JPS6222443B2 - - Google Patents

Info

Publication number
JPS6222443B2
JPS6222443B2 JP54147278A JP14727879A JPS6222443B2 JP S6222443 B2 JPS6222443 B2 JP S6222443B2 JP 54147278 A JP54147278 A JP 54147278A JP 14727879 A JP14727879 A JP 14727879A JP S6222443 B2 JPS6222443 B2 JP S6222443B2
Authority
JP
Japan
Prior art keywords
layer
carrier concentration
growing
hcl
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54147278A
Other languages
Japanese (ja)
Other versions
JPS5670630A (en
Inventor
Katsunori Maeda
Yoshinobu Tsujikawa
Hideki Oikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Monsanto Chemical Co
Priority to JP14727879A priority Critical patent/JPS5670630A/en
Publication of JPS5670630A publication Critical patent/JPS5670630A/en
Publication of JPS6222443B2 publication Critical patent/JPS6222443B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE:To form a layer having a sharp impurity distribution by growing one layer when growing in gas phase a plurality of layers having different impurity density, subsequently etching it in the III group element-containing atmosphere in the Periodic Table and then growing next layer. CONSTITUTION:HCl and H2S for feeding AsH3 and Ga are supplied as carrier gases onto a GaAs substrate, thereby growing an N type GaAs layer 1 of 1.2X10<18>cm<-3>. Then, HCl for feeding Ga and HCl are supplied at 10ml/min and 60ml/min for approx. 10 sec, thereby etching the layer 1 in 0.7mum, and AsH3 is further flowed without adding impurity, thereby growing an N type GaAs layer 2 of 1.8X10<15>cm<-3>. Thus, the impurity density distribution forms sharply in the layer, and there can be obtained a layer having preferable performance in forming an IMPATT diode or the like.

Description

【発明の詳細な説明】 本発明は急峻なキヤリア濃度の変化を示す化合
物半導体エピタキシヤル層の成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing a compound semiconductor epitaxial layer exhibiting a steep change in carrier concentration.

マイクロ波固体発振素子の一種であるインパツ
ト・ダイ−オード等の製造に用いられるエピタキ
シヤル層は、理想的には第1図に示したようにキ
ヤリア濃度ができる限り急峻に変化することが望
ましい。
Ideally, it is desirable that the carrier concentration of an epitaxial layer used in manufacturing an impact diode, which is a type of microwave solid-state oscillation device, changes as steeply as possible, as shown in FIG.

第1図において縦軸はキヤリア濃度、横軸は厚
みを示すものであり、図中1はn型高キヤリア濃
度の領域、2はn型低キヤリア濃度の領域また3
はp型高キヤリア濃度の領域である。周期表第
族及び第族元素からなる化合物半導体(以下
「−族半導体」という)、例えばGaAsを単結
晶基板として用いる場合、基板はn型であるた
め、領域1を最初に形成し、続いて領域2及び3
が形成される。
In Fig. 1, the vertical axis shows the carrier concentration and the horizontal axis shows the thickness. In the figure, 1 indicates a region of high n-type carrier concentration, 2 indicates a region of low n-type carrier concentration, and 3
is a region of high p-type carrier concentration. When using a compound semiconductor consisting of Group and Group elements of the periodic table (hereinafter referred to as "-group semiconductor"), for example GaAs, as a single crystal substrate, since the substrate is n-type, region 1 is formed first, and then Areas 2 and 3
is formed.

なお、第1図に示した例は、SDR型、すなわ
ちシングル・ドリフト・レジヨン(Single drift
region)型と称されるインパツト・ダイオードで
あり、他にp型領域が高キヤリア濃度領域と低キ
ヤリア濃度領域の二領域からなる、DDR型、す
なわち、ダブル・ドリフト・レジヨン(double
drift region)型がある。従来は、第1図の高キ
ヤリア濃度領域1に相当する領域を気相エピタキ
シヤル成長させた後、第族及び第族成分の供
給を停止し、Hclによりエツチングを行ない、続
いて低キヤリア濃度領域を成長させていた。
The example shown in Figure 1 is an SDR type, that is, a single drift region.
This is an impact diode called a DDR type (double drift region) type, in which the p-type region consists of two regions, a high carrier concentration region and a low carrier concentration region.
drift region) type. Conventionally, after a region corresponding to high carrier concentration region 1 in FIG. was growing.

