JPS62223067A - Manufacture of silicon nitride base sintered body - Google Patents

Manufacture of silicon nitride base sintered body

Info

Publication number
JPS62223067A
JPS62223067A JP61067682A JP6768286A JPS62223067A JP S62223067 A JPS62223067 A JP S62223067A JP 61067682 A JP61067682 A JP 61067682A JP 6768286 A JP6768286 A JP 6768286A JP S62223067 A JPS62223067 A JP S62223067A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
firing
weight
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61067682A
Other languages
Japanese (ja)
Other versions
JPH0729851B2 (en
Inventor
清 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61067682A priority Critical patent/JPH0729851B2/en
Priority to US06/932,196 priority patent/US4891342A/en
Publication of JPS62223067A publication Critical patent/JPS62223067A/en
Publication of JPH0729851B2 publication Critical patent/JPH0729851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (技術分野) 本発明は窒化珪素質焼結体の製造方法に関し、より詳細
には、高温高強度、耐クリープ性に優れた窒化珪素質焼
結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a silicon nitride sintered body, and more particularly, to a method for manufacturing a silicon nitride sintered body that has high strength at high temperatures and excellent creep resistance. .

(従来技術とその問題点) 窒化珪素から成る焼結体は原子の結合様式が共有結合を
主体として成り、強度、硬度、熱的化学的安定性におい
て優れた特性を有することからエンジニアリングセラミ
ックス、特に、熱機関として例えばガスタービン等への
応用が進められている。
(Prior art and its problems) Sintered bodies made of silicon nitride mainly consist of covalent bonds, and have excellent properties in terms of strength, hardness, and thermal and chemical stability, so they are used as engineering ceramics, especially , and its application to heat engines such as gas turbines is progressing.

近年、熱機関はその高効率化に伴い、熱機関の作動温度
が1400℃以上となることもあり、この条件下での使
用が可能な材料が望まれている。 従来から窒化珪素を
製造する際の焼結方法としてホットプレス法、常圧焼結
法の他、近年に至ってガス圧焼結法が検討されている。
In recent years, as heat engines have become more efficient, the operating temperature of heat engines can reach 1400° C. or higher, and materials that can be used under these conditions are desired. BACKGROUND ART In addition to hot press methods and atmospheric pressure sintering methods, gas pressure sintering methods have been studied in recent years as sintering methods for producing silicon nitride.

これらの方法は、添加した組成が分解することなく、粒
界にガラス相あるいは結晶相として焼結後に残存するか
あるいは窒化珪素の結晶相に固溶し残存することを狙っ
たものである。
These methods aim to cause the added composition to remain at grain boundaries as a glass phase or crystalline phase after sintering, or to remain as a solid solution in the crystalline phase of silicon nitride, without being decomposed.

このように添加される組成を焼結体中に残存されること
は窒化珪素の特有の共存結合性による高温強度、耐クリ
ープ性の優れた特性を抑圧することになる。即ち、主と
して酸化物系の焼結助剤を添加した場合には助剤が窒化
珪素と反応を起ごし、粒界に珪素の酸、窒化物を主体と
する金属化合物が生成される。このような酸、窒化物は
焼結時、焼結緻密化を助長し焼結性を向上させるが、そ
れ自体がイオン結合性が強いために焼結体の高温での特
性を劣化させる傾向がある。
If the composition added in this manner remains in the sintered body, the excellent properties of high temperature strength and creep resistance due to the unique coexistence bonding properties of silicon nitride will be suppressed. That is, when a sintering aid mainly of oxide type is added, the aid reacts with silicon nitride, and a metal compound mainly composed of silicon acid and nitride is generated at the grain boundaries. Such acids and nitrides promote sintering densification and improve sinterability during sintering, but because they themselves have strong ionic bonding properties, they tend to deteriorate the properties of the sintered body at high temperatures. be.

このような傾向に対し、焼結助剤としてZr0zを用い
て、焼結体の粒界相にZrO□を析出させることによっ
てZrO2の高融点を利用し、高温特性に優れた焼結体
を得ようとする試みがなされている。しかしながら、こ
のような焼結体を製造するに当たり、ホットプレス法、
非加圧焼成法、ガス圧焼成法等の焼成方法のいずれにお
いても、ZrO,がSi、、N4と反応を起こし、焼結
体中にZrNが生成される。
In response to this tendency, by using Zr0z as a sintering aid and precipitating ZrO□ in the grain boundary phase of the sintered body, we have utilized the high melting point of ZrO2 to obtain a sintered body with excellent high-temperature properties. Attempts are being made to do so. However, in producing such a sintered body, hot pressing method,
In any of the firing methods, such as the non-pressure firing method and the gas pressure firing method, ZrO reacts with Si and N4, and ZrN is generated in the sintered body.

このZrNは高温酸化雰囲気でのZrNからZrO,の
反応過程において、約30χ程度の体積膨張を起こすた
め、酸化時には焼結体にクランクが生じ易(、ZrNを
含有する焼結体自体、高温酸化雰囲気では、極めて酸化
し易く、高温用材料としては特性が不十分であった。
This ZrN undergoes a volumetric expansion of about 30χ during the reaction process from ZrN to ZrO in a high-temperature oxidizing atmosphere, so cranks tend to occur in the sintered body during oxidation (the sintered body itself containing ZrN is susceptible to high-temperature oxidation). In the atmosphere, it was extremely easy to oxidize, and its properties were insufficient as a material for high temperatures.

(問題点を解決するための手段) 本発明者は上記問題点に対し研究を行ったところ、窒化
珪素にZrO□を含有する系を焼成するに際し、窒素雰
囲気中に金属Si/SiO2混合物を配置し、雰囲気制
御することによって、焼結体中にZrNが生成されるの
を抑制することができ、それによって粒界相へのZrO
□の析出を促進することができ、高温強度に優れた窒化
珪素質焼結体が得られることを知見した。
(Means for solving the problem) The present inventor conducted research on the above problem and found that when firing a system containing ZrO□ in silicon nitride, a metal Si/SiO2 mixture was placed in a nitrogen atmosphere. However, by controlling the atmosphere, it is possible to suppress the generation of ZrN in the sintered body, thereby preventing ZrO from entering the grain boundary phase.
It was discovered that the precipitation of □ can be promoted and a silicon nitride sintered body with excellent high-temperature strength can be obtained.

即ち、本発明は、1乃至20重量%のZrO□と、1乃
至10重量%のY2O:lと残部が主として窒化珪素か
ら成る混合粉体を成形後、金属SiとSiO□の混合物
によって、雰囲気制御された窒素雰囲気中で1700乃
至2000℃の焼成温度で焼成することを特徴とする窒
化珪素質焼結体の製造方法が提供される。
That is, in the present invention, after molding a mixed powder consisting of 1 to 20% by weight of ZrO□, 1 to 10% by weight of Y2O:l, and the balance mainly consisting of silicon nitride, an atmosphere is A method for manufacturing a silicon nitride sintered body is provided, which is characterized by firing at a firing temperature of 1700 to 2000°C in a controlled nitrogen atmosphere.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

窒化珪素に対して、焼結助剤としてZrO2を含む系で
は、ホットプレス法、非加圧焼成法、ガス圧焼成法等の
公知の焼成方法に基づいて焼成を行った場合、ZrO□
は部分的に窒化珪素と下記(1)式に示すような可逆反
応を生じる。
In a system containing ZrO2 as a sintering aid for silicon nitride, when firing is performed based on a known firing method such as hot press method, non-pressure firing method, gas pressure firing method, etc., ZrO□
partially causes a reversible reaction with silicon nitride as shown in equation (1) below.

4Si3N4+6Zr(h:6ZrN +12SiOi
+5N2  ↑・・・(1)この反応によって焼結体中
にはZrNが生成されるとともにSiOガスおよびN2
ガスが発生する。生成されたZrNは焼結体として高温
酸化雰囲気に曝されるとZrO□に酸化されるがその時
体積膨張を引き起こす。この体積膨張によって、焼結体
にクランクが発生し易く、高温強度が低下する原因とな
る。よって焼結体中にZrNが存在すべきではない。
4Si3N4+6Zr(h:6ZrN+12SiOi
+5N2 ↑...(1) Through this reaction, ZrN is generated in the sintered body, and SiO gas and N2
Gas is generated. When the generated ZrN is exposed as a sintered body to a high-temperature oxidizing atmosphere, it is oxidized to ZrO□, which causes volume expansion. This volumetric expansion tends to cause cranking in the sintered body, which causes a decrease in high-temperature strength. Therefore, ZrN should not be present in the sintered body.

本発明の製造方法はZr0tを含有する系においてその
焼成時の雰囲気を一定の圧力に制御されたSiOおよび
N2の混合雰囲気に設定することによって、前述の反応
(1)が右方向に進行するのを制御しようとするもので
ある。
The manufacturing method of the present invention allows the reaction (1) described above to proceed in the right direction by setting the atmosphere during firing in a system containing Zr0t to a mixed atmosphere of SiO and N2 controlled at a constant pressure. It is an attempt to control the

本発明の製造方法によれば、まずl乃至20重量%、好
ましくは5′h至10重量%のZr0zと、1乃至10
重量%、好ましくは1乃至5重量%のY2O3と残部が
主として窒化珪素から成る混合粉体を調製する。
According to the production method of the present invention, first 1 to 20% by weight, preferably 5'h to 10% by weight of Zr0z and 1 to 10% by weight are added.
A mixed powder is prepared containing Y2O3 in a weight percent, preferably 1 to 5 weight percent, and the balance mainly consisting of silicon nitride.

混合粉体は公知の成形方法、例えばプレス成形、鋳込み
成形、押し出し成形、インジェクション成形等によって
所望の形に成形した後、焼成工程に移される。
The mixed powder is molded into a desired shape by a known molding method such as press molding, casting molding, extrusion molding, injection molding, etc., and then transferred to a firing process.

次に焼成工程をガス圧焼成法を一実施例にとって第1図
に従って説明する。
Next, the firing process will be explained with reference to FIG. 1, using a gas pressure firing method as an example.

得られた成形体1は、焼成炉2内に設置する際、焼成炉
2内に金属Siと5i02とから成る混合物3を同時に
設置する。その後ヒータ4によって焼成炉2の温度を上
げ、焼成温度1700乃至2000℃に保持する。この
時、焼成炉2にN2ガスを導入する。N2ガス圧は、そ
の焼成温度における窒化珪素の平衡窒素圧以上に設定し
、これにより窒化珪素の分解を抑制する。この時、焼成
炉2内に予め設置した混合物3は下記(2)の反応が進
行する。
When the obtained molded body 1 is placed in a firing furnace 2, a mixture 3 made of metal Si and 5i02 is placed in the firing furnace 2 at the same time. Thereafter, the temperature of the firing furnace 2 is raised by the heater 4, and the firing temperature is maintained at 1700 to 2000°C. At this time, N2 gas is introduced into the firing furnace 2. The N2 gas pressure is set to be higher than the equilibrium nitrogen pressure of silicon nitride at the firing temperature, thereby suppressing the decomposition of silicon nitride. At this time, the following reaction (2) progresses in the mixture 3 placed in the firing furnace 2 in advance.

St + 5iOz::2SiO↑・・・(2)この反
応(2)によってSiOガスが発生し、雰囲気は上記反
応(2)の焼成温度における平衡SiO圧に制御される
St + 5iOz::2SiO↑ (2) SiO gas is generated by this reaction (2), and the atmosphere is controlled to the equilibrium SiO pressure at the firing temperature of reaction (2).

このようにして、制御された雰囲気中で焼成を行うこと
によって前述した反応(1)の進行を抑制し、ZrNの
生成を防止することができる。
By performing the firing in a controlled atmosphere in this manner, the progress of the reaction (1) described above can be suppressed and the generation of ZrN can be prevented.

これはNtガス圧及び焼成温度における反応(2)での
平衡SiOガス圧が反応(1)における平fffiiN
zガス圧、SiOガス圧よりも高いためと推測される。
This means that the equilibrium SiO gas pressure in reaction (2) at the Nt gas pressure and calcination temperature is the same as in reaction (1).
It is presumed that this is because the z gas pressure is higher than the SiO gas pressure.

焼成工程にて用いる金属Stと、Sin、の混合物はそ
の反応が(2)に示すように同モルによって進行するこ
とから、Si/5iOz # 1 (モル比)であるこ
とが望ましり、SiO□の量が多いと反応(2)の過程
で酸素が多量に発生するために好ましくない。
Since the reaction of the mixture of metal St and Sin used in the firing process proceeds with the same molar ratio as shown in (2), it is desirable that the mixture is Si/5iOz #1 (molar ratio), and SiO If the amount of □ is large, a large amount of oxygen will be generated in the process of reaction (2), which is not preferable.

一方Siの量が多いとStOの生成が少なく、反応(1
)が右方向に進行するのを防止できない。
On the other hand, when the amount of Si is large, the generation of StO is small, and the reaction (1
) cannot be prevented from moving to the right.

本発明によれば、上述したガス圧焼成法の他、非加圧焼
成法、熱間静水圧プレス法、ホットプレス法にも適当す
ることが可能である。
According to the present invention, in addition to the gas pressure firing method described above, it is also possible to apply a non-pressure firing method, a hot isostatic pressing method, and a hot pressing method.

なお、本発明における組成が前述の範囲外である場合、
即ちZrO□の量が1重量%より少ないと高温強度の劣
化が激しく、20重量%を超えると破壊靭性に乏しい。
In addition, when the composition in the present invention is outside the above-mentioned range,
That is, if the amount of ZrO□ is less than 1% by weight, the high temperature strength deteriorates significantly, and if it exceeds 20% by weight, the fracture toughness is poor.

一方v203の量が1 ff11%より少ないと焼結性
が低下し、10重量%を超えると耐酸化性が低下する。
On the other hand, if the amount of v203 is less than 1 ff 11%, the sinterability will decrease, and if it exceeds 10% by weight, the oxidation resistance will decrease.

なお、ZrO□およびYzOzの添加は、夫々粉末とし
て添加する他、予めZrO,に対しYz(hを固溶させ
、安定化もしくは部分安定化ジルコニアとした粉末を添
加することも可能である。
In addition to adding ZrO□ and YzOz as powders, it is also possible to add a powder in which Yz(h) is dissolved in ZrO in advance to form stabilized or partially stabilized zirconia.

本発明の製造方法によって得られる窒化珪素質焼結体は
、その焼成過程においてZrNが生成されず、ZrO□
が焼結体の粒界相に結晶相として析出する。この結晶相
はY2O,固溶状態で部分安定化ジルコニア(PSZ)
 もしくは安定化ジルコニアであり、しかも非常に高融
点であるため、高温酸化性雰囲気で使用しても粒界相の
軟化による強度劣化を起こさず、また酸化表面は5iO
zの緻密な被膜が形成されるため、酸化増量も少ない。
In the silicon nitride sintered body obtained by the manufacturing method of the present invention, ZrN is not generated during the firing process, and ZrO□
is precipitated as a crystalline phase in the grain boundary phase of the sintered body. This crystal phase is Y2O, partially stabilized zirconia (PSZ) in solid solution state.
Alternatively, it is stabilized zirconia and has a very high melting point, so even if it is used in a high-temperature oxidizing atmosphere, there will be no strength deterioration due to softening of the grain boundary phase, and the oxidized surface is 5iO
Since a dense film of z is formed, oxidation weight gain is also small.

本発明を次の例で説明する。The invention is illustrated by the following example.

実施例 第1表に示す組成から成る混合粉体を成形後、第1表に
示す各焼成条件にて焼成を行った。得られた焼結体はJ
ISR1601の4点曲げ法に従い、室温、200℃、
1400℃における強度を測定した。また1400℃の
酸化増量は試験片を大気中で24時間、1400 ’c
に放置してその1′i(位面積当たりの重量増加で評価
した。
Examples After molding a mixed powder having the composition shown in Table 1, it was fired under the firing conditions shown in Table 1. The obtained sintered body is J
According to the 4-point bending method of ISR1601, room temperature, 200℃,
The strength at 1400°C was measured. In addition, the weight gain due to oxidation at 1400°C was achieved by placing the test piece in the atmosphere for 24 hours at 1400°C.
It was evaluated by the increase in weight per unit area of 1'i.

なお、金属Si/5int混合物は成形体の重量に対し
て±100g程度の範囲で設置し、本実施例では各々8
0gを設置した。
Note that the metal Si/5int mixture is installed within a range of about ±100g relative to the weight of the molded body, and in this example, each
0g was set.

第1表から明らかなようにSi:+N4−ZrOz−Y
zOz系の焼成を単に窒素雰囲気または^r雰囲気で行
うと(隘7乃至Nll0) 、5iJ4とZr0zの反
応が進み、ZrNが生成されるとともに、酸化が激しく
、1400℃の抗折強度では、いずれも20Kg/ c
4を下回るものであった。
As is clear from Table 1, Si: +N4-ZrOz-Y
If the sintering of the ZOz system is performed simply in a nitrogen atmosphere or an ^r atmosphere (from 隘7 to Nll0), the reaction between 5iJ4 and ZrOz will proceed, ZrN will be produced, and oxidation will be severe, and the bending strength of 1400°C will eventually decrease. Also 20Kg/c
It was less than 4.

これらの比較例に対し、本発明のサンプル(隘1乃至5
及びl1hll乃至14)はいずれも高温高強度を示し
、室温における抗折強度と比較してもその低下が小さい
、即ち、耐クリープ性に優れている。
In contrast to these comparative examples, the samples of the present invention (numbers 1 to 5)
and l1hll to l1hll to 14) all exhibit high strength at high temperatures, and the decrease in bending strength is small compared to the bending strength at room temperature, that is, they have excellent creep resistance.

しかも耐酸化性にも優れ、酸化増量は0.1mg/cf
fl以下であった。
Moreover, it has excellent oxidation resistance, with an oxidation weight gain of 0.1mg/cf.
It was below fl.

しかしながら、組成的な面から、Y2O,の量が10重
量%を超えると(11kL6 )耐クリープ性が低下す
るとともに耐酸化性も低下する傾向にある。
However, from a compositional standpoint, if the amount of Y2O exceeds 10% by weight (11 kL6), the creep resistance and oxidation resistance tend to decrease.

(発明の効果) 以上に述べたように本発明の製造方法は5iJ4+Zr
O2+YtO*系の組成を焼成するに当たり、焼成炉中
に金属Si/5iOzの混合物を配置してN2中で焼成
することによって、ZrNを生成することなく高温高強
度、耐クリープ性に優れた窒化珪素質焼結体を得ること
ができ、タービン等の熱機関の他、高温雰囲気で使用さ
れるグロープラグ等への応用が可能となる。
(Effect of the invention) As described above, the manufacturing method of the present invention
When firing an O2+YtO* composition, a mixture of metal Si/5iOz is placed in a firing furnace and fired in N2, resulting in a silicon nitride with high strength at high temperatures and excellent creep resistance without producing ZrN. A high-quality sintered body can be obtained, and it can be applied to heat engines such as turbines as well as glow plugs used in high-temperature atmospheres.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法の焼成工程の一実施例を示す
図である。 1・・・成形体 2・・・焼成炉 3・・・混合物 4・・・ヒータ
FIG. 1 is a diagram showing an embodiment of the firing step of the manufacturing method of the present invention. 1... Molded body 2... Firing furnace 3... Mixture 4... Heater

Claims (1)

【特許請求の範囲】[Claims]  1乃至20重量%のZrO_2と、1乃至10重量%
のY_2O_3と残部が主として窒化珪素から成る混合
粉体を成形後、金属SiとSiO_2の混合物によって
、雰囲気制御された窒素雰囲気中で1700乃至200
0℃の焼成温度で焼成することを特徴とする窒化珪素質
焼結体の製造方法。
1 to 20% by weight ZrO_2 and 1 to 10% by weight
After molding a mixed powder consisting of Y_2O_3 and the remainder mainly silicon nitride, the mixture of metal Si and SiO_2 is heated to
A method for producing a silicon nitride sintered body, the method comprising firing at a firing temperature of 0°C.
JP61067682A 1985-11-20 1986-03-25 Method for manufacturing silicon nitride sintered body Expired - Lifetime JPH0729851B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61067682A JPH0729851B2 (en) 1986-03-25 1986-03-25 Method for manufacturing silicon nitride sintered body
US06/932,196 US4891342A (en) 1985-11-20 1986-11-18 Process for preparing a silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067682A JPH0729851B2 (en) 1986-03-25 1986-03-25 Method for manufacturing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS62223067A true JPS62223067A (en) 1987-10-01
JPH0729851B2 JPH0729851B2 (en) 1995-04-05

Family

ID=13352007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067682A Expired - Lifetime JPH0729851B2 (en) 1985-11-20 1986-03-25 Method for manufacturing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPH0729851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451379A (en) * 1987-08-24 1989-02-27 Sumitomo Electric Industries Silicon nitride sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451379A (en) * 1987-08-24 1989-02-27 Sumitomo Electric Industries Silicon nitride sintered body

Also Published As

Publication number Publication date
JPH0729851B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
US4801414A (en) Production of silicon nitride sintered body
JPS62223067A (en) Manufacture of silicon nitride base sintered body
JP3231950B2 (en) Surface coated silicon nitride material
JP2662863B2 (en) Method for producing silicon nitride based sintered body
JP2742619B2 (en) Silicon nitride sintered body
JPH09157028A (en) Silicon nitride sintered compact and its production
JP2694369B2 (en) Silicon nitride sintered body
JP2828582B2 (en) Surface-coated silicon nitride heat-resistant member
JP2828583B2 (en) Surface-coated silicon nitride heat-resistant member
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JPS62216968A (en) Manufacture of silicon nitride base sintered body
JP2658944B2 (en) Silicon nitride-titanium nitride composite ceramics and method for producing the same
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP2789133B2 (en) Silicon nitride sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPS62202864A (en) Silicon nitride base sintered body and manufacture
JPH0678194B2 (en) Method for manufacturing silicon nitride sintered body
JP2631108B2 (en) Manufacturing method of silicon nitride sintered body
JP2883248B2 (en) Silicon nitride based sintered body and method for producing the same
JP2742596B2 (en) Silicon nitride sintered body and method for producing the same
JP3176203B2 (en) Method for producing silicon nitride based sintered body
JP3236733B2 (en) Silicon nitride sintered body
Gazza et al. Factors influencing the quality of fully dense silicon nitride
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH02180758A (en) Silicon nitride-based sintered body