の制限による結晶粒
度の制御、固溶Nの減少、Nb或いはVによる結晶粒の
微細化などを利用するものであって、これらの技術によ
って現在までに靭性のかなり優れた電縫鋼管が開発され
ている。
In ERW steel pipes, the toughness of the welded part is generally lower than that of the base metal, so various studies have been conducted on ERW steel pipes with excellent toughness, including the ERW welded parts, and various methods and is proposed. For example, JP-A-54-136512, JP-A-5'7-14082,
Typical examples include Japanese Patent Publication No. 3, Japanese Patent Publication No. 58-53707, and Japanese Patent Publication No. 5B-53708. This technology utilizes techniques such as controlling the crystal grain size by limiting the subsequent cooling rate, reducing solid solution N, and refining the crystal grains using Nb or V. To date, these technologies have produced electrical resistance welds with considerably superior toughness. Steel pipes have been developed.

しかしながら、これらの電縫鋼管は通常の環境で使用さ
れるものであって、硫化水素や水を含んだいわゆるサワ
ー環境で使用することを考慮したものではない。
However, these electric resistance welded steel pipes are used in normal environments, and are not intended to be used in so-called sour environments containing hydrogen sulfide and water.

(発明が解決しようとする問題点) 本発明者らは、電縫鋼管の電la溶接部の靭性について
も詳細に検討した結果、Ca添加した場合の耐サワー電
縫鋼管の電縫衝合部において靭性が母材に比べて著しく
低下する場合があることを見出し、この場合、上述の各
種従来技術をもってしても改善されないことがわかった
(Problems to be Solved by the Invention) As a result of detailed study on the toughness of the electric lamination welded part of the electric resistance welded steel pipe, the present inventors found that the electric resistance welded abutment of the sour resistance welded steel pipe when Ca is added It has been found that in some cases, the toughness is significantly lower than that of the base material, and in this case, it was found that the various conventional techniques described above do not improve the toughness.

本発明者らは、耐サワー性に優れ、かつ靭性にも優れた
鋼管を開発せんとして研究を続けた結果、電縫溶接部の
靭性低下の原因は、第2図に示すように、電縫鋼管1の
電縫衝合部2及びその両側Z。
As a result of continuing research to develop a steel pipe with excellent sour resistance and toughness, the present inventors found that the cause of the decrease in toughness of the ERW welded part was as shown in Figure 2. ERW abutment part 2 of steel pipe 1 and its both sides Z.

及びZ2が100μm以内の熱影響部3に存在する板状
に粉砕されたCa酸化物系介在物であることを突き止め
た。
and Z2 were found to be Ca oxide-based inclusions pulverized into plate shapes existing in the heat-affected zone 3 within 100 μm.

さらに、本発明者らの研究によれば、これら板状の酸化
物系介在物は、母材中に予め存在した球状に近いCa酸
化物系介在物が電縫溶接時の熱影響によって鋼の融点近
くまで加熱されたうえ、スクイズロールによって両側か
ら加圧されるために板状に変形して生成することが明ら
かになった。
Furthermore, according to the research conducted by the present inventors, these plate-like oxide inclusions are caused by the near-spherical Ca oxide inclusions that already existed in the base metal due to the thermal influence during electric resistance welding. It has been revealed that the material is heated to near its melting point and then pressurized from both sides by squeeze rolls, resulting in the product deforming into a plate shape.

球状化されたCa酸化物の顕微鏡写真を第3図に、また
板状に変形したCa酸化物の顕微鏡写真を第4図に示す
。また熱間圧延でのCa酸化物系介在物変形挙動のラボ
テスト結果を第5図に示す。圧延温度が上ると球状の介
在物が板状に変化するのがわかる。
FIG. 3 shows a microscopic photograph of Ca oxide spheroidized, and FIG. 4 shows a microscopic photograph of Ca oxide deformed into a plate shape. Further, FIG. 5 shows the results of a laboratory test on the deformation behavior of Ca oxide-based inclusions during hot rolling. It can be seen that as the rolling temperature increases, the spherical inclusions change into plate shapes.

本発明者らは、こうしたCa酸化物系介在物が電縫衝合
部の靭性を劣化させる機構を初めて発見したわけである
The present inventors have discovered for the first time the mechanism by which such Ca oxide-based inclusions deteriorate the toughness of the electric resistance stitched abutment.

本発明は、耐サワー性に優れ、かつ低温靭性にも優れた
電縫鋼管を提供することを目的とする。
An object of the present invention is to provide an electric resistance welded steel pipe that has excellent sour resistance and low-temperature toughness.

(問題点を解決するための手段・作用)本発明で耐サワ
ー性の優れた高靭性電縫鋼管は、重量%テc:0.01
〜0.35%、Si:0.02〜0.5%、Mn:o、
x 〜1.8%、AI:0.001〜0.10%を含有
し、Ca≦o、ooi%、P≦0.020%、S≦0.
0012%でかっP(%)+25xS(%)50.04
%に制限し、さらにCu:0.2〜0.6%、Ni:0
.1〜1.0%、Cr:0.2〜3.0%の1種または
2種以上およびMo:0.1〜1.0%、Nb:0.0
1〜0.15%、V:0.01〜0.15%、Ti:0
.01〜0.10%の1種または2種以上を含有し、残
部Feおよび不可避的不純物からなることを特徴とする
(Means and effects for solving the problem) The high toughness electric resistance welded steel pipe with excellent sour resistance according to the present invention has a weight% Tc of 0.01
~0.35%, Si:0.02~0.5%, Mn:o,
x ~1.8%, AI: 0.001~0.10%, Ca≦o, ooi%, P≦0.020%, S≦0.
0012% Big P (%) + 25xS (%) 50.04
%, further Cu: 0.2 to 0.6%, Ni: 0
.. 1 to 1.0%, Cr: 0.2 to 3.0%, one or more types, Mo: 0.1 to 1.0%, Nb: 0.0
1-0.15%, V: 0.01-0.15%, Ti: 0
.. 01 to 0.10% of one or more types, with the remainder consisting of Fe and unavoidable impurities.

以下に、各成分の限定理由を説明する。The reasons for limiting each component will be explained below.

Cは、鋼の強度をもっとも安定して向上させる基本的な
元素であるため、強度確保のため0.01%以上含有さ
せることが必要であるが、0.35%を超えると鋼の靭
性に対し好ましくない影響があるので、0.01〜0.
35%とした。
C is a basic element that most stably improves the strength of steel, so it must be contained at 0.01% or more to ensure strength, but if it exceeds 0.35%, it will affect the toughness of steel. 0.01 to 0.0.
It was set at 35%.

Siは、強度を向上させるため0.02%以上とし、靭
性確保のため上限を0.5%とした。
Si is set to 0.02% or more to improve strength, and the upper limit is set to 0.5% to ensure toughness.

Mnは、強度上必要な元素なので0.1%以上とし、溶
接性および靭性の確保のため上限を1,8%とした。
Mn is an element necessary for strength, so it is set at 0.1% or more, and the upper limit is set at 1.8% to ensure weldability and toughness.

AIは、鋼の脱酸のために有効な元素であり、また結晶
粒微細化作用により鋼の強度および靭性を向上させるた
めo、oot%以上とした。しかし、鋼中のAI含有量
が0.10%を超えると、かえって靭性゛を低下させる
ばかりでなく、溶接性をも低下させるので上限を0.1
0%とした。
AI is an effective element for deoxidizing steel, and it is set at o, oot% or more in order to improve the strength and toughness of steel through grain refining action. However, if the AI content in the steel exceeds 0.10%, it will not only reduce the toughness but also the weldability, so the upper limit should be set at 0.1%.
It was set to 0%.

Ca、  PおよびSの各含有量を制限することは、本
発明における最も重要なことである。
Limiting the contents of Ca, P and S is the most important thing in the present invention.

Caは、鋼中のSをCaSとして固定してMnSの生成
を防止することによって、母材の耐サワー性を向上させ
る有効な元素ではあるが、Ca系介在物は電縫溶接部の
靭性を劣化させる。このCa系介在物は母材中にあって
は球状に近い形態をしているが、電縫溶接部においては
溶接の際、鋼の融点近くまで加熱されたうえ、スクイズ
ロールによって両[1,1から加圧されるため板状に変
形し、これが溶接部の靭性を劣化せしめることは先に説
明した通りである。
Ca is an effective element that improves the sour resistance of the base metal by fixing S in steel as CaS and preventing the formation of MnS, but Ca-based inclusions can reduce the toughness of electric resistance welds. deteriorate. These Ca-based inclusions have a nearly spherical shape in the base metal, but in the electric resistance welding part, they are heated to near the melting point of the steel and are squeezed into both [1, As explained above, since the weld is pressurized from scratch, it deforms into a plate shape, which deteriorates the toughness of the welded part.

まず、Ca含有量の増加に伴なう靭性の劣化について、
Vノツチシャルピー遷移温度及び吸収エネルギーlとの
関係を夫々第6画、第7図に示す。
First, regarding the deterioration of toughness due to increase in Ca content,
The relationship between the V notch Charpy transition temperature and the absorbed energy l is shown in Figures 6 and 7, respectively.

アラスカやカナダのパイプラインの最低使用温度は一4
6℃付近と言われ、この■ノツチシャルピー仕様で使わ
れることが多いが、この−46℃で十分な靭性を有する
ためには、第6図、第7図がらCa含有量が0.001
%以下であればよいことがわかる。したがって、本発明
はCaを0.001%以下に限定した。
The minimum operating temperature for pipelines in Alaska and Canada is -4.
It is said to be around 6℃, and is often used in this Notch Charpy specification, but in order to have sufficient toughness at -46℃, the Ca content must be 0.001 as shown in Figures 6 and 7.
% or less. Therefore, in the present invention, Ca is limited to 0.001% or less.

しかし、Caを無添加又は0.001%以下に制限すれ
ば、MnSの形態制御が出来ないが又は極めて不十分な
ものになるため、耐サワ一対策のために別の対策が必要
になる。本発明者は、Ca含有量を0.001%以下に
制限する条件のもとての耐サワー性向上の対策として、
極低硫化、極低燐化の2点で検討を行なった。
However, if no Ca is added or if Ca is limited to 0.001% or less, the morphology of MnS cannot be controlled or is extremely insufficient, so other measures are required to prevent sourness. As a measure to improve sour resistance under the condition that the Ca content is limited to 0.001% or less, the present inventors
We investigated two points: extremely low sulfidation and extremely low phosphorus.

アラスカ、カナダ等で使用されるサワー環境はP115
.1〜5.4のいわゆるBP環境が多いが、Ca≦0.
001%でこの条件仕様を満足する極低硫化、極低燐化
の条件を定めた。耐サワ一対策として有効なCa添加が
制限される条件のもとでは、これら耐サワー性に関し有
害な元素は除去し、清浄化することで代替化出来ればよ
い。BP(PH5,1〜5.4)環境で十分な耐サワー
性を得るためには、本発明者が研究したところでは、P
およびS含有量を第1図のABCDOで囲まれる範囲内
とすればよいことがわかった。なお、第1図は、BP環
境テスト(人工海水を11.3で飽和させたPII4.
8〜5.4の常温溶液中に試験片を応力無負荷の状態で
96時間浸漬)後の試験片表面の割れ発生状況を示した
ものであり、CLI?は割れ長さ率である。すなわち、
第1図のABCDOで囲まれる範囲内では水素誘起割れ
の発生することがな(、範囲外では割れの発生すること
がある。したがって、PおよびS含有量をP≦0.02
0%、S≦0.0012%でかっP(%)+25×S(
%)50.04%とした。
P115 for sour environments used in Alaska, Canada, etc.
.. There are many so-called BP environments of 1 to 5.4, but Ca≦0.
The conditions for extremely low sulfidation and extremely low phosphorous content were determined to satisfy this condition specification at 0.001%. Under conditions where the addition of Ca, which is effective as a measure against sourness, is restricted, it is sufficient to remove and purify these elements that are harmful to sourness resistance and replace them. According to research conducted by the present inventor, in order to obtain sufficient sour resistance in a BP (PH5, 1 to 5.4) environment, P
It was found that the S content should be within the range surrounded by ABCDO in FIG. Furthermore, Figure 1 shows the BP environmental test (PII4.
This figure shows the occurrence of cracks on the surface of the test piece after the test piece was immersed in a normal temperature solution of 8 to 5.4 for 96 hours with no stress applied, and CLI? is the crack length ratio. That is,
Hydrogen-induced cracking does not occur within the range surrounded by ABCDO in Figure 1 (although cracking may occur outside the range. Therefore, the P and S contents are set to P≦0.02.
0%, S≦0.0012% Big P (%) + 25 × S (
%) 50.04%.

