JPS6222444B2 - - Google Patents

Info

Publication number
JPS6222444B2
JPS6222444B2 JP54150253A JP15025379A JPS6222444B2 JP S6222444 B2 JPS6222444 B2 JP S6222444B2 JP 54150253 A JP54150253 A JP 54150253A JP 15025379 A JP15025379 A JP 15025379A JP S6222444 B2 JPS6222444 B2 JP S6222444B2
Authority
JP
Japan
Prior art keywords
layer
hcl
carrier concentration
flow rate
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54150253A
Other languages
Japanese (ja)
Other versions
JPS5673427A (en
Inventor
Katsunobu Maeda
Yoshinobu Tsujikawa
Hideki Oikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Monsanto Chemical Co
Priority to JP15025379A priority Critical patent/JPS5673427A/en
Publication of JPS5673427A publication Critical patent/JPS5673427A/en
Publication of JPS6222444B2 publication Critical patent/JPS6222444B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE:To obtain an N<+>-N<->-N<+> layer with good reproducibility in gaseous phase epitaxial growth of GaAs, by performing etching in the Ga atmosphere in the case of forming an N<+>-N<-> interface, and performing etching in the As atmosphere in the case of forming the N<->-N<+> interface. CONSTITUTION:An N<+> GaAs layer is provided on the surface of a single crystal substrate of N type GaAs by using AsH3-Ga-HCl-H2 series gas, and an N<-> layer is grown to the specified thickness in the gaseous phase. The growing is stopped, As component is flowed at a specified flow rate, and the etching is performed by HCl. The more the flow rate of the As component, the smoother the profile of the change in carrier concentration. Then a specified amount of the N type dopant is supplied, and the N<-> layer is grown. After the specified thickness is obtained, the growing is stopped. HCl for Ga transportation is flowed at a specified flow rate, other HCl is introduced, and the etching is performed. If the flow rate of HCl for Ga transportation is 2X10<-4>mol/min. or more, the steep rising of the carrier concentration with a dip can be obtained. In this constitution, the GaAs epitaxial layer with the N<+>-N<->-N<+> structure can be obtained with good reproducibility.

Description

【発明の詳細な説明】 本発明はガンダイオード等の製造に適したひ化
ガリウム(以下「GaAs」という)エピタキシヤ
ル膜の気相成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for vapor phase growth of a gallium arsenide (hereinafter referred to as "GaAs") epitaxial film suitable for manufacturing Gunn diodes and the like.

ガンダイオードはマイクロ波固体発振素子の一
種であつて、低電圧電源で、連続またはパルス発
振動作させることができ、また低雑音であるた
め、通信機、レーダー等に不可欠の重要な素子と
なつている。
Gunn diodes are a type of microwave solid-state oscillator, and because they can operate in continuous or pulsed oscillation with a low-voltage power supply and have low noise, they have become an important element indispensable for communications equipment, radar, etc. There is.

ガンダイオードは、単結晶基板表面に通常は
GaAsからなるn+−n-−n+三層構造を有するエピ
タキシヤル膜を形成したウエハを用いて製造され
る。
Gunn diodes are usually mounted on the surface of a single crystal substrate.
It is manufactured using a wafer on which an epitaxial film having an n + −n −n + three-layer structure made of GaAs is formed.

ここでn+層はn型キヤリア濃度が1018/cm3
度、またはそれ以上であるGaAsエピタキシヤル
層であり、n-層は、n型キヤリア濃度が1017/cm3
以下、望ましくは1015〜1016/cm3であるGaAsエピ
タキシヤル層である。
Here, the n + layer is a GaAs epitaxial layer with an n-type carrier concentration of about 10 18 /cm 3 or more, and the n - layer has an n-type carrier concentration of 10 17 /cm 3 .
Hereinafter, the GaAs epitaxial layer is preferably 10 15 to 10 16 /cm 3 .

ガンダイオードの特性は、上記エピタキシヤル
ウエハのキヤリア濃度の変化のプロフアイルによ
り左右される。
The characteristics of the Gunn diode depend on the profile of the change in carrier concentration of the epitaxial wafer.

すなわち、第1図に示すように、n+層から一
旦急激にキヤリア濃度が減少し、望ましくはデイ
ツプを形成し、その後、徐々にキヤリア濃度が増
加するプロフアイルが望ましい。なお、第1図で
縦軸はキヤリア濃度を、また横軸はエピタキシヤ
ル層の厚みをそれぞれ任意のスケールで示したも
のである。
That is, as shown in FIG. 1, a profile is desirable in which the carrier concentration decreases rapidly starting from the n + layer, preferably forming a dip, and then gradually increases. In FIG. 1, the vertical axis represents the carrier concentration, and the horizontal axis represents the thickness of the epitaxial layer, each on an arbitrary scale.

従来、気相成長方法によつて製造した場合、エ
ピタキシヤル装置内に残留する不純物の影響等に
より、望ましいプロフアイルを再現性よく得るこ
とは困難であつた。
Conventionally, when manufacturing by a vapor phase growth method, it has been difficult to obtain a desired profile with good reproducibility due to the influence of impurities remaining in the epitaxial device.

また、液相成長方法は、エピタキシヤル層の厚
さの制御が困難であり、またオートドーピング等
が生じるため適していなかつた。
Furthermore, the liquid phase growth method is not suitable because it is difficult to control the thickness of the epitaxial layer and autodoping occurs.

本発明者等は、従来法の問題点を解決して、気
相成長方法によりガンダイオードの製造に適した
キヤリア濃度の変化のプロフアイルを有する
GaAsエピタキシヤルウエハを再現性よく製造す
ることを目的として鋭意研究を重ねた結果、本発
明に到達したものである。
The present inventors have solved the problems of the conventional method and have a carrier concentration change profile suitable for manufacturing Gunn diodes by a vapor phase growth method.
The present invention was achieved as a result of extensive research aimed at manufacturing GaAs epitaxial wafers with good reproducibility.

すなわち、本発明の上記の目的は、単結晶基板
表面にn+−n-−n+三層構造を有し、かつ一のn+
−n-界面でキヤリア濃度が急峻に変化し、他の
n+−n-界面ではキヤリア濃度がなだらかに変化
するキヤリア濃度変化のプロフアイルを有する
GaAsエピタキシヤル膜を気相成長させるにあた
つて、上記一のn+−n-界面の形成に際しては、
Ga雰囲気中でエツチングを行ない、また上記他
のn+−n-界面の形成に際しては、As雰囲気中で
エツチングを行うことにより達せられる。
That is, the above object of the present invention is to have an n + −n −n + three-layer structure on the surface of a single crystal substrate, and to have one n +
The carrier concentration changes sharply at the −n - interface, and other
At the n + −n -interface, the carrier concentration has a profile where the carrier concentration changes gradually.
When growing a GaAs epitaxial film in a vapor phase, when forming the n + -n - interface mentioned above,
Etching is performed in a Ga atmosphere, and the other n + -n - interfaces mentioned above can be formed by etching in an As atmosphere.

単結晶基板としては、n型キヤリア濃度が
1018/cm3以上のGaAs単結晶基板が適当である
が、Si,Ge等からなる単結晶基板を使用するこ
とができる。
As a single crystal substrate, the n-type carrier concentration is
A GaAs single crystal substrate of 10 18 /cm 3 or more is suitable, but a single crystal substrate made of Si, Ge, etc. can also be used.

本発明にかかるGaAsエピタキシヤル膜の成長
にあたつては、上記基板表面にバツフアー層をか
ねて、GaAsn+層を気相エピタキシヤル成長させ
る。成長に用いるガス組成としては、AsH3−Ga
−HCl−H2系、AsCl3−Ga−Hcl−H2系が適当で
ある。
In growing the GaAs epitaxial film according to the present invention, a GaAsn + layer is grown by vapor phase epitaxial growth on the surface of the substrate, which also serves as a buffer layer. The gas composition used for growth is AsH 3 −Ga
-HCl- H2 system and AsCl3 -Ga-Hcl- H2 system are suitable.

n-層が所定の厚さに成長した後、気相成長を
停止する。
After the n - layer has grown to a predetermined thickness, the vapor phase growth is stopped.

続いて、As成分を流量5×10-5mol/分〜5×
10-4mol/分で約2分間流しながら、その間HCl
で5〜30秒エツチングを行なう。
Subsequently, the As component was introduced at a flow rate of 5×10 -5 mol/min to 5×
While flowing at 10 -4 mol/min for about 2 minutes, HCl
Perform etching for 5 to 30 seconds.

この場合、As成分の流量が多い程、キヤリア
濃度の変化のプロフアイルはなだらかになり、
n+−n-界面の厚さを0.2μm単位で約3μmまで
厚くすることができる。
In this case, the higher the flow rate of the As component, the more gradual the profile of the carrier concentration change.
The thickness of the n + −n interface can be increased to about 3 μm in units of 0.2 μm.

続いて、所定量のn型ドーパントを供給しなが
ら、n-層を成長させる。n型ドーパントを流さ
ない場合、キヤリア濃度を約1015/cm3にすること
ができる。
Subsequently, an n - layer is grown while supplying a predetermined amount of n-type dopant. If no n-type dopant is flowed, the carrier concentration can be about 10 15 /cm 3 .

所定の厚さのn-層を形成させた後、エピタキ
シヤル成長を停止し、Ga輸送用のHClを5×
10-5mol/分〜3×10-4mol/分の流量で1〜2
分流しながら、その間別の導入口から導入した
HClで5〜30秒エツチングを行なう。続いてn+
の成長を開始する。
After forming an n -layer of a predetermined thickness, the epitaxial growth was stopped and HCl for Ga transport was added 5×.
1-2 at a flow rate of 10 -5 mol/min to 3 x 10 -4 mol/min
While diverting the flow, it was introduced from another inlet during that time.
Etch with HCl for 5-30 seconds. Next, the growth of the n + layer begins.

この場合、Ga輸送用HClの流量を2×
10-4mol/分以上にするとデイツプを伴なつた急
峻なキヤリア濃度の立上りを得ることができる。
In this case, the flow rate of HCl for Ga transport is set to 2×
When the rate is 10 -4 mol/min or more, a steep rise in carrier concentration accompanied by a dip can be obtained.

なお、上記の成長の順序を逆にして、最初の
n+−n-界面を形成するためのエツチングを行な
つてもよい。
Note that by reversing the above growth order, the first
Etching may be performed to form an n + -n -interface .

本発明方法を実施することにより、所望のキヤ
リア濃度変化プロフアイルを有するn+−n-−n+
三層構造を有するGaAsエピタキシヤル膜を再現
性よく製造することができるため、産業上の利用
価値は極めて大である。
By carrying out the method of the present invention, n + −n −n + having the desired carrier concentration change profile can be obtained.
Since a GaAs epitaxial film having a three-layer structure can be manufactured with good reproducibility, it has extremely high industrial value.

次に実施例に基づいて本発明方法をさらに具体
的に説明する。
Next, the method of the present invention will be explained in more detail based on Examples.

実施例 Siをドープしたn型キヤリア濃度が2.1×1018
cm3であり、表面の結晶学的方位が(100)面から
3゜傾いた面であるGaAs単結晶基板及び金属Ga
を収容した容器を縦型エピタキシヤル反応装置に
装入した。
Example Si-doped n-type carrier concentration is 2.1×10 18 /
cm 3 and the crystallographic orientation of the surface is a plane tilted 3° from the (100) plane and a GaAs single crystal substrate.
The container containing the sample was charged into a vertical epitaxial reactor.

H2を3500ml/分の流量で供給しながら、基板
温度を750℃、Ga容器を800℃に昇温した。反応
装置が所定の温度に達した後、H2で10%に希釈
したAsH3を100ml/分、Ga輸送用のHClを10ml/
分、H2Sを50ppm含有するH2を600ml/分供給し
ながら20分間n+層を成長させた。キヤリア濃度
は1.2×1018/cm3、厚さは6μmであつた。
While supplying H 2 at a flow rate of 3500 ml/min, the substrate temperature was raised to 750°C and the Ga container to 800°C. After the reactor reaches a predetermined temperature, AsH3 diluted to 10% with H2 is added at 100 ml/min and HCl for Ga transport is added at 10 ml/min.
The n + layer was grown for 20 minutes while supplying 600 ml/min of H 2 containing 50 ppm H 2 S. The carrier concentration was 1.2×10 18 /cm 3 and the thickness was 6 μm.

AsH3、HCl及びH2Sの供給を停止した後、約1
時間かけて基板温度を770℃に昇温した。次に
AsH3(10%)を100ml/分及びエツチング用HCl
を60ml/分の流量で10秒間流し、上記n+層を0.7
μmエツチングした。エツチング用HClの供給を
停止した後、さらに110秒間AsH3を流した。
After stopping the supply of AsH 3 , HCl and H 2 S, approx.
The substrate temperature was raised to 770°C over time. next
AsH 3 (10%) at 100 ml/min and HCl for etching
was flowed for 10 seconds at a flow rate of 60 ml/min, and the above n + layer was
μm etched. After stopping the supply of etching HCl, AsH 3 was continued to flow for an additional 110 seconds.

続いてGa輸送用HClを10ml/分流してn-層を
13分間成長させた。得られたn+−n-界面の厚さ
は3μm、n-層のキヤリア濃度は1.8×1015
cm3、厚さは4μmであつた。
Next, 10 ml/min of HCl for Ga transport was flowed to remove the n -layer .
Grown for 13 minutes. The thickness of the obtained n + -n - interface was 3 μm, and the carrier concentration of the n - layer was 1.8 × 10 15 /
cm 3 and thickness was 4 μm.

次にAsH3の供給を停止して、Ga輸送用HClの
流量を40ml/分、エツチング用HClの流量を60
ml/分として10秒間エツチングを行なつた後、さ
らに50秒間Ga輸送用HClを供給した。その後、
Ga輸送用HClの流量を10ml/分、AsH3(濃度10
%)の流量を100ml/分、H2S(濃度50ppm)を
600ml流しながら5分間n-層を成長させた。得ら
れたn+−n-界面の厚さは0.2μmでn-層側に幅0.6
μmのデイツプが形成された。またn+層の厚さ
は1.5μm、キヤリア濃度は1.2×1018/cm3であつ
た。
Next, the supply of AsH 3 was stopped, and the flow rate of HCl for Ga transport was 40 ml/min, and the flow rate of HCl for etching was 60 ml/min.
After etching was performed for 10 seconds at a rate of ml/min, HCl for Ga transport was supplied for an additional 50 seconds. after that,
The flow rate of HCl for Ga transport was 10 ml/min, AsH 3 (concentration 10
%) flow rate 100ml/min, H2S (concentration 50ppm)
The n -layer was grown for 5 minutes with a flow of 600 ml. The thickness of the obtained n + −n - interface is 0.2 μm, and the width is 0.6 on the n - layer side.
A dip of μm was formed. The thickness of the n + layer was 1.5 μm, and the carrier concentration was 1.2×10 18 /cm 3 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガンダイオード用エピタキシヤルウエ
ハのキヤリア濃度変化プロフアイルの一例を示す
図表である。 1……キヤリア濃度変化プロフアイル。
FIG. 1 is a chart showing an example of a carrier concentration change profile of an epitaxial wafer for Gunn diodes. 1...Carrier concentration change profile.

Claims (1)

【特許請求の範囲】[Claims] 1 単結晶基板表面にn+−n-−n+三層構造を有
し、かつ一のn+−n-界面ではキヤリア濃度が急
峻に変化し、他のn+−n-界面ではキヤリア濃度
がなだらかに変化するキヤリア濃度変化のプロフ
アイルを有するひ化ガリウムエピタキシヤル膜を
気相成長させるにあたつて、上記一のn+−n-
面の形成に際しては、Ga雰囲気中でエツチング
を行ない、また上記他のn+−n-界面の形成に際
しては、As雰囲気中でエツチングを行なうこと
を特徴とする方法。
1 The single crystal substrate surface has an n + -n - -n + three-layer structure, and the carrier concentration changes sharply at one n + -n - interface, and the carrier concentration changes rapidly at the other n + -n - interfaces. When growing a gallium arsenide epitaxial film having a carrier concentration change profile in which the carrier concentration changes gradually, etching is performed in a Ga atmosphere to form the above-mentioned n + -n - interface. , and a method characterized in that etching is performed in an As atmosphere when forming the other n + -n - interface.
JP15025379A 1979-11-20 1979-11-20 Manufacture of gallium arsenide epitaxial wafer Granted JPS5673427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15025379A JPS5673427A (en) 1979-11-20 1979-11-20 Manufacture of gallium arsenide epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15025379A JPS5673427A (en) 1979-11-20 1979-11-20 Manufacture of gallium arsenide epitaxial wafer

Publications (2)

Publication Number Publication Date
JPS5673427A JPS5673427A (en) 1981-06-18
JPS6222444B2 true JPS6222444B2 (en) 1987-05-18

Family

ID=15492895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15025379A Granted JPS5673427A (en) 1979-11-20 1979-11-20 Manufacture of gallium arsenide epitaxial wafer

Country Status (1)

Country Link
JP (1) JPS5673427A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734476B2 (en) * 2001-06-14 2004-05-11 Ixys Corporation Semiconductor devices having group III-V compound layers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915991A (en) * 1972-06-05 1974-02-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915991A (en) * 1972-06-05 1974-02-12

Also Published As

Publication number Publication date
JPS5673427A (en) 1981-06-18

Similar Documents

Publication Publication Date Title
US5356509A (en) Hetero-epitaxial growth of non-lattice matched semiconductors
Olsen et al. Crystal growth and properties of binary, ternary and quaternary (In, Ga)(As, P) alloys grown by the hydride vapor phase epitaxy technique
US6372981B1 (en) Semiconductor substrate, solar cell using same, and fabrication methods thereof
JPH076971A (en) Synthetic semiconductor and its controlled doping
US4699688A (en) Method of epitaxially growing gallium arsenide on silicon
KR860700072A (en) Composite of Monocrystalline Silicon Substrate and Monocrystalline Film and Formation Method Thereof
CA1086431A (en) Etching of iii-v semiconductor materials in the preparation of heterodiodes
KR930009805B1 (en) Semiconcuctor device with buffer structure for eliminating defect from growing semiconductor layer
US4195305A (en) Lattice constant grading in the Aly Ga1-y As1-x Sbx alloy system
US4216484A (en) Method of manufacturing electroluminescent compound semiconductor wafer
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
US4246050A (en) Lattice constant grading in the Aly Ca1-y As1-x Sbx alloy system
JP2008540312A (en) Cubic group III nitride free-standing bulk substrate and manufacturing method thereof
JPS6222444B2 (en)
CN108511326A (en) A kind of compound semiconductor materials InGaN and its epitaxial preparation method
GB1582063A (en) Electroluminescent element and method of fabricating the same
US3530011A (en) Process for epitaxially growing germanium on gallium arsenide
JPS61106497A (en) Method for growing epitaxial film of gallium phosphide and arsenide
US5653801A (en) Method for reducing contamination in semiconductor by selenium doping
JPS6222443B2 (en)
JP3052399B2 (en) Method for manufacturing compound semiconductor film
JPS6347135B2 (en)
JP2649928B2 (en) Method for manufacturing semiconductor wafer
Mauk et al. Electronic GaAs-on-Silicon Material for Advanced High-Speed Optoelectronic Devices
JPH09312264A (en) Vapor growing method and vapor growing equipment