しかしながら、例えばキヤリア濃度が1×
1018/cm3の領域から1×1016/cm3の領域へ変化さ
せる場合従来法によれば、キヤリア濃度が比較的
なだらかな曲線を描いて低下する。
However, for example, if the carrier concentration is 1×
According to the conventional method, when changing from a region of 10 18 /cm 3 to a region of 1×10 16 /cm 3 , the carrier concentration decreases in a relatively gentle curve.

すなわち、高キヤリア濃度の領域から低キヤリ
ア濃度の領域への移行に要する厚みは1μmから
4μmに達し、素子の性能に悪影響を与える直列
抵抗を増加させるため好ましくなかつた。
That is, the thickness required to transition from a high carrier concentration region to a low carrier concentration region reaches from 1 μm to 4 μm, which is undesirable because it increases series resistance which adversely affects the performance of the device.

本発明者等は、上記の問題点を解決するために
鋭意研究の結果、本発明に到達したものであつ
て、本発明の目的は、単結晶基板表面上にキヤリ
ア濃度の異なる複数の領域を有する−族半導
体単結晶層を気相エピタキシヤル成長させる新規
な方法を提供することにある。
The present inventors have arrived at the present invention as a result of intensive research to solve the above problems, and an object of the present invention is to form multiple regions with different carrier concentrations on the surface of a single crystal substrate. An object of the present invention is to provide a novel method for vapor phase epitaxial growth of a - group semiconductor single crystal layer.

本発明の上記の目的は、一のキヤリア濃度を有
する領域を成長させ、続いて第族元素を含有す
る気流中でエツチングを行なつた後、異なるキヤ
リア濃度を有する領域を成長させる方法により達
せられる。
The above objects of the invention are achieved by a method of growing regions with one carrier concentration, followed by etching in an air stream containing group elements, and then growing regions with different carrier concentrations. .

バラクタダイオード、インパツトダイオード等
の製作に用いるエピタキシヤルウエハを製造する
場合、バツフア層としてキヤリア濃度が1018/cm3
程度の高キヤリア濃度の領域を気相エピタキシヤ
ル成長方法により4μmから8μm成長させた
後、第族及び第族元素成分の供給を一旦停止
する。次に、第族元素成分のみを供給しながら
Hcl等により上記高キヤリア濃度領域のエツチン
グを行なう。
When manufacturing epitaxial wafers used for manufacturing varactor diodes, impact diodes, etc., the buffer layer has a carrier concentration of 10 18 /cm 3 .
After growing a region with a relatively high carrier concentration to a thickness of 4 to 8 μm using a vapor phase epitaxial growth method, the supply of group and group element components is temporarily stopped. Next, while supplying only group element components,
Etch the above-mentioned high carrier concentration region using HCl or the like.

この場合、第族元素成分の供給量を調節する
ことにより、高キヤリア濃度の領域から低キヤリ
ア濃度の領域へ移行するのに要する厚みを調節す
ることができる。
In this case, by adjusting the supply amount of the group element component, it is possible to adjust the thickness required for transition from a region of high carrier concentration to a region of low carrier concentration.

GaAsエピタキシヤル層の場合、Gaを輸送する
Hclの流量を10〜40ml/分として、10〜50秒間エ
ツチングを行なうと1μm以下のエピタキシヤル
層の成長厚みでキヤリア濃度を低下させることが
できる。
In the case of GaAs epitaxial layers, transporting Ga
If etching is carried out for 10 to 50 seconds at a HCl flow rate of 10 to 40 ml/min, the carrier concentration can be reduced with an epitaxial layer growth thickness of 1 μm or less.

また、Ga輸送用Hclの流量を20ml/分以上にす
ると第2図に示すようなキヤリア濃度のデイツプ
(dip)4を形成することができる。なお、第2図
において、縦軸はキヤリア濃度、横軸は厚みであ
る。
Further, when the flow rate of HCl for Ga transport is set to 20 ml/min or more, a dip 4 having a carrier concentration as shown in FIG. 2 can be formed. In FIG. 2, the vertical axis is the carrier concentration, and the horizontal axis is the thickness.

また、低キヤリア濃度領域から高キヤリア濃度
領域へキヤリア濃度を変化させる場合も本発明方
法により急峻なキヤリア濃度の変化が得られる。
Also, when the carrier concentration is changed from a low carrier concentration region to a high carrier concentration region, a steep change in carrier concentration can be obtained by the method of the present invention.

エピタキシヤル成長に用いるガスの組成として
は、GaAsの場合、AsH3−Ga−Hcl−H2系、
Ascl3−Ga−Hcl−H2系が適当である。
In the case of GaAs, the composition of the gas used for epitaxial growth is AsH 3 −Ga−Hcl−H 2 system,
Ascl3 -Ga-Hcl- H2 system is suitable.

本発明方法を実施することにより、急峻なキヤ
リア濃度の変化が必要とされるインパツトダイオ
ード、バラクタダイオード等のマイクロ波固体素
子の製作に適した−族半導体エピタキシヤル
ウエハが得られるため産業上の利用価値は極めて
大である。
By carrying out the method of the present invention, it is possible to obtain - group semiconductor epitaxial wafers suitable for manufacturing microwave solid-state devices such as impact diodes and varactor diodes, which require steep changes in carrier concentration. The utility value is extremely large.

以下に実施例及び比較例に基づいて本発明方法
をさらに具体的に説明する。
The method of the present invention will be explained in more detail below based on Examples and Comparative Examples.

実施例 1 Siをドープしたキヤリア濃度が2.1×1018/cm3
あり、表面の結晶学的方位が(100)面から3゜
傾いた面であるGaAs単結晶基板及びGaを収容し
た容器を縦型エピタキシヤル反応装置に装入し
た。
Example 1 A GaAs single crystal substrate doped with Si and having a carrier concentration of 2.1×10 18 /cm 3 and whose surface crystallographic orientation is 3° inclined from the (100) plane and a container containing Ga were prepared. A vertical epitaxial reactor was charged.

水素を3500ml/分の流量で供給しながら基板温
度を750℃、Ga容器を800℃に昇温した。反応装
置が所定の温度に達した後、水素ガスで10%に希
釈したAsH3を100ml/分、Ga移送用のHclを10
ml/分、H2Sを50ppm含有する水素ガスを600
ml/分でもつて20分間供給してキヤリア濃度1.2
×1018/cm3、厚さ6μmのn型GaAsエピタキシ
ヤル層を成長させた。
While supplying hydrogen at a flow rate of 3500 ml/min, the substrate temperature was raised to 750°C and the Ga container to 800°C. After the reactor reached the specified temperature, 100 ml/min of AsH3 diluted to 10% with hydrogen gas and 10 ml/min of HCl for Ga transfer were added.
600 ml/min of hydrogen gas containing 50 ppm H2S
Carrier concentration 1.2 after 20 minutes of supply at ml/min
An n-type GaAs epitaxial layer of ×10 18 /cm 3 and 6 μm thick was grown.

その後AsH3、H2S及びHclの供給を停止して、
約1時間かけて基板温度を770℃に昇温した。
After that, the supply of AsH 3 , H 2 S and Hcl was stopped, and
The substrate temperature was raised to 770°C over about 1 hour.

次に、Ga移送用Hclを10ml/分流しながらHcl
を60ml/分の流量で10秒間供給して前記のキヤリ
ア濃度1.2×1018/cm3の層を0.7μmエツチングし
た。
Next, while flowing Hcl for Ga transfer at 10ml/minute, Hcl
was supplied for 10 seconds at a flow rate of 60 ml/min to etch the layer having a carrier concentration of 1.2×10 18 /cm 3 by 0.7 μm.

エツチング終了後Ga移送用Hclを、さらに50秒
間供給した。
After etching was completed, HCl for Ga transfer was supplied for an additional 50 seconds.