さらに、本発明においては、このほか、それぞれの用途
に応じて、Cu、 Ni、 Crの1種または2種以上
と、Mo、 Nb、  V、 Tiの1種または2種以
上を含有させる。
Furthermore, in the present invention, one or more types of Cu, Ni, and Cr and one or more types of Mo, Nb, V, and Ti are included depending on the respective uses.

まず、Cu、 NiおよびCrはいずれも母材の耐食性
向上と鋼中への侵・入水素置減少のために効果を有する
First, Cu, Ni, and Cr all have the effect of improving the corrosion resistance of the base metal and reducing hydrogen penetration into the steel.

Cuは0.20%未満では効果がなく 、0.60%を
超えると熱間加工性に悪い影響を及ぼすので、0.20
〜0.60%の範囲に限定した。
If Cu is less than 0.20%, it has no effect, and if it exceeds 0.60%, it has a negative effect on hot workability.
It was limited to a range of 0.60%.

Niは0.1%未満では効果がなく、1.0%を超える
と硫化物応力割れを誘発する恐れがあるので、0.1〜
1.0%の範囲に限定した。なお、NiはCuによる熱
間脆性を防止する目的で上記範囲においてCuと同時に
添加することが出来るが、この目的でNiを添加した鋼
であっても本発明の範囲を何ら逸脱するものではない。
If Ni is less than 0.1%, it is ineffective, and if it exceeds 1.0%, it may induce sulfide stress cracking.
It was limited to a range of 1.0%. Note that Ni can be added simultaneously with Cu within the above range for the purpose of preventing hot embrittlement caused by Cu, but even if Ni is added for this purpose, this does not deviate from the scope of the present invention. .

Crは0.2%未満では効果がなく、3.0%を超える
と鋼の靭性を低下させるので、0.2〜0.3%の範囲
に限定した。
Cr has no effect if it is less than 0.2%, and reduces the toughness of the steel if it exceeds 3.0%, so it is limited to a range of 0.2 to 0.3%.

なおCrはMnの含有量を0.6%未満とした鋼に添加
して強度および靭性を向上させる元素としても活用する
ことが可能であり、この他の鋼の場合も含め強度および
靭性を向上させる目的でCrを添加した鋼であっても本
発明の範囲を何ら逸脱するものではない。
Note that Cr can also be used as an element to improve strength and toughness by adding it to steel with a Mn content of less than 0.6%, and it can also be used to improve strength and toughness in other steels as well. Even if Cr is added to the steel for the purpose of achieving this, it does not deviate from the scope of the present invention.

次に、Mo、 Nb、  VおよびTiは、いずれも鋼
の強度を向上させる元素であって、Moは0.10%以
上、Nb、 VおよびTiは0.01%以上を含有させ
ることによって同等の強度向上効果を示すが、Moは1
.0%。
Next, Mo, Nb, V, and Ti are all elements that improve the strength of steel, and by containing 0.10% or more of Mo and 0.01% or more of Nb, V, and Ti, the same level can be achieved. shows a strength improvement effect, but Mo is 1
.. 0%.

NbおよびVは0.15%、Tiは0.1%を超えて添
加すると靭性を低下させる恐れがあるため、MOは0.
10〜1.0%、NbおよびVは0.01〜0.15%
、Tiは0.01〜0.10%の範囲に限定した。なお
、特にTiは靭性向上効果もある。
If Nb and V are added in an amount exceeding 0.15%, and Ti in an amount exceeding 0.1%, the toughness may decrease, so MO is added in an amount exceeding 0.15%.
10-1.0%, Nb and V 0.01-0.15%
, Ti was limited to a range of 0.01 to 0.10%. In particular, Ti also has the effect of improving toughness.

本発明電縫鋼管の製造工程としては、熱間圧延ままのも
のを電縫溶接してもよく、或いは熱間圧延直後の制御冷
却工程、さらには圧延材を焼準。
The manufacturing process for the ERW steel pipe of the present invention may include ERW welding the as-hot rolled material, or a controlled cooling process immediately after hot rolling, or further normalization of the rolled material.

焼戻し或いは焼入れ焼戻しするなど通常の鋼材に使用さ
れる製造工程を経たものを適用することもできる。さら
に、製造した本発明電縫鋼管の一部又は全体に焼準、焼
戻し或いは焼入れ焼戻しする工程を適用してもよく、本
発明の範囲を何ら逸脱するものではない。いずれの工程
を適用するかは強度靭性等の特性確保の必要に応じて決
定すればよい。
It is also possible to apply a material that has gone through manufacturing processes used for ordinary steel materials, such as tempering or quenching and tempering. Furthermore, a process of normalizing, tempering, or quenching and tempering may be applied to a part or the whole of the manufactured electric resistance welded steel pipe of the present invention, without departing from the scope of the present invention. Which process to apply may be determined depending on the need to ensure properties such as strength and toughness.

〔実施例〕〔Example〕

第1表に示す成分の熱延鋼帯のアズロールのものを電縫
溶接し、Ac3以上で焼準しを行なって同表に示すサイ
ズの電縫鋼管を製造した。
Azurol hot-rolled steel strips having the components shown in Table 1 were electrical resistance welded and normalized at Ac3 or higher to produce electrical resistance welded steel pipes of the sizes shown in Table 1.

耐サワー性および低温靭性の評価を第2表に示す。耐サ
ワー性は、第1図と同様BP環境テストにより耐水素誘
起割れ性を評価し、いずれも、CLR(割れ長さ率) 
、C5R(割れ感受性率)とも0であり、耐サワー性に
優れている。また、低温靭性は、シャルピー試験で一4
6℃における吸収エネルギーで評価し、本発明材は比較
材に対して著しく優れている。
Evaluations of sour resistance and low temperature toughness are shown in Table 2. For sour resistance, hydrogen-induced cracking resistance was evaluated using the same BP environmental test as shown in Figure 1, and both CLR (crack length ratio)
, C5R (cracking susceptibility rate) are both 0, and the sour resistance is excellent. In addition, low-temperature toughness is 14% in the Charpy test.
As evaluated by absorbed energy at 6°C, the material of the present invention is significantly superior to the comparative material.

〔発明の効果〕〔Effect of the invention〕

本発明の電縫鋼管は、耐サワー性および低温靭性の優れ
た電縫鋼管であり、特に極寒地Gこおける湿潤硫化水素
を含む環境下にあっても、石油・天然ガス掘削、輸送な
どの用途に使用することができる。
The ERW steel pipe of the present invention is an ERW steel pipe with excellent sour resistance and low-temperature toughness, and is suitable for use in oil and natural gas drilling, transportation, etc., even in environments containing wet hydrogen sulfide, especially in extremely cold regions. It can be used for various purposes.

第   2   表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるPおよびS含有量の範囲を示す
図、第2図は電縫溶接部を示す図、第3図は球状のCa
酸化物系介在物を示す金属顕微鏡写真、第4図は電縫溶
接によって板状に変形したCa酸化物系介在物を示す金
属顕微鏡写真、第5図はCa酸化物系介在物の変形挙動
を示す模式図、第6図および第7図は靭性におよぼすC
a含有量の形容を示す図である。 特許出願人 新日本製鐵株式台社 第1図 (〉、イI/+1)                
        (<〆I77ぐラン第5図 vTrs (’c)
Figure 1 is a diagram showing the range of P and S contents in the present invention, Figure 2 is a diagram showing an electric resistance welded part, and Figure 3 is a diagram showing a spherical Ca
Figure 4 is a metallurgical microscope photograph showing oxide inclusions. Figure 4 is a metallurgical microscope photograph showing Ca oxide inclusions deformed into a plate shape by electric resistance welding. Figure 5 is a metallurgical microscope photograph showing the deformation behavior of Ca oxide inclusions. The schematic diagrams shown in Figures 6 and 7 show the effect of C on toughness.
It is a figure showing the description of a content. Patent applicant: Nippon Steel Corporation (Taisha) Figure 1 (〉, I/+1)
(<〆I77 Guran Figure 5 vTrs ('c)

Claims (1)

【特許請求の範囲】[Claims] 重量%でC:0.01〜0.35%、Si:0.02〜
0.5%、Mn:0.1〜1.8%、Al:0.001
〜0.10%を含有し、Ca≦0.001%、P≦0.
020%、S≦0.0012%でかつP(%)+25×
S(%)≦0.04%に制限し、さらにCu:0.2〜
0.6%、Ni:0.1〜1.0%、Cr:0.2〜3
.0%の1種または2種以上およびMo:0.1〜1.
0%、Nb:0.01〜0.15%、V:0.01〜0
.15%、Ti:0.01〜0.10%の1種または2
種以上を含有し、残部Feおよび不可避的不純物からな
ることを特徴とする耐サワー性の優れた高靭性電縫鋼管
C: 0.01-0.35%, Si: 0.02-0.02% by weight
0.5%, Mn: 0.1-1.8%, Al: 0.001
~0.10%, Ca≦0.001%, P≦0.
020%, S≦0.0012% and P (%) + 25×
Limit S (%)≦0.04%, and further Cu: 0.2~
0.6%, Ni: 0.1-1.0%, Cr: 0.2-3
.. 0% of one or more kinds and Mo: 0.1-1.
0%, Nb: 0.01-0.15%, V: 0.01-0
.. 15%, Ti: 0.01-0.10%, one or two
1. A high-toughness electric resistance welded steel pipe with excellent sour resistance, characterized in that the remainder consists of Fe and unavoidable impurities.
JP6851086A 1986-03-28 1986-03-28 High toughness resistance welded tube having superior sour resistance Granted JPS62227067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6851086A JPS62227067A (en) 1986-03-28 1986-03-28 High toughness resistance welded tube having superior sour resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6851086A JPS62227067A (en) 1986-03-28 1986-03-28 High toughness resistance welded tube having superior sour resistance

Publications (2)

Publication Number Publication Date
JPS62227067A true JPS62227067A (en) 1987-10-06
JPH0553857B2 JPH0553857B2 (en) 1993-08-11

Family

ID=13375780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6851086A Granted JPS62227067A (en) 1986-03-28 1986-03-28 High toughness resistance welded tube having superior sour resistance

Country Status (1)

Country Link
JP (1) JPS62227067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166317A (en) * 1989-08-18 1991-07-18 Kawasaki Steel Corp Production of high strength resistance welded tube excellent in toughness at low temperature
JPH04362157A (en) * 1991-06-07 1992-12-15 Japan Steel Works Ltd:The Steel for welding structure excellent in sulfide stress corrosion cracking resistance and low temperature toughness

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435816A (en) * 1977-08-26 1979-03-16 Kawasaki Steel Co Method of making steel sheets having good unstableebreakage characteristic
JPS5488827A (en) * 1977-12-26 1979-07-14 Kawasaki Steel Co Production of high tensile hot rolling steel plate with excellent extensibility and flanging property
JPS5531101A (en) * 1978-03-02 1980-03-05 Nippon Kokan Kk <Nkk> Manufacture of steel having superior hydrogen cracking resistance in wet hydrogen sulfide surroundings of high hydrogen ion concentration
JPS5538901A (en) * 1978-03-17 1980-03-18 Nippon Kokan Kk <Nkk> Manufacture of unrefined steel sheet having excellent hydrogen cracking resistance in wet hydrogen sulfide environment of high hydrogen ion concentration
JPS56119759A (en) * 1980-02-28 1981-09-19 Nippon Kokan Kk <Nkk> High tensile steel with superior sulfide corrosion crack resistance
JPS589926A (en) * 1981-07-09 1983-01-20 Kawasaki Steel Corp Production of api standard class x80 steel pipe of superior low temperature toughness
JPS589919A (en) * 1981-07-09 1983-01-20 Kawasaki Steel Corp Production of high tensile hot rolled steel strip of superior low temperature toughness
JPS5834132A (en) * 1981-08-22 1983-02-28 Kawasaki Steel Corp Production of api standard class x80 steel pipe having excellent low-temperature toughness
JPS5834133A (en) * 1981-08-22 1983-02-28 Kawasaki Steel Corp Production of api standard class x80 steel pipe having excellent low temperature toughness
JPS5884958A (en) * 1981-11-13 1983-05-21 Nippon Steel Corp Manufacture of killed steel slab for hot rolling
JPS6199660A (en) * 1984-10-22 1986-05-17 Sumitomo Metal Ind Ltd High strength welded steel pipe for line pipe
JPS6199656A (en) * 1984-10-22 1986-05-17 Sumitomo Metal Ind Ltd High strength welded steel pipe for line pipe
JPS61113749A (en) * 1984-11-09 1986-05-31 Kawasaki Steel Corp High corrosion resistance alloy for oil well
JPS61213346A (en) * 1985-03-19 1986-09-22 Nippon Kokan Kk <Nkk> Steel having superior resistance to hydrogen induced cracking and sulfide stress corrosion cracking
JPS61279621A (en) * 1985-06-04 1986-12-10 Kawasaki Steel Corp Produciton of hot coil for line pipe having superior resistance to hydrogen induced cracking
JPS62170458A (en) * 1986-01-23 1987-07-27 Nippon Steel Corp Steel for high toughness seam welded steel pipe having superior sour resistance

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435816A (en) * 1977-08-26 1979-03-16 Kawasaki Steel Co Method of making steel sheets having good unstableebreakage characteristic
JPS5488827A (en) * 1977-12-26 1979-07-14 Kawasaki Steel Co Production of high tensile hot rolling steel plate with excellent extensibility and flanging property
JPS5531101A (en) * 1978-03-02 1980-03-05 Nippon Kokan Kk <Nkk> Manufacture of steel having superior hydrogen cracking resistance in wet hydrogen sulfide surroundings of high hydrogen ion concentration
JPS5538901A (en) * 1978-03-17 1980-03-18 Nippon Kokan Kk <Nkk> Manufacture of unrefined steel sheet having excellent hydrogen cracking resistance in wet hydrogen sulfide environment of high hydrogen ion concentration
JPS56119759A (en) * 1980-02-28 1981-09-19 Nippon Kokan Kk <Nkk> High tensile steel with superior sulfide corrosion crack resistance
JPS589926A (en) * 1981-07-09 1983-01-20 Kawasaki Steel Corp Production of api standard class x80 steel pipe of superior low temperature toughness
JPS589919A (en) * 1981-07-09 1983-01-20 Kawasaki Steel Corp Production of high tensile hot rolled steel strip of superior low temperature toughness
JPS5834132A (en) * 1981-08-22 1983-02-28 Kawasaki Steel Corp Production of api standard class x80 steel pipe having excellent low-temperature toughness
JPS5834133A (en) * 1981-08-22 1983-02-28 Kawasaki Steel Corp Production of api standard class x80 steel pipe having excellent low temperature toughness
JPS5884958A (en) * 1981-11-13 1983-05-21 Nippon Steel Corp Manufacture of killed steel slab for hot rolling
JPS6199660A (en) * 1984-10-22 1986-05-17 Sumitomo Metal Ind Ltd High strength welded steel pipe for line pipe
JPS6199656A (en) * 1984-10-22 1986-05-17 Sumitomo Metal Ind Ltd High strength welded steel pipe for line pipe
JPS61113749A (en) * 1984-11-09 1986-05-31 Kawasaki Steel Corp High corrosion resistance alloy for oil well
JPS61213346A (en) * 1985-03-19 1986-09-22 Nippon Kokan Kk <Nkk> Steel having superior resistance to hydrogen induced cracking and sulfide stress corrosion cracking
JPS61279621A (en) * 1985-06-04 1986-12-10 Kawasaki Steel Corp Produciton of hot coil for line pipe having superior resistance to hydrogen induced cracking
JPS62170458A (en) * 1986-01-23 1987-07-27 Nippon Steel Corp Steel for high toughness seam welded steel pipe having superior sour resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166317A (en) * 1989-08-18 1991-07-18 Kawasaki Steel Corp Production of high strength resistance welded tube excellent in toughness at low temperature
JPH04362157A (en) * 1991-06-07 1992-12-15 Japan Steel Works Ltd:The Steel for welding structure excellent in sulfide stress corrosion cracking resistance and low temperature toughness

Also Published As

Publication number Publication date
JPH0553857B2 (en) 1993-08-11

Similar Documents

Publication Publication Date Title
US5993570A (en) Linepipe and structural steel produced by high speed continuous casting
RU2210603C2 (en) Method of production of superstrength weldable steels
US4138278A (en) Method for producing a steel sheet having remarkably excellent toughness at low temperatures
AU2003264947A1 (en) High strength seamless steel pipe excellent in hydrogen-induced cracking resistance and its production method
AU2006282412A1 (en) Seamless steel pipe for line pipe and a process for its manufacture
JP2016522316A (en) Zinc-resistant induction cracked steel sheet and manufacturing method thereof
JP2005232513A (en) High strength steel sheet and manufacturing method
KR100430067B1 (en) Steel for welded structure purpose exhibiting no dependence of haz toughness on heat input and method for producing the same
JPS581059A (en) High strength high toughness rolled steel material for pressure vessel
JPS6145697B2 (en)
JP3879723B2 (en) High-strength seamless steel pipe excellent in hydrogen-induced crack resistance and method for producing the same
JPS61124554A (en) Steel for high toughness electric welded steel tube superior in sour resistance
JPS62227067A (en) High toughness resistance welded tube having superior sour resistance
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JPS6160866A (en) Steel material for line pipe superior in sour resistance
JP3666388B2 (en) Martensitic stainless steel seamless pipe
JPH08232042A (en) Corrosion resisting steel for resistance welded tube
JP3293024B2 (en) Method of producing high toughness ERW steel pipe with excellent sour resistance
JPS61124555A (en) Steel superior in sour resistance
JP3549365B2 (en) Manufacturing method of steel for ERW steel pipe
WO2024088378A1 (en) Corrosion-resistant steel for photovoltaic pile foundation, and manufacturing method therefor
JPH0366385B2 (en)
JP2003089844A (en) Thick steel plate for welded structure having excellent fatigue strength of welded joint, and production method therefor
WO2024088380A1 (en) High-strength corrosion-resistant steel for photovoltaic pile foundation and manufacturing method therefor
JP2745070B2 (en) Martensitic stainless steel having high strength and excellent corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees