JPS62220960A - Photosensitive body - Google Patents
Photosensitive bodyInfo
- Publication number
- JPS62220960A JPS62220960A JP61063744A JP6374486A JPS62220960A JP S62220960 A JPS62220960 A JP S62220960A JP 61063744 A JP61063744 A JP 61063744A JP 6374486 A JP6374486 A JP 6374486A JP S62220960 A JPS62220960 A JP S62220960A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reaction chamber
- layer
- flow rate
- photoreceptor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010521 absorption reaction Methods 0.000 claims abstract description 30
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 17
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 10
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 7
- 108091008695 photoreceptors Proteins 0.000 claims description 84
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 11
- 238000000862 absorption spectrum Methods 0.000 claims description 6
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims 1
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 28
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 abstract description 9
- 229920006254 polymer film Polymers 0.000 abstract description 6
- 238000001228 spectrum Methods 0.000 abstract description 2
- 238000001179 sorption measurement Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 99
- 239000007789 gas Substances 0.000 description 88
- 239000010408 film Substances 0.000 description 80
- 238000006243 chemical reaction Methods 0.000 description 79
- 230000032258 transport Effects 0.000 description 56
- 239000000758 substrate Substances 0.000 description 38
- -1 hydrazone compounds Chemical class 0.000 description 21
- 230000001105 regulatory effect Effects 0.000 description 20
- 239000012528 membrane Substances 0.000 description 18
- 238000006116 polymerization reaction Methods 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 238000000354 decomposition reaction Methods 0.000 description 13
- 239000000049 pigment Substances 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000000975 dye Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 229920000620 organic polymer Polymers 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 239000011669 selenium Substances 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- GXDHCNNESPLIKD-UHFFFAOYSA-N 2-methylhexane Chemical compound CCCCC(C)C GXDHCNNESPLIKD-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- FAMPSKZZVDUYOS-UHFFFAOYSA-N 2,6,6,9-tetramethylcycloundeca-1,4,8-triene Chemical compound CC1=CCC(C)(C)C=CCC(C)=CCC1 FAMPSKZZVDUYOS-UHFFFAOYSA-N 0.000 description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- BFIMMTCNYPIMRN-UHFFFAOYSA-N 1,2,3,5-tetramethylbenzene Chemical compound CC1=CC(C)=C(C)C(C)=C1 BFIMMTCNYPIMRN-UHFFFAOYSA-N 0.000 description 2
- GWHJZXXIDMPWGX-UHFFFAOYSA-N 1,2,4-trimethylbenzene Chemical compound CC1=CC=C(C)C(C)=C1 GWHJZXXIDMPWGX-UHFFFAOYSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N 2,2-dimethylbutane Chemical compound CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- WGLLSSPDPJPLOR-UHFFFAOYSA-N 2,3-dimethylbut-2-ene Chemical group CC(C)=C(C)C WGLLSSPDPJPLOR-UHFFFAOYSA-N 0.000 description 2
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical compound CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- UAHWPYUMFXYFJY-UHFFFAOYSA-N beta-myrcene Chemical compound CC(C)=CCCC(=C)C=C UAHWPYUMFXYFJY-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- KYTNZWVKKKJXFS-UHFFFAOYSA-N cycloundecane Chemical compound C1CCCCCCCCCC1 KYTNZWVKKKJXFS-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- SQNZJJAZBFDUTD-UHFFFAOYSA-N durene Chemical compound CC1=CC(C)=C(C)C=C1C SQNZJJAZBFDUTD-UHFFFAOYSA-N 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- FNAZRRHPUDJQCJ-UHFFFAOYSA-N henicosane Chemical compound CCCCCCCCCCCCCCCCCCCCC FNAZRRHPUDJQCJ-UHFFFAOYSA-N 0.000 description 2
- BJQWYEJQWHSSCJ-UHFFFAOYSA-N heptacosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCC BJQWYEJQWHSSCJ-UHFFFAOYSA-N 0.000 description 2
- NDJKXXJCMXVBJW-UHFFFAOYSA-N heptadecane Chemical compound CCCCCCCCCCCCCCCCC NDJKXXJCMXVBJW-UHFFFAOYSA-N 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- HMSWAIKSFDFLKN-UHFFFAOYSA-N hexacosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC HMSWAIKSFDFLKN-UHFFFAOYSA-N 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- CBFCDTFDPHXCNY-UHFFFAOYSA-N icosane Chemical compound CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- IGGUPRCHHJZPBS-UHFFFAOYSA-N nonacosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCC IGGUPRCHHJZPBS-UHFFFAOYSA-N 0.000 description 2
- LQERIDTXQFOHKA-UHFFFAOYSA-N nonadecane Chemical compound CCCCCCCCCCCCCCCCCCC LQERIDTXQFOHKA-UHFFFAOYSA-N 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 229940038384 octadecane Drugs 0.000 description 2
- YKNWIILGEFFOPE-UHFFFAOYSA-N pentacosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCC YKNWIILGEFFOPE-UHFFFAOYSA-N 0.000 description 2
- YCOZIPAWZNQLMR-UHFFFAOYSA-N pentadecane Chemical compound CCCCCCCCCCCCCCC YCOZIPAWZNQLMR-UHFFFAOYSA-N 0.000 description 2
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pentene-2 Natural products CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 125000005504 styryl group Chemical group 0.000 description 2
- POOSGDOYLQNASK-UHFFFAOYSA-N tetracosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC POOSGDOYLQNASK-UHFFFAOYSA-N 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- FIGVVZUWCLSUEI-UHFFFAOYSA-N tricosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCC FIGVVZUWCLSUEI-UHFFFAOYSA-N 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- NPNUFJAVOOONJE-ZIAGYGMSSA-N β-(E)-Caryophyllene Chemical compound C1CC(C)=CCCC(=C)[C@H]2CC(C)(C)[C@@H]21 NPNUFJAVOOONJE-ZIAGYGMSSA-N 0.000 description 2
- JWQKMEKSFPNAIB-SNVBAGLBSA-N (5r)-1-methyl-5-prop-1-en-2-ylcyclohexene Chemical compound CC(=C)[C@@H]1CCC=C(C)C1 JWQKMEKSFPNAIB-SNVBAGLBSA-N 0.000 description 1
- AFVDZBIIBXWASR-AATRIKPKSA-N (E)-1,3,5-hexatriene Chemical compound C=C\C=C\C=C AFVDZBIIBXWASR-AATRIKPKSA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- QWUWMCYKGHVNAV-UHFFFAOYSA-N 1,2-dihydrostilbene Chemical group C=1C=CC=CC=1CCC1=CC=CC=C1 QWUWMCYKGHVNAV-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- IBXNCJKFFQIKKY-UHFFFAOYSA-N 1-pentyne Chemical compound CCCC#C IBXNCJKFFQIKKY-UHFFFAOYSA-N 0.000 description 1
- RLPGDEORIPLBNF-UHFFFAOYSA-N 2,3,4-trimethylpentane Chemical compound CC(C)C(C)C(C)C RLPGDEORIPLBNF-UHFFFAOYSA-N 0.000 description 1
- MHNNAWXXUZQSNM-UHFFFAOYSA-N 2-methylbut-1-ene Chemical compound CCC(C)=C MHNNAWXXUZQSNM-UHFFFAOYSA-N 0.000 description 1
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- AEXMKKGTQYQZCS-UHFFFAOYSA-N 3,3-dimethylpentane Chemical compound CCC(C)(C)CC AEXMKKGTQYQZCS-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- NVEQFIOZRFFVFW-UHFFFAOYSA-N 9-epi-beta-caryophyllene oxide Natural products C=C1CCC2OC2(C)CCC2C(C)(C)CC21 NVEQFIOZRFFVFW-UHFFFAOYSA-N 0.000 description 1
- VMYXUZSZMNBRCN-AWEZNQCLSA-N Curcumene Natural products CC(C)=CCC[C@H](C)C1=CC=C(C)C=C1 VMYXUZSZMNBRCN-AWEZNQCLSA-N 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LVZWSLJZHVFIQJ-UHFFFAOYSA-N Cyclopropane Chemical compound C1CC1 LVZWSLJZHVFIQJ-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- CBSRFDQDBGGSEA-UHFFFAOYSA-N Selinene Natural products CC(=C1CCC2(C)CCCC(=C)C2(C)C1)C CBSRFDQDBGGSEA-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- UXZIDIYMFIBDKT-UHFFFAOYSA-N Sylvestrene Natural products CC(=C)C1CCCC(C)=C1 UXZIDIYMFIBDKT-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical group 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001361 allenes Chemical class 0.000 description 1
- VYBREYKSZAROCT-UHFFFAOYSA-N alpha-myrcene Natural products CC(=C)CCCC(=C)C=C VYBREYKSZAROCT-UHFFFAOYSA-N 0.000 description 1
- NPNUFJAVOOONJE-UHFFFAOYSA-N beta-cariophyllene Natural products C1CC(C)=CCCC(=C)C2CC(C)(C)C21 NPNUFJAVOOONJE-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229930006737 car-3-ene Natural products 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- BQOFWKZOCNGFEC-UHFFFAOYSA-N carene Chemical compound C1C(C)=CCC2C(C)(C)C12 BQOFWKZOCNGFEC-UHFFFAOYSA-N 0.000 description 1
- 229930007796 carene Natural products 0.000 description 1
- NPNUFJAVOOONJE-UONOGXRCSA-N caryophyllene Natural products C1CC(C)=CCCC(=C)[C@@H]2CC(C)(C)[C@@H]21 NPNUFJAVOOONJE-UONOGXRCSA-N 0.000 description 1
- 229940117948 caryophyllene Drugs 0.000 description 1
- IRAQOCYXUMOFCW-CXTNEJHOSA-N cedrene Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@H]1C(C)=CC2 IRAQOCYXUMOFCW-CXTNEJHOSA-N 0.000 description 1
- 150000001787 chalcogens Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- CFBGXYDUODCMNS-UHFFFAOYSA-N cyclobutene Chemical compound C1CC=C1 CFBGXYDUODCMNS-UHFFFAOYSA-N 0.000 description 1
- LMGZGXSXHCMSAA-UHFFFAOYSA-N cyclodecane Chemical compound C1CCCCCCCCC1 LMGZGXSXHCMSAA-UHFFFAOYSA-N 0.000 description 1
- UCIYGNATMHQYCT-OWOJBTEDSA-N cyclodecene Chemical compound C1CCCC\C=C\CCC1 UCIYGNATMHQYCT-OWOJBTEDSA-N 0.000 description 1
- DDTBPAQBQHZRDW-UHFFFAOYSA-N cyclododecane Chemical compound C1CCCCCCCCCCC1 DDTBPAQBQHZRDW-UHFFFAOYSA-N 0.000 description 1
- ZXIJMRYMVAMXQP-UHFFFAOYSA-N cycloheptene Chemical compound C1CCC=CCC1 ZXIJMRYMVAMXQP-UHFFFAOYSA-N 0.000 description 1
- JJWIOXUMXIOXQN-UHFFFAOYSA-N cyclohexadecane Chemical compound C1CCCCCCCCCCCCCCC1 JJWIOXUMXIOXQN-UHFFFAOYSA-N 0.000 description 1
- GPTJTTCOVDDHER-UHFFFAOYSA-N cyclononane Chemical compound C1CCCCCCCC1 GPTJTTCOVDDHER-UHFFFAOYSA-N 0.000 description 1
- BESIOWGPXPAVOS-UPHRSURJSA-N cyclononene Chemical compound C1CCC\C=C/CCC1 BESIOWGPXPAVOS-UPHRSURJSA-N 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 1
- 239000004913 cyclooctene Substances 0.000 description 1
- SRONXYPFSAKOGH-UHFFFAOYSA-N cyclopentadecane Chemical compound C1CCCCCCCCCCCCCC1 SRONXYPFSAKOGH-UHFFFAOYSA-N 0.000 description 1
- OOXWYYGXTJLWHA-UHFFFAOYSA-N cyclopropene Chemical compound C1C=C1 OOXWYYGXTJLWHA-UHFFFAOYSA-N 0.000 description 1
- KATXJJSCAPBIOB-UHFFFAOYSA-N cyclotetradecane Chemical compound C1CCCCCCCCCCCCC1 KATXJJSCAPBIOB-UHFFFAOYSA-N 0.000 description 1
- UEVXKGPJXXDGCX-UHFFFAOYSA-N cyclotridecane Chemical compound C1CCCCCCCCCCCC1 UEVXKGPJXXDGCX-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- IRAQOCYXUMOFCW-UHFFFAOYSA-N di-epi-alpha-cedrene Natural products C1C23C(C)CCC3C(C)(C)C1C(C)=CC2 IRAQOCYXUMOFCW-UHFFFAOYSA-N 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- LMBMDLOSPKIWAP-UHFFFAOYSA-N embutramide Chemical compound OCCCC(=O)NCC(CC)(CC)C1=CC=CC(OC)=C1 LMBMDLOSPKIWAP-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- BXWQUXUDAGDUOS-UHFFFAOYSA-N gamma-humulene Natural products CC1=CCCC(C)(C)C=CC(=C)CCC1 BXWQUXUDAGDUOS-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- YVXHZKKCZYLQOP-UHFFFAOYSA-N hept-1-yne Chemical compound CCCCCC#C YVXHZKKCZYLQOP-UHFFFAOYSA-N 0.000 description 1
- AHAREKHAZNPPMI-UHFFFAOYSA-N hexa-1,3-diene Chemical compound CCC=CC=C AHAREKHAZNPPMI-UHFFFAOYSA-N 0.000 description 1
- YUWFEBAXEOLKSG-UHFFFAOYSA-N hexamethylbenzene Chemical compound CC1=C(C)C(C)=C(C)C(C)=C1C YUWFEBAXEOLKSG-UHFFFAOYSA-N 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- QBNFBHXQESNSNP-UHFFFAOYSA-N humulene Natural products CC1=CC=CC(C)(C)CC=C(/C)CCC1 QBNFBHXQESNSNP-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- YDLYQMBWCWFRAI-UHFFFAOYSA-N n-Hexatriacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC YDLYQMBWCWