JPS62224084A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPS62224084A
JPS62224084A JP6565386A JP6565386A JPS62224084A JP S62224084 A JPS62224084 A JP S62224084A JP 6565386 A JP6565386 A JP 6565386A JP 6565386 A JP6565386 A JP 6565386A JP S62224084 A JPS62224084 A JP S62224084A
Authority
JP
Japan
Prior art keywords
layer
film
thickness
gate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6565386A
Other languages
Japanese (ja)
Inventor
Susumu Takahashi
進 高橋
Mitsuhiro Mori
森 光廣
Eiji Yanokura
矢ノ倉 栄二
Masao Yamane
正雄 山根
Hiroshi Mizuta
博 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6565386A priority Critical patent/JPS62224084A/en
Publication of JPS62224084A publication Critical patent/JPS62224084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve the performance of a field-effect transistor by forming at least a second layer and first and third layers in films consisting of three layers by films having difference characteristics. CONSTITUTION:Since a first layer film 3 has a function separating other electrodes such as source-drain and a gate electrode to be shaped, a distance between source-drain and a distance between gate-drain are determined through a hole 6 is bored to the first layer 3 while the film thickness of a second layer 7 decides gate size. A third layer 8 is used for burying the hole 6 formed in the first layer 3 and it is desirable that the film thickness of the third layer 8 is set at approximately a value acquired by subtracting the thickness of the second layer 7 from the thickness of the first layer 3, thus bringing film thickness up to the third layer 8 in a region, in which the hole in the first layer 3 is bored, to approximately the same as the thickness of the first layer 3 in other regions. On the other hand, a resist is buried into the recessed section in order to remove the third layer 8 except the recessed section 6, and a photo- resist film is eliminated, thus forming an approximately flat surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高性能接合型電界効果トランジスタの製法に係
り、特に、ゲート電極を安定して、高精度にかつ素子の
高信頼度化を図ることに関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for manufacturing a high-performance junction field effect transistor, and in particular, to a method for producing a gate electrode with stability, high precision, and high reliability of the device. It's about things.

【従来の技術〕[Conventional technology]

従来の方法は特開昭60−70768号公報に記載のよ
うにオフセット構造で超微細化ゲートパターンを形成で
きるとされていた。確かに、ソース・ゲート間に短縮は
自己整合されているが、ゲート金属パターン形成の点で
配慮されていなかった。
It was believed that the conventional method could form an ultra-fine gate pattern with an offset structure, as described in Japanese Patent Laid-Open No. 60-70768. It is true that the shortening between the source and gate is self-aligned, but no consideration was given to forming the gate metal pattern.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術はゲート金属形成の点で配慮がされておら
ず、トランジスタ動作上の基本問題、及び、製法上の困
難性の問題があった。すなわち、ソース領域とゲート領
域の距離が非常に短いこと、ゲート金属を形成するのに
第2絶縁膜を除去してその中に埋込む必要があることの
2点で、ソース領域とゲート電極とがゲート金属を介し
て短絡してしまう恐れがある。この場合のゲート金属形
成にはりフトオフ法を適用できない。また、ゲート電極
引き出し方法も工程数を増すことになり、工程の複雑性
を増すことになる。
The above-mentioned conventional technology does not take into account the formation of gate metal, and there are basic problems in transistor operation and difficulties in manufacturing methods. In other words, the distance between the source region and gate electrode is very short, and the second insulating film must be removed and buried in it to form the gate metal. There is a risk that a short circuit may occur through the gate metal. The lift-off method cannot be applied to gate metal formation in this case. Further, the gate electrode drawing method also increases the number of steps, which increases the complexity of the steps.

本発明の目的は上記欠点を解決し、素子制作する上で安
定性、再現性の高い製法を提供し、電界効果トランジス
タの高性能化を図ることにある。
An object of the present invention is to solve the above-mentioned drawbacks, provide a manufacturing method with high stability and high reproducibility in device manufacturing, and improve the performance of field effect transistors.

〔問題点を解決するための手段〕[Means for solving problems]

L記目的は下記を骨子にすることにより達成される。第
1図に3種の膜を用いる。この3種の膜とは第1.第2
.第3層からなり、少なくとも第2層と第1.第3層は
特性の異なる膜になる。例えば、エツチング特性もこの
中に入る。第2に。
The objectives listed below can be achieved by following the outline below. Three types of membranes are used in Figure 1. These three types of membranes are 1. Second
.. The third layer consists of at least the second layer and the first layer. The third layer is a film with different characteristics. For example, etching properties also fall into this category. Second.

第1.第2.第3層によって作られる凹凸部はホトレジ
スト膜等を用いて、従来から用いている物理、化学的エ
ツチング法で平担化される。
1st. Second. The uneven portions formed by the third layer are flattened by conventional physical and chemical etching methods using a photoresist film or the like.

したがって、本発明の骨子は第3層膜までの重ね合せで
微細なパターンを形成し、かつ、金属パターンまで容易
に形成することにあり、上記骨子を基本として成立して
いる。
Therefore, the gist of the present invention is to form a fine pattern by overlapping up to the third layer, and to easily form even a metal pattern, and is based on the above gist.

〔作用〕[Effect]

3層膜を用いるのは下記のためにある。第1層゛膜はソ
ース・ドレイン等の他の電極と形成しようとするゲート
電極とを分離する働きをもつ、したがって第1層に穴を
開けるもののソース・ドレイン間の距離とゲート・ドレ
イン間の距離を決めろことになる。第2Mはゲート寸法
を決めるものである。すなわち、第2層の膜厚でほぼゲ
ート寸法が決ることになる。第3層は第1層で形成され
た穴を埋めるために用いるものであり、第3層の膜厚は
第1層の厚さから第2層の厚さを引いた値程度に設定す
る事が望ましい。したがって、第1層の穴の開いた領域
での第3層までの膜厚は他の領域の第1層の厚さと同程
度になる。
The three-layer film is used for the following reasons. The first layer film has the function of separating the gate electrode to be formed from other electrodes such as the source/drain.Therefore, although a hole is made in the first layer, the distance between the source and drain and the distance between the gate and drain You'll have to decide on the distance. The second M determines the gate dimensions. In other words, the gate dimensions are approximately determined by the thickness of the second layer. The third layer is used to fill the hole formed in the first layer, and the thickness of the third layer should be set to approximately the value obtained by subtracting the thickness of the second layer from the thickness of the first layer. is desirable. Therefore, the thickness of the first layer up to the third layer in the region where the hole is formed is approximately the same as the thickness of the first layer in other regions.

一方、凹部以外の第3層を除去するために、凹部にレジ
ストを埋込む、その部分にレジストを残し、それを介し
て第3層を除去するこの方法は比較的容易に出来る方法
である。もちろん、このホトレジスト膜は第3層の部分
除去後、除去する。
On the other hand, in order to remove the third layer other than the recessed portions, this method of embedding a resist in the recessed portions, leaving the resist in that portion, and removing the third layer through it is a relatively easy method. Of course, this photoresist film is removed after the third layer is partially removed.

これにより、はぼ平担な面が形成できる。As a result, a substantially flat surface can be formed.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図に工程手順に示し、説明
する。
Hereinafter, an embodiment of the present invention will be described with reference to the process steps shown in FIG.

実施例1 第1図(a)に示すように、周知の方法で能動層及び、
ソート4・ドレイン5電極を形成した。
Example 1 As shown in FIG. 1(a), an active layer and
Sort 4 and drain 5 electrodes were formed.

すなわち半絶縁性GaAs基板1 (100)にSiイ
オンをイオン注入し、(加速型75KoV2 X 10
”■−2のドース量)、能動層用イオン注入を行った。
That is, Si ions were implanted into a semi-insulating GaAs substrate 1 (100), (accelerated type 75KoV2 x 10
Ion implantation for the active layer was performed at a dose of "■-2".

その後、キップを用いたアニール法(800℃。After that, an annealing method using a kip (800°C.

15分、N2雰囲気)で注入されたSiイオンを活性化
し、能動層2を形成した。その後、CVD法により第1
層5iN11!53と400o人被若し、ホトリソ工程
を用いて、ソース4.ドレイン5電極を形成した。形成
方法はリフトオフ法を用いた。また電極材料はAuGe
Ni系を用い、アロイ温度は400℃である。その後、
ゲート電極形成の一部になる領域に六6を開けた。この
六6はホトリソ工程でホトレジストに穴を開け、これを
マスクとして。
The implanted Si ions were activated for 15 minutes (in a N2 atmosphere) to form an active layer 2. After that, the first
Layers 5iN11!53 and 400o were deposited using a photolithography process to form source 4. A drain 5 electrode was formed. The lift-off method was used as the formation method. In addition, the electrode material is AuGe.
Ni-based material is used, and the alloy temperature is 400°C. after that,
A hole 66 was opened in a region that would become part of the gate electrode formation. This 66 is made by drilling holes in photoresist during the photolithography process and using this as a mask.

CF4ガスのドライエツチング法で第1層のS、LNa
に穴を開け、レジスト除去して形成した。次に、第1図
(b)の様に第2層絶縁膜となる5iOt膜7を熱分解
CVD法で厚さ2000人に全面被着を行った。次に第
1図(Q)のように第3層絶縁膜としてS x N膜8
を2000人被着6た。被着方法はプラズマ法によった
。その後第1図(d)のように四部にホトレジスト膜9
を残した。ホトレジスト材としてホジ型を用いたが、ネ
ガ型でも使用可能である。すなわち、全面にポジ型レジ
スト9を2μmの厚さに塗布し、平担化した後、酸素ガ
スを用いたりアクティブイオンエツチング法でホト1ノ
ジスト9をエツチングし第3層8の上部が出て来た所で
エツチングをストップする。なお、CF4ガスを一部入
れておくと、5iN8のエツジングが起り、分光法によ
ってS iN 8上部露出でのエツチング中止モニタが
可能となる。その後、四部に残されたホトレジスト9を
マスクとして第3層5iN8をCFaガスでプラズマエ
ツチングし、第2層の上部5iOz 7を露出させた。
The first layer of S and LNa is removed by dry etching using CF4 gas.
It was formed by drilling holes and removing the resist. Next, as shown in FIG. 1(b), a 5iOt film 7, which will become a second layer insulating film, was deposited on the entire surface to a thickness of 2,000 mm using the pyrolytic CVD method. Next, as shown in FIG. 1(Q), an S x N film 8 is formed as a third layer insulating film.
2,000 people arrived. The deposition method was a plasma method. After that, as shown in FIG. 1(d), a photoresist film 9 is applied to the four parts.
left behind. Although a hoji-type photoresist material was used, a negative-type photoresist material can also be used. That is, after applying a positive resist 9 to a thickness of 2 μm over the entire surface and flattening it, the photoresist 9 is etched using oxygen gas or by active ion etching to expose the upper part of the third layer 8. Stop etching at that point. Note that if a portion of the CF4 gas is introduced, etching of 5iN8 occurs, and it becomes possible to monitor the etching stop by exposing the top of the SiN8 by spectroscopy. Thereafter, the third layer 5iN8 was plasma etched with CFa gas using the photoresist 9 left on the four parts as a mask to expose the upper part 5iOz 7 of the second layer.

しかる後、ホトレジスト9を除去し、次の工程に入った
。第1図(e)のようにホトリソ工程でソース電144
側にホトリソ工程を用いて穴を開け、第2層S j、0
2.膜7をホトレジスト膜をマスクとしてエツチングし
た。エツチング液はバッファ弗酸を用いた。 5iOz
膜のエツチングで能動層表面2を出した後、ホトレジス
トを除去した。次に第1図(f)にようにゲート金属1
1を形成した。金属はA u / M oを用い、金属
厚さ6000人に全面に被着した。その後ホトレジスト
工程で1μmの幅にホトレジストを残し、このホトレジ
スト膜をマスクとしてAuについてはArイオンによる
イオンミリング、M。
After that, the photoresist 9 was removed and the next step started. As shown in FIG. 1(e), the source voltage 144 is
A hole is made on the side using a photolithography process, and the second layer S j,0
2. Film 7 was etched using a photoresist film as a mask. Buffered hydrofluoric acid was used as the etching solution. 5iOz
After exposing the active layer surface 2 by etching the film, the photoresist was removed. Next, as shown in FIG. 1(f), the gate metal 1 is
1 was formed. The metal used was Au/Mo, and the metal was coated on the entire surface to a thickness of 6000 mm. After that, a photoresist process was performed to leave a photoresist with a width of 1 μm, and using this photoresist film as a mask, ion milling was performed using Ar ions for Au.

はCF&ガスによるプラズマエツチングでゲート金属を
加工し、第1図(f)のようなゲート金属11のT字型
形状を形成した。その後、所定の電極部の穴を開け、電
界効果トランジスタを作成した。ゲート長は0.18μ
m程度に仕上った。
The gate metal was processed by plasma etching using CF and gas to form a T-shaped gate metal 11 as shown in FIG. 1(f). Thereafter, holes were made in predetermined electrode portions to create a field effect transistor. Gate length is 0.18μ
It was finished in about m.

実施例2 ゲート金属形成をリフトオフ法で形成した。この場合、
第1図(f)で用いたゲートホトレジスト膜をそのまま
用いる方法で、実施例1に比し、ホトリソ工程が1回減
すことが可能である。すなおち、1,5μmの厚さでホ
トレジスト膜を塗布し、加工寸法1μmで穴を開けた後
、SiO2膜7をホトレジスト膜をマスクとエツチング
した。エツチング液は実施例と同じである。その後、ホ
トレ、  シスト膜を残した状態でAQ金金属5000
人被着し、ホトレジスト膜上に被着したAQをホトレジ
スト、  剥離剤を用いて、ホトレジスト膜を共に除去
し、ゲート金属パターン11を形成した。AQゲート金
属パターンがシャープに形成できた。
Example 2 Gate metal formation was performed using a lift-off method. in this case,
By using the gate photoresist film used in FIG. 1(f) as is, the number of photolithography steps can be reduced by one compared to the first embodiment. First, a photoresist film was applied to a thickness of 1.5 μm, a hole was made with a processing size of 1 μm, and then the SiO2 film 7 was etched using the photoresist film as a mask. The etching solution was the same as in the example. After that, AQ Gold Metal 5000 was applied with the photoresist and cyst film remaining.
AQ deposited on the photoresist film was removed together with the photoresist film using a photoresist and a remover to form a gate metal pattern 11. A sharp AQ gate metal pattern could be formed.

以上の様に、本発明ではゲート金属も平坦上の所に形成
でき、しかも、超サブミクロンパターンを容易に形成で
き、特性の大幅向上が改善できた。
As described above, according to the present invention, the gate metal can be formed on a flat surface, a super-submicron pattern can be easily formed, and the characteristics can be significantly improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、微細ゲートが第2絶縁膜の厚さによっ
て決まり、光、電子線、X線等を用いたりソグラフィ技
術に比較し、高精度に安定して作製でき、しかも、プロ
セスマージンも大きいことが特徴となる。また、第3層
膜を用いることによって、ゲート金属パターンが安定し
て作れ、断線も大幅に改善できた。これに伴い、超微細
ゲート金属を高歩留で形成可能になり、電界効果トラン
ジスタの性能も2倍8度改善された。特に本製法は従来
側々に開発されていた技術を複合化し、しかも新しい自
己整合法を加味しているため、特に問題となる技術はな
く非常に安定したものである。
According to the present invention, the fine gate is determined by the thickness of the second insulating film, and can be manufactured stably with high precision compared to using light, electron beams, X-rays, etc. or lithography technology, and has a lower process margin. It is characterized by its large size. Furthermore, by using the third layer film, the gate metal pattern could be stably formed and disconnections could be significantly reduced. Along with this, it has become possible to form ultra-fine gate metals at high yields, and the performance of field effect transistors has also been improved by a factor of 8. In particular, this manufacturing method combines technologies that have been developed in the past, and also incorporates a new self-alignment method, so there are no particular problems with the technology and it is extremely stable.

本製法の実施例はGaAsを代表して記述したが、Si
、InP系を含む化合物半導体試料にも適用できること
、かっP n接合も含む接合型電界効果トランジスタだ
けでなく、MOS、MIS型電界効果トランジスタに適
用できることは云うに及ばない。
The examples of this manufacturing method are described using GaAs as a representative, but Si
Needless to say, the present invention can be applied to compound semiconductor samples including InP-based compounds, and can be applied not only to junction field effect transistors including pn junctions, but also to MOS and MIS field effect transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の工程図である。 1・・・基板、2・・・能動層、3・・・第1層膜、4
・・・ソー第 /  図
FIG. 1 is a process diagram of the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Active layer, 3... First layer film, 4
...Saw No./Figure

Claims (1)

【特許請求の範囲】[Claims] 1、二種の膜を用いて、ゲート・ドレイン間をオフセッ
トし、超微細パターンゲート電極を持つ電界効果トラン
ジスタに於いて、能動層の第1絶縁膜に所定寸法の穴を
開ける工程、ゲート電極寸法を決める厚さに第1絶縁膜
と特性の異なる第2絶縁膜を被着する工程、第3絶縁膜
を該第1絶縁膜の厚さ近傍に被着する工程、凹部領域に
ホトレジスト膜を埋込む工程、ホトレジスト膜を介して
該第3層絶縁膜を第2絶縁膜まで除去する工程、該第1
絶縁膜と該第2絶縁膜と接する一部分にゲート電極を形
成する工程を含むゲート・ドレイン間のオフセット領域
を平担化してゲート電極を形成することを特徴とする電
界効果トランジスタの製法。
1. A process of making a hole of a predetermined size in the first insulating film of the active layer in a field effect transistor having an ultra-fine patterned gate electrode by offsetting the gate and drain using two types of films. A step of depositing a second insulating film having different characteristics from the first insulating film to a thickness that determines the dimensions, a step of depositing a third insulating film near the thickness of the first insulating film, and a step of depositing a photoresist film in the recessed region. a step of removing the third layer insulating film to the second insulating film through the photoresist film;
1. A method for manufacturing a field effect transistor, comprising the step of forming a gate electrode in a portion in contact with an insulating film and the second insulating film, and forming a gate electrode by flattening an offset region between a gate and a drain.
JP6565386A 1986-03-26 1986-03-26 Manufacture of field-effect transistor Pending JPS62224084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6565386A JPS62224084A (en) 1986-03-26 1986-03-26 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6565386A JPS62224084A (en) 1986-03-26 1986-03-26 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPS62224084A true JPS62224084A (en) 1987-10-02

Family

ID=13293180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6565386A Pending JPS62224084A (en) 1986-03-26 1986-03-26 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPS62224084A (en)

Similar Documents

Publication Publication Date Title
JP2778600B2 (en) Method for manufacturing semiconductor device
EP0224614B1 (en) Process of fabricating a fully self- aligned field effect transistor
JPS5924551B2 (en) Manufacturing method of Schottky barrier FET
JPH022142A (en) Field effect transistor and its manufacture
US4700455A (en) Method of fabricating Schottky gate-type GaAs field effect transistor
US5204278A (en) Method of making MES field effect transistor using III-V compound semiconductor
JPS62224084A (en) Manufacture of field-effect transistor
JP2518402B2 (en) Method for manufacturing semiconductor device
JPS6160591B2 (en)
JPH0372634A (en) Manufacture of mes fet
JPH0684950A (en) Manufacture of field effect transistor
JPS616870A (en) Manufacture of field-effect transistor
JPH01251669A (en) Manufacture of field effect transistor
JPS6112079A (en) Manufacture of semiconductor element
JP3597458B2 (en) Method for manufacturing semiconductor device
JPH03276732A (en) Electrode-structure forming method and semiconductor device using this method
JPS59986B2 (en) Method for manufacturing field effect transistors
JPH0233939A (en) Manufacture of field-effect transistor
JPH0312935A (en) Manufacture of electronic device
JPH03268332A (en) Manufacture of semiconductor device
JPS61229369A (en) Manufacture of semiconductor device
JPS6292478A (en) Manufacture of semiconductor device
JPH0684951A (en) Manufacture of semiconductor device
JPH0156536B2 (en)
JPS61198785A (en) Manufacture of semiconductor device