JPS6347135B2 - - Google Patents

Info

Publication number
JPS6347135B2
JPS6347135B2 JP18902280A JP18902280A JPS6347135B2 JP S6347135 B2 JPS6347135 B2 JP S6347135B2 JP 18902280 A JP18902280 A JP 18902280A JP 18902280 A JP18902280 A JP 18902280A JP S6347135 B2 JPS6347135 B2 JP S6347135B2
Authority
JP
Japan
Prior art keywords
mixed crystal
layer
ratio
gallium arsenide
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18902280A
Other languages
Japanese (ja)
Other versions
JPS57111016A (en
Inventor
Shinichi Hasegawa
Hisanori Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Monsanto Chemical Co
Priority to JP18902280A priority Critical patent/JPS57111016A/en
Publication of JPS57111016A publication Critical patent/JPS57111016A/en
Publication of JPS6347135B2 publication Critical patent/JPS6347135B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain the wafer with extremely uniform thickness without lowering luminous efficiency by making the ratio of galluium as a gas for gaseous phase growth and arsenic and phosphorus proper. CONSTITUTION:A gallium phosphide arsenide mixed crystal rate varying layer, a gallium phosphide arsenide mixed crystal rate fixed layer and a gallium phosphide arsenide mixed crystal rate fixed layer containing an isoelectronic trap are formed successively onto a single crystal substrate through a gaseous phase epitaxial growth method, and the gallium phosphide arsenide mixed crystal epitaxial wafer is manufactured. The ratio (Ga)/(As+P) of the component concentration of gallium as the gas for the gaseous phase growth of the mixed crystal rate fixed layer containing the isoelectronic trap to the component concentration of phosphorus and arsenic is made within a range of 1.5-5 at that time, and the ratio (Ga)/(As+P) is made within a range of 0.3-1 when growing other layers.

Description

【発明の詳細な説明】 本発明はリン化ヒ化ガリウム混晶(GaAs1-x
Px、x:混晶率)エピタキシヤルウエハの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to gallium arsenide phosphide mixed crystal (G a A s1-x
P x , x: mixed crystal ratio) The present invention relates to a method for manufacturing an epitaxial wafer.

さらに、詳しくはアイソエレクトロニツクトラ
ツプを含有したリン化ヒ化ガリウム混晶、すなわ
ち、GaAs1-xPx(0.55≦x≦1)からなるエピタキ
シヤル層を含有するリン化ガリウム混晶(以下
「GaAs1-xPx」という)エピタキシヤルウエハの
製造方法に関する。
More specifically, gallium arsenide phosphide mixed crystal containing isoelectronic traps, that is, gallium phosphide mixed crystal containing an epitaxial layer consisting of G a A s1-x P x (0.55≦x≦1) The present invention relates to a method for manufacturing an epitaxial wafer (hereinafter referred to as "G a A s1-x P x ").

一般にGaAs1-xPx等の多元系混晶化合物半導体
のエピタキシヤル層の成長法には気相成長法、液
相成長法、モレキユラ・ビーム法、及び真空蒸着
法が知られているが、特に、気相成長法は、エピ
タキシヤルウエハの量産性に優れておりさらに、
プレーナ構造を目的とした不純物(ドーパント)
の熱拡散工程を伴う集積回路IC製造プロセスを
利用することが出来るため、発光ダイオード等の
デバイスの量産が可能であること等、多くの特長
を有している。
In general, the vapor phase growth method, liquid phase growth method, molecular beam method, and vacuum evaporation method are known as methods for growing epitaxial layers of multi-component mixed crystal compound semiconductors such as G a A s1-x P x . However, in particular, the vapor phase growth method is excellent in mass production of epitaxial wafers, and
Impurities (dopants) for planar structure
It has many advantages, including the ability to mass-produce devices such as light-emitting diodes because it can utilize an integrated circuit IC manufacturing process that involves a thermal diffusion process.

従来、GaAs1-xPxエピタキシヤル膜の気相成長
法の実施に際しては、結晶学的欠陥の発生を防止
し、得られる発光ダイオードの輝度向上の目的
で、族元素すなわち、ガリウム(Ga)成分過
剰の雰囲気、すなわち、気相成長ガス単位体積中
に含まれる第族元素、Ga及び第族元素、す
なわちリン(P)ならびにヒ素(As)の原子数
比、すなわち、Ga成分の濃度〔Ga〕とAs成分及
びP成分の濃度の合計との比、〔Ga〕/〔As
P〕を1.5〜2の範囲の一定値に保持していた。
Conventionally, when performing the vapor phase growth method for G a A s1-x P x epitaxial films, a group element, ie, gallium ( G a ) Excessive atmosphere, i.e., the atomic ratio of the group elements, G a and the group elements, i.e., phosphorus (P) and arsenic (A s ), contained in the vapor phase growth gas unit volume, i.e., G The ratio of the concentration of the a component [G a ] to the sum of the concentrations of the A s component and the P component, [G a ]/[A s +
P] was maintained at a constant value in the range of 1.5-2.

しかし、一般に上記の方法に基づいて形成され
たGaAs1-xPxエピタキシヤルウエハは、得られる
発光ダイオードの輝度値向上と言つた所期の目的
は達成されるが、得られたエピタキシヤル膜厚が
極めて不均一になるという問題点があつた。
However, although the G a A s1- x P There was a problem that the coating thickness was extremely non-uniform.

一例としてGaP基板上に気相成長させた橙色
(尖頭発光波長630nm±10nm)発光用GaAs0.35
P0.65エピタキシヤルウエハの場合について説明す
ると次の通りである。
As an example, G a A s0.35 for orange light emission (peak emission wavelength 630 nm±10 nm) grown in vapor phase on a G a P substrate.
The case of a P 0.65 epitaxial wafer will be explained as follows.

第1図は、従来法により得られたウエハの一例
の縦断面模型図である。
FIG. 1 is a vertical cross-sectional model diagram of an example of a wafer obtained by a conventional method.

第1図において、1は単結晶基板である。単結
晶基板としては、本発明方法に係る混晶率xが
0.55≦x≦1の範囲であるGaAs1-xPxエピタキシ
ヤルウエハの場合は、リン化ガリウム(GaP)
単結晶基板が最も適しているが、ヒ化ガリウム
(GaAs)、シリコン(Si)、ゲルマニウム(Ge)等
からなる基板も用いることができる。
In FIG. 1, 1 is a single crystal substrate. As for the single crystal substrate, the mixed crystal ratio x according to the method of the present invention is
For G a A s1-x P x epitaxial wafers in the range 0.55≦x≦1, gallium phosphide (G a P)
A single crystal substrate is most suitable, but substrates made of gallium arsenide ( GaAs ) , silicon ( Si ), germanium ( Ge ), etc. can also be used.

2は、混晶率変化層である。例えば、橙色発光
ダイオードであつてGaP基板を用いた場合は、
GaAs0.35P0.65、すなわち混晶率xを1から0.65ま
で変化させた層である。この層を設けることによ
り格子定数の不一致に基づく転位の発生を最小限
にすることができる。
2 is a mixed crystal ratio change layer. For example, in the case of an orange light emitting diode using a GaP substrate,
G a A s0.35 P 0.65 , that is, a layer in which the mixed crystal ratio x is varied from 1 to 0.65. By providing this layer, the occurrence of dislocations due to mismatch in lattice constants can be minimized.

3は、混晶率一定層である。この層は、所望の
発光波長により適宜選択される。橙色の場合はx
=0.65に選択される。
3 is a constant mixed crystal ratio layer. This layer is appropriately selected depending on the desired emission wavelength. x for orange
= 0.65.

4は、アイソエレクトロニツクトラツプを含有
する混晶率一定層である。混晶率xが0.55以上の
GaAs1-xPxの場合、間接遷移型であるので、発光
効率を向上させる目的で、アイソエレクトロニツ
クトラツプとして、通常は窒素(N)が添加され
る。pn接合は層4中に形成される。
4 is a constant mixed crystal ratio layer containing an isoelectronic trap. Mixed crystal ratio x is 0.55 or more
In the case of G a A s1-x P x , since it is an indirect transition type, nitrogen (N) is usually added as an isoelectronic trap for the purpose of improving luminous efficiency. A pn junction is formed in layer 4.

5は、気相エピタキシヤル成長の際の気流の方
向を示す矢印である。
5 is an arrow indicating the direction of air flow during vapor phase epitaxial growth.

従来法のように、〔Ga〕/〔As+P〕を1.5〜
2に保持して成長させた場合、第1図に示すよう
に、ウエハの気相成長用ガス流の上流側にあたる
部分の膜厚が他の部分よりも異常に厚くなる。す
なわち、エピタキシヤル膜の厚さ(層2,3及び
4の厚さの合計)は、下流側の端部が100μmの場
合、上流側の最大厚さ200〜250μmと2ないし2.5
倍の厚さになるのが通例であつた。したがつて、
かかるウエハから発光ダイオード等のウエハを製
造する場合、研摩により厚さを均一にする工程、
すなわち、デバー(Debur)工程を設ける必要が
あつた。
As in the conventional method, [G a ]/[A s +P] is set from 1.5 to
2, the film thickness of the portion of the wafer on the upstream side of the gas flow for vapor phase growth becomes abnormally thicker than other portions, as shown in FIG. That is, the thickness of the epitaxial film (the sum of the thicknesses of layers 2, 3, and 4) is 2 to 2.5, with a maximum thickness of 200 to 250 μm on the upstream side when the downstream end is 100 μm.
It was customary for it to be twice as thick. Therefore,
When manufacturing wafers such as light emitting diodes from such wafers, there is a step of making the thickness uniform by polishing,
That is, it was necessary to provide a Debur process.

本発明者等は、かかる従来法問題点を解決する
ために、鋭意研究を重ねた結果、本発明に到達し
たものであつて、本発明の目的はデバー工程の不
要な、均一な膜厚のGaAs1-xPxウエハの製造工程
を提供することである。
In order to solve the problems of the conventional method, the present inventors have arrived at the present invention as a result of intensive research. The purpose of the present invention is to provide a manufacturing process for G a A s1-x P x wafers.

本発明の上記の目的は、単結晶基板上に、リン
化ヒ化ガリウム混晶率変化層、リン化ヒ化ガリウ
ム混晶率一定層及びアイソエレクトロニツクトラ
ツプを含有するリン化ヒ化ガリウム混晶率一定層
を上記順に気相エピタキシヤル成長法により形成
さてあるリン化ヒ化ガリウム混晶エピタキシヤル
ウエハを製造するにあたつて、少なくとも、上記
アイソエレクトロニツクトラツプを含有するリン
化ヒ化ガリウム混晶率一定層の成長の際は、気相
成長用ガスに含有されるガリウム成分の濃度
〔Ga〕とリンおよびヒ素成分の濃度の合計〔As
P〕(上記濃度は気相成長用ガス単位体積中に含
まれる各成分の原子数で表わしたもの)の比
〔Ga〕/〔As+P〕を1.5〜5の範囲に保持し、
それ以外の層の成長の際は、上記〔Ga〕/〔As
+P〕を0.3〜1の範囲に保持することを特徴と
するリン化ヒ化ガリウム混晶エピタキシヤルウエ
ハの製造方法により達せられる。
The above-mentioned object of the present invention is to provide a gallium arsenide phosphide compound containing a gallium arsenide phosphide mixed crystal layer with a variable crystal concentration, a gallium arsenide phosphide constant layer and an isoelectronic trap on a single crystal substrate. In manufacturing a gallium arsenide phosphide mixed crystal epitaxial wafer in which a constant crystallinity layer is formed in the above order by a vapor phase epitaxial growth method, at least a gallium arsenide phosphide containing the above-mentioned isoelectronic trap is used. When growing a constant gallium mixed crystal layer, the sum of the concentration of gallium component [G a ] and the concentration of phosphorus and arsenic components contained in the gas for vapor phase growth [A s +
P] (the above concentration is expressed by the number of atoms of each component contained in a unit volume of gas for vapor phase growth), the ratio [G a ]/[A s +P] is maintained in the range of 1.5 to 5,
When growing other layers, the above [G a ]/[A s
+P] is maintained in the range of 0.3 to 1 by a method for manufacturing a gallium arsenide phosphide mixed crystal epitaxial wafer.

本発明方法に用いられる単結晶基板としては前
述の通り、GaPが最も適しているが、GaAsSi
Ge、サフアイア、スピネル等も用いられる。基
板面としては(100)面または(100)面から1〜
5゜程度<110>方向に傾いた面が適している。本
発明方法においては、少なくともアイソエレクト
ロニツクトラツプを含有する混晶率一定層第1図
層4)を除く層の成長にあたつては、〔Ga〕/
〔As+P〕を0.3〜1に保持し、また、上記混晶率
一定の層の成長にあたつては、〔Ga〕/〔As
P〕が1.5〜5、好ましくは1.5〜3の間に保持さ
れる。〔Ga〕/〔As+P〕の値を変化させるに
は、第1図層3の成長の途中又は層3と層4の境
界付近が好ましいが層2の成長の途中、層2が約
半分以上成長した後でもよい。層4にはpn接合
が形成されるので層4の成長途中で〔Ga〕/
〔As+P〕を変化させると発光効率を低下させる
場合があるので好ましくない。また、層2のエピ
タキシヤル成長の初期に〔Ga〕/〔As+P〕を
変化させると本発明の効果が充分に発揮できない
ので好ましくない。
As mentioned above, GaP is most suitable as the single crystal substrate used in the method of the present invention, but GaAsSi ,
G e , saphire, spinel, etc. are also used. The board surface is the (100) plane or 1 to 1 from the (100) plane.
A surface tilted approximately 5 degrees in the <110> direction is suitable. In the method of the present invention, when growing layers other than layer 4) of constant mixed crystal content containing at least isoelectronic traps in Figure 1, [G a ]/
[A s +P] is maintained at 0.3 to 1, and when growing the layer with a constant mixed crystal ratio, [G a ]/[A s +
P] is maintained between 1.5 and 5, preferably between 1.5 and 3. In order to change the value of [G a ]/[A s +P], it is preferable to change the value during the growth of layer 3 in Figure 1 or near the boundary between layers 3 and 4. You can also do this after it has grown more than half of its size. Since a pn junction is formed in layer 4, [G a ]/
Changing [A s +P] is not preferable because it may reduce luminous efficiency. Further, it is not preferable to change [G a ]/[A s +P] at the initial stage of epitaxial growth of layer 2 because the effects of the present invention cannot be fully exhibited.

本発明方法を実施することにより、発光効率を
低下させることなく、極めて均一な膜厚のウエハ
(最大厚みと最小厚みの比が1.1〜1.3)を得るこ
とができ、産業上の利用価値が極めて大である。
By carrying out the method of the present invention, wafers with extremely uniform film thickness (ratio of maximum thickness to minimum thickness of 1.1 to 1.3) can be obtained without reducing luminous efficiency, and have extremely high industrial value. It's large.

次に実施例に基づいて本発明をさらに具体的に
説明する。
Next, the present invention will be explained in more detail based on Examples.

〔実施例 1〕 イオウ(S)を、n形不純物として添加し、n
形キヤリヤー濃度が2.5×1017cm-3、結晶学的面方
位が(100)面から<110>方向へ4゜偏位したGa
単結晶基板を内径60mm、長さ95cmの水平型石英製
エピタキシヤル・リアクター内の所定の場所に、
又、高純度Ga入り石英ボートを該リアクター内
の他の所定の場所にそれぞれ設置した。
[Example 1] Sulfur (S) is added as an n-type impurity, and n
G a P with a shape carrier concentration of 2.5×10 17 cm -3 and a crystallographic plane orientation deviated by 4° from the (100) plane to the <110> direction.
Place the single-crystal substrate at a specified location in a horizontal quartz epitaxial reactor with an inner diameter of 60 mm and a length of 95 cm.
In addition, quartz boats containing high-purity Ga were installed at other predetermined locations within the reactor.

次に、アルゴン(Ar)ガスを該リアクター内
に15分間導入し空気を充分置換除去した後、キヤ
リヤ・ガスとしての高純度水素(H2)を毎分
2000ml導入しArの流れを止め昇温工程に入つた。
上記Ga入り石英ボート設置領域並びにGsP単結
晶基板設置領域の温度が、それぞれ770℃並びに
870℃一定に保持されている事を確認し、橙色
(尖頭発光波長=630nm±10nm)発光ダイオード
用GaAs1-xPxエピタキシヤル膜(但し、該エピタ
キシヤル膜のアイソエレクトロニツクトラツプと
して窒素添加した混晶率一定層GaAs1-xPx混晶率
X=0.65)の気相成長を開始した。
Next, argon (Ar) gas is introduced into the reactor for 15 minutes to sufficiently replace and remove air, and then high-purity hydrogen (H 2 ) is introduced every minute as a carrier gas.
After introducing 2000ml, the flow of Ar was stopped and the temperature raising process started.
The temperatures of the G a quartz boat installation area and the G s P single crystal substrate installation area are 770℃ and 770℃, respectively.
Confirm that the temperature is maintained at a constant temperature of 870°C, and then remove the G a A s1-x P x epitaxial film for orange (peak emission wavelength = 630 nm ± 10 nm) light emitting diode (however, the Vapor phase growth of a constant mixed crystal ratio layer (G a A s1-x P x mixed crystal ratio X = 0.65) to which nitrogen was added as a layer was started.

気相成長開始時より、初めの150分間は、濃度
15ppmに希釈されたn形不純物である硫化水素
(H2S)を毎分15ml導入し、第族元素成分とし
てのGaClを毎分22ml生成すべく、高純塩化水素
ガス(HCl)を上記石英ボートのGa溜の中央底
部に毎分22ml吹き込み且つGa溜上表面より吹き
出させ、他方第族元素成分として、H2で濃度
11%に希釈したリン化水素(PH3)を毎分400ml
より毎分240mlまで徐々に減少させつゝ導入し、
他方H2で濃度11%に希釈したヒ化水素(AsH3
を毎分0mlより毎分160mlまで徐々に増加させ
つゝ導入、Xが1より0.65まで徐々に変化するGa
As1-xPx混晶率変化層(第1図に於ける層2に相
当)を形成した。この場合、〔Ga〕/〔P+As
=0.5である。次の60分間はH2、H2S、HCl、
PH3、AsH3の各導入量を変えることなく、即ち
毎分、H2を2000ml、H2Sを15ml、HClを22ml、
PH3を240ml、AsH3を160mlに保持しつゝXが
0.65(一定)であるGaAs1-xPx組成一定層(第3図
に於ける層3に相当)を形成した。この場合、
〔Ga〕/〔As+P〕=0.5である。
For the first 150 minutes from the start of vapor phase growth, the concentration
Hydrogen sulfide (H 2 S), an n-type impurity diluted to 15 ppm, was introduced at 15 ml per minute, and high-purity hydrogen chloride gas (HCl) was introduced to produce 22 ml per minute of Ga Cl, a group element component. 22 ml per minute was blown into the center bottom of the Ga reservoir of the quartz boat and blown out from the upper surface of the Ga reservoir, and on the other hand, the group element component was concentrated with H2.
Hydrogen phosphide (PH 3 ) diluted to 11% at 400ml per minute
Introduced by gradually reducing the amount to 240ml per minute.
Hydrogen arsenide (A s H 3 ) diluted to a concentration of 11% with H 2 on the other hand
G a gradually increases from 0 ml per minute to 160 ml per minute, and X gradually changes from 1 to 0.65 .
An A s1-x P x mixed crystal ratio variable layer (corresponding to layer 2 in FIG. 1) was formed. In this case, [G a ]/[P+A s ]
=0.5. For the next 60 minutes, H 2 , H 2 S, HCl,
Without changing the amounts of PH 3 and A s H 3 introduced, that is, 2000 ml of H 2 , 15 ml of H 2 S, 22 ml of HCl,
While holding PH 3 at 240ml and A s H 3 at 160ml,
A layer (corresponding to layer 3 in FIG. 3) with a constant composition of G a A s1-x P x of 0.65 (constant) was formed. in this case,
[G a ]/[A s +P]=0.5.

最終の60分間は、アイソ・エレクトロニツク・
トラツプ(N)を添加すべく、アンモニア・ガス
(NH3)を毎分180ml導入し、かつ又、H2、H2S、
HCl、PH3、AsH3の各導入量の中、HClのみを
毎分110mlに変化させ導入し、窒素添加GaAs1-x
Px混晶率一定層(第1図に於ける層4に相当)
を形成した。この場合、〔Ga〕/〔As+P〕=2.5
である。
The final 60 minutes consisted of iso-electronic
Ammonia gas (NH 3 ) was introduced at 180 ml per minute to add trap (N), and H 2 , H 2 S,
Among the introduced amounts of HCl, PH 3 and A s H 3 , only HCl was introduced at a rate of 110 ml per minute, and nitrogen addition G a A s1-x
P x constant mixed crystal content layer (corresponds to layer 4 in Figure 1)
was formed. In this case, [G a ]/[A s +P] = 2.5
It is.

得られたエピタキシヤル膜の各層(2,3,4
に相当)を、ケミカル・ステイニング
(Chemical Staining)し、顕微鏡にて測定した
結果、気相成長ガス流の上流側端部で、GaAs1-x
Px混晶率変化層は、厚み54μm、窒素を含まない
GaAs1-xPx混晶率一定層は厚み21μm、窒素添加
GaAs1-xPx混晶率一定層は厚み32μm、気相成長
ガス流下流側端部で、GaAs1-xPx混晶率変化層
は、厚み51μm、窒素を含まないGaAs1-xPx混晶
率一定層は、厚み19μm、窒素添加GaAs1-xPx
晶率一定層は、厚み20μmであつた。
Each layer of the obtained epitaxial film (2, 3, 4
As a result of chemical staining and microscopic measurement of G a A s1-x at the upstream end of the vapor growth gas flow
P x mixed crystal ratio change layer is 54 μm thick and does not contain nitrogen
G a A s1-x P x Constant mixed crystal content layer is 21μm thick and nitrogen added
The G a A s1-x P x constant mixed crystal content layer is 32 μm thick and is located at the downstream end of the vapor growth gas flow, and the G a A s1-x P x mixed crystal content variable layer is 51 μm thick and does not contain nitrogen. The G a A s1-x P x constant mixed crystal content layer had a thickness of 19 μm, and the nitrogen-added G a A s1-x P x constant mixed crystal content layer had a thickness of 20 μm.

すなわち気相成長ガス流上流側端部でエピタキ
シヤル膜の厚みは107μm、下流側端部で90μmで
あつた。
That is, the thickness of the epitaxial film was 107 μm at the upstream end of the vapor growth gas flow, and 90 μm at the downstream end.

〔実施例 2〕 本実施例に於ては、前記実施例1で述べたエピ
タキシヤル・リアクターと同一のリアクターを使
用した。
[Example 2] In this example, the same epitaxial reactor as described in Example 1 was used.

気相成長の開始時より、初めの150間はH2を毎
分2000ml、濃度15ppmのH2Sを毎分18ml、第族
元素成分としてのGaClを毎分18ml生成すべく、
HClを毎分18ml、第族元素成分として濃度11%
のPH3を毎分409mlより毎分245mlまで徐々に減少
させつゝ導入し、他方、濃度11%のAsH3を毎分
0mlより毎分164mlまで徐々に増加させつゝ、エ
ピタキシヤル・リアクター内に導入し、Xが1よ
り0.64まで徐々に変化するGaAs1-xPx混晶率変化
層を形成した。
From the start of vapor phase growth, for the first 150 minutes, 2000 ml of H 2 per minute, 18 ml of H 2 S with a concentration of 15 ppm, and 18 ml of Ga Cl as a group element component are generated per minute.
18ml HCl per minute, 11% concentration as group element component
PH 3 was gradually decreased from 409 ml per minute to 245 ml per minute, while A s H 3 at a concentration of 11% was gradually increased from 0 ml per minute to 164 ml per minute. The mixture was introduced into a reactor to form a layer with variable crystallinity of G a A s1-x P x in which X gradually changed from 1 to 0.64.

次の60分間は、H2、H2S、HCl、PH3、AsH3
の各導入量を変えることなく、即ち、毎分、H2
を2000ml、H2Sを15ml、HClを18ml、PH3を245
ml、AsH3を164mlに保持しつゝ、Xが0.64(一定)
であるGaAs1-xPx混晶率一定層を形成した。これ
までの〔Ga〕/〔As+P〕は0.4に保持した。
For the next 60 minutes, H 2 , H 2 S, HCl, PH 3 , A s H 3
without changing the amount of each introduced, i.e., per minute, H 2
2000ml, H2S 15ml, HCl 18ml, PH 3 245
ml, A s H 3 is kept at 164 ml, X is 0.64 (constant)
A layer with a constant mixed crystal content of G a A s1-x P x was formed. The previous [G a ]/[A s +P] was kept at 0.4.

最終の60分間は、アイソ・エレクトロニツク・
トラツプ(N)を添加すべく、NH3を毎分180ml
導入し、かつ又、H2、H2S、HCl、PH3、AsH3
の各導入量の中、HClのみを毎分90mlに変化させ
導入し、窒素添加GaAs1-xPx混晶率一定層を形成
た。(〔Ga〕/〔As+P〕=2) 得られたエピタキシヤル膜の各(2,3,4に
相当)を、ケミカル・ステイニングし、顕微鏡に
て測定した結果、気相成長ガス流上流側端部で、
GaAs1-xPx混晶率変化は厚み53μm、窒素を含ま
ないGaAs1-xPx混晶率一定層は、厚み20μm、窒
素添加GaAs1-xPx混晶率一定層は厚み30μm、気
相成長ガス流下流側端部で、GaAs1-xPx混晶率変
化層は、厚み51μm、窒素をを含まないGaAs1-x
Px混晶率一定層は厚み18μm、窒素添加GaAs1-x
Px混晶率一定層は厚み19μmであつた。
The final 60 minutes consisted of iso-electronic
180 ml/min of NH 3 to add trap (N)
and also H 2 , H 2 S, HCl, PH 3 , A s H 3
Among the introduced amounts, only HCl was introduced at a rate of 90 ml per minute to form a layer with a constant nitrogen-added Ga A s1-x P x mixed crystal ratio. ([G a ]/[A s +P] = 2) Each of the obtained epitaxial films (corresponding to 2, 3, and 4) was chemically stained and measured with a microscope, and it was found that the vapor growth gas At the upstream end,
G a A S1 - x P _ _ The constant ratio layer is 30 μm thick at the downstream end of the vapor growth gas flow, and the variable crystal ratio layer is 51 μm thick and G a A s1 -x does not contain nitrogen.
P x constant mixed crystal layer has a thickness of 18 μm, nitrogen addition G a A s1-x
The P x constant mixed crystal content layer had a thickness of 19 μm.

即ち気相成長ガス流上流側端部のエピタキシヤ
ル膜厚は103μm、ガス流下流側端部の膜厚は88μ
(=51μ+18μ+19μ)と膜厚均一性に富み、最早、
デバー工程は一切不要である事が確認された。
That is, the epitaxial film thickness at the upstream end of the vapor phase growth gas flow is 103 μm, and the film thickness at the downstream end of the gas flow is 88 μm.
(= 51μ + 18μ + 19μ) and has excellent film thickness uniformity.
It was confirmed that the debar process was not necessary at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来法により得られたウエハの縦断
面模型図である。 1……単結晶基板、2……混晶率変化層、3…
…混晶率一定層、4……アイソエレクトロニツク
トラツプを含有する混晶率一定層、5……気流の
方向を示す矢印。
FIG. 1 is a longitudinal cross-sectional model diagram of a wafer obtained by a conventional method. DESCRIPTION OF SYMBOLS 1... Single crystal substrate, 2... Mixed crystal ratio change layer, 3...
...Constant mixed crystal content layer, 4...Constant mixed crystal content layer containing isoelectronic traps, 5...Arrow indicating the direction of air flow.

Claims (1)

【特許請求の範囲】 1 単結晶基板上に、リン化ヒ化ガリウム混晶率
変化層、リン化ヒ化ガリウム混晶率一定層及びア
イソエレクトロニツクトラツプを含有するリン化
ヒ化ガリウム混晶率一定層を上記順に気相エピタ
キシヤル成長法により形成されてなるリン化ヒ化
ガリウム混晶エピタキシヤルウエハを製造するに
あたつて、少なくとも、上記アイソエレクトロニ
ツクトラツプを含有するリン化ヒ化ガリウム混晶
率一定層の成長の際は、気相成長用ガスに含有さ
れるガリウム成分の濃度〔Ga〕とリンおよびヒ
素成分の濃度の合計〔AS+P〕(上記濃度は気相
成長用ガス単位体積中に含まれる各成分の原子数
で表わしたもの)の比〔Ga〕/〔As+P〕を1.5
〜5の範囲に保持し、それ以外の層の成長の際
は、上記〔Ga〕/〔As+P〕を0.3〜1の範囲に
保持することを特徴とするリン化ヒ化ガリウム混
晶エピタキシヤルウエハの製造方法。
[Scope of Claims] 1. A gallium arsenide phosphide mixed crystal containing a gallium arsenide phosphide mixed crystal ratio variable layer, a gallium arsenide phosphide constant mixed crystal ratio layer, and an isoelectronic trap on a single crystal substrate. In manufacturing a gallium arsenide phosphide mixed crystal epitaxial wafer in which the constant rate layers are formed in the above-mentioned order by a vapor phase epitaxial growth method, at least the gallium arsenide phosphide containing the above-mentioned isoelectronic trap is used. When growing a layer with a constant gallium mixed crystal ratio, the concentration of gallium component [G a ] contained in the vapor phase growth gas and the concentration of phosphorus and arsenic components [A S + P] (the above concentration is The ratio [G a ]/[A s + P] of each component (expressed in the number of atoms of each component contained in a unit volume of gas) is 1.5.
A gallium arsenide phosphide mixed crystal characterized by maintaining the above [G a ]/[A s +P] within a range of 0.3 to 1 during growth of other layers. Method for manufacturing epitaxial wafers.
JP18902280A 1980-12-26 1980-12-26 Manufacture of gallium phosphide arsenide mixed crystal epitaxial wafer Granted JPS57111016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18902280A JPS57111016A (en) 1980-12-26 1980-12-26 Manufacture of gallium phosphide arsenide mixed crystal epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18902280A JPS57111016A (en) 1980-12-26 1980-12-26 Manufacture of gallium phosphide arsenide mixed crystal epitaxial wafer

Publications (2)

Publication Number Publication Date
JPS57111016A JPS57111016A (en) 1982-07-10
JPS6347135B2 true JPS6347135B2 (en) 1988-09-20

Family

ID=16233986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18902280A Granted JPS57111016A (en) 1980-12-26 1980-12-26 Manufacture of gallium phosphide arsenide mixed crystal epitaxial wafer

Country Status (1)

Country Link
JP (1) JPS57111016A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259595A (en) * 1985-09-09 1987-03-16 Mitsubishi Monsanto Chem Co Vapor-phase epitaxial growth method of gallium arsenide single crystal thin film

Also Published As

Publication number Publication date
JPS57111016A (en) 1982-07-10

Similar Documents

Publication Publication Date Title
US4912064A (en) Homoepitaxial growth of alpha-SiC thin films and semiconductor devices fabricated thereon
US5011549A (en) Homoepitaxial growth of Alpha-SiC thin films and semiconductor devices fabricated thereon
Soga et al. Characterization of epitaxially grown GaAs on Si substrates with III‐V compounds intermediate layers by metalorganic chemical vapor deposition
US5709745A (en) Compound semi-conductors and controlled doping thereof
Olsen et al. Crystal growth and properties of binary, ternary and quaternary (In, Ga)(As, P) alloys grown by the hydride vapor phase epitaxy technique
JPH076971A (en) Synthetic semiconductor and its controlled doping
JPH0688871B2 (en) Chemical beam deposition method
JPS6329928A (en) Method of making gallium arsenite grow on silicon by epitaxial growth
US4789421A (en) Gallium arsenide superlattice crystal grown on silicon substrate and method of growing such crystal
US4252576A (en) Epitaxial wafer for use in production of light emitting diode
US4216484A (en) Method of manufacturing electroluminescent compound semiconductor wafer
US5445897A (en) Epitaxial wafer and process for producing the same
JPH0579163B2 (en)
US4218270A (en) Method of fabricating electroluminescent element utilizing multi-stage epitaxial deposition and substrate removal techniques
KR900002080B1 (en) Method for vapor-phase epitaxial growth of a single crystalline, gallium arsenide thin film
JPH08335715A (en) Epitaxial wafer and its manufacture
JPS6347135B2 (en)
KR100210758B1 (en) Epitaxial wafer and process for producing the same
JP3146874B2 (en) Light emitting diode
JPS61106497A (en) Method for growing epitaxial film of gallium phosphide and arsenide
US3752714A (en) Method for selective epitaxial deposition of intermetallic semiconductor compounds
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JPS6222443B2 (en)
JPS6222444B2 (en)
JPS58115818A (en) Growing method of silicon carbide epitaxial film