次に、AsH3(濃度10%)を100ml/分供給し
て、不純物を添加せずに10分間、キヤリア濃度
1.8×1015/cm3厚み3μmのn型GaAsエピタキシ
ヤル層を成長させた。
Next, AsH 3 (concentration 10%) was supplied at 100 ml/min to increase the carrier concentration for 10 minutes without adding any impurities.
An n-type GaAs epitaxial layer of 1.8×10 15 /cm 3 and 3 μm thick was grown.

得られたGaAsエピタキシヤルウエハではキヤ
リア濃度が1.2×1018/cm3の領域から、1.8×
1015/cm3の領域への移行に要したエピタキシヤル
層の厚みは0.35μmであつた。
In the obtained GaAs epitaxial wafer, the carrier concentration ranged from 1.2×10 18 /cm 3 to 1.8×
The thickness of the epitaxial layer required for transition to the region of 10 15 /cm 3 was 0.35 μm.

実施例 2 エツチングの際、Ga移送用Hclの供給量を40
ml/分としたこと以外は実施例1と同様にしてn
型GaAsエピタキシヤル層を気相成長させた。
Example 2 During etching, the supply amount of HCl for Ga transfer was set at 40
n in the same manner as in Example 1 except that the setting was ml/min.
A type GaAs epitaxial layer was grown by vapor phase.

得られたGaAsエピタキシヤルウエハではキヤ
リア濃度が、1.2×1018/cm3の領域から1.8×
1015/cm3の領域への移行に要したエピタキシヤル
層の厚みは0.2μm、また幅0.6μmのデイツプが
形成された。
In the obtained GaAs epitaxial wafer, the carrier concentration ranged from 1.2×10 18 /cm 3 to 1.8×
The thickness of the epitaxial layer required for transition to the 10 15 /cm 3 region was 0.2 μm, and a dip with a width of 0.6 μm was formed.

実施例 3 実施例1と同様にしてキヤリア濃度1.2×
1018/cm3のGaAsエピタキシヤル層の成長及びエ
ツチングを行なつた後、低キヤリア濃度領域を成
長させるにあたつてGaとAsの両成分のモル比を
4:1とした。
Example 3 Carrier concentration 1.2× in the same manner as Example 1
After growing and etching a GaAs epitaxial layer of 10 18 /cm 3 , the molar ratio of both Ga and As components was set to 4:1 in growing the low carrier concentration region.

すなわち、Ga移送用Hclを40ml/分、AsH3
(濃度10%)を100ml/分供給して、不純物を添加
せずに10分間、キヤリア濃度1.8×1015/cm3厚み
3μmのn型GaAsエピタキシヤル層を成長させ
た。
That is, 40 ml/min of HCl for Ga transfer, AsH 3
(concentration 10%) was supplied at 100 ml/min to grow an n-type GaAs epitaxial layer with a carrier concentration of 1.8×10 15 /cm 3 and a thickness of 3 μm for 10 minutes without adding any impurities.

得られたGaAsエピタキシヤル層ではキヤリア
濃度が1.2×1018/cm3の領域から、1.8×1015/cm3
の領域への移行に要したエピタキシヤル膜の厚み
は0.1μmであつた。
In the obtained GaAs epitaxial layer, the carrier concentration ranges from 1.2×10 18 /cm 3 to 1.8×10 15 /cm 3
The thickness of the epitaxial film required for transition to the region was 0.1 μm.

比較例 AsH3の供給量を100ml(濃度10%)、Ga移送用
のHclの供給量を10ml/分、基板温度を750℃と
して変化させず、それ以外は実施例と同様にし
て、キヤリア濃度1.1×1018/cm3及び1.7×1016
cm3の二つの層を有するエピタキシヤル膜を気相成
長させた。
Comparative Example The carrier concentration was changed in the same manner as in the example except that the supply amount of AsH 3 was 100 ml (concentration 10%), the supply amount of HCl for Ga transfer was 10 ml/min, and the substrate temperature was 750°C. 1.1×10 18 /cm 3 and 1.7×10 16 /
An epitaxial film with two layers of cm 3 was grown in the vapor phase.

上記高キヤリア濃度の層から低キヤリア濃度の
層への移行には3μm要した。
The transition from the high carrier concentration layer to the low carrier concentration layer required 3 μm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSDR型インパツトダイオードのキヤ
リア濃度の変化を示した図である。第2図はデイ
ツプを有するキヤリア濃度の変化を示す図であ
る。 1……n型高キヤリア濃度領域、2……n型低
キヤリア濃度領域、3……p型高キヤリア濃度領
域、4……デイツプ。
FIG. 1 is a diagram showing changes in carrier concentration of an SDR type impact diode. FIG. 2 is a diagram showing changes in carrier density with dips. 1... N-type high carrier concentration region, 2... N-type low carrier concentration region, 3... P-type high carrier concentration region, 4... Deep.

Claims (1)

【特許請求の範囲】[Claims] 1 単結晶基板表面上にキヤリア濃度の異なる複
数の領域を有する周期表第族及び第族元素か
らなる化合物半導体単結晶層を気相エピタキシヤ
ル成長させるにあたつて、一のキヤリア濃度を有
する領域を成長させ、続いて第族元素を含有す
る気流中でエツチングを行なつた後、異なるキヤ
リア濃度を有する領域を成長させることを特徴と
する方法。
1. In vapor phase epitaxial growth of a compound semiconductor single crystal layer made of elements of Groups and Groups of the periodic table having multiple regions with different carrier concentrations on the surface of a single crystal substrate, a region with a single carrier concentration is used. 1. A method characterized in that after growing regions with different carrier concentrations, following etching in an air stream containing a group element.
JP14727879A 1979-11-14 1979-11-14 Manufacture of compound semiconductor by gas phase epitaxial growth Granted JPS5670630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14727879A JPS5670630A (en) 1979-11-14 1979-11-14 Manufacture of compound semiconductor by gas phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14727879A JPS5670630A (en) 1979-11-14 1979-11-14 Manufacture of compound semiconductor by gas phase epitaxial growth

Publications (2)

Publication Number Publication Date
JPS5670630A JPS5670630A (en) 1981-06-12
JPS6222443B2 true JPS6222443B2 (en) 1987-05-18

Family

ID=15426587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14727879A Granted JPS5670630A (en) 1979-11-14 1979-11-14 Manufacture of compound semiconductor by gas phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPS5670630A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400740A (en) * 1992-02-06 1995-03-28 Mitsubishi Chemical Corporation Method of preparing compound semiconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915991A (en) * 1972-06-05 1974-02-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915991A (en) * 1972-06-05 1974-02-12

Also Published As

Publication number Publication date
JPS5670630A (en) 1981-06-12

Similar Documents

Publication Publication Date Title
US4159354A (en) Method for making thin film III-V compound semiconductors for solar cells involving the use of a molten intermediate layer
JPS63169717A (en) Semiconductor device
JPH0766922B2 (en) Method for manufacturing semiconductor device
JPS6329928A (en) Method of making gallium arsenite grow on silicon by epitaxial growth
JPH0383332A (en) Manufacture of silicon carbide semiconductor device
KR930009805B1 (en) Semiconcuctor device with buffer structure for eliminating defect from growing semiconductor layer
JPS581539B2 (en) epitaxial wafer
US4756792A (en) Method for vapor-phase epitaxial growth of a single crystalline-, gallium arsenide thin film
JPH08335715A (en) Epitaxial wafer and its manufacture
US4216037A (en) Method for manufacturing a heterojunction semiconductor device by disappearing intermediate layer
JPH03132016A (en) Method of forming crystal
JPS6222443B2 (en)
CA1333248C (en) Method of forming crystals
JPH02260628A (en) Manufacture of semiconductor device
US5254211A (en) Method for forming crystals
US3619304A (en) Method of manufacturing gallium phosphide electro luminescent diodes
JP5954677B2 (en) Method for manufacturing III / VSi template and method for monolithically integrating III / V semiconductor based semiconductor components
US5215938A (en) Process to obtain semi-insulating single crystalline epitaxial layers of arsenides and phosphides of metals of the group III of the periodic table useful to make electronic devices
JP2649928B2 (en) Method for manufacturing semiconductor wafer
JP3052399B2 (en) Method for manufacturing compound semiconductor film
JPH0463040B2 (en)
JPS6222444B2 (en)
JPS6347135B2 (en)
JPS61206216A (en) Semiconductor device made of chemical semiconductor material and making thereof
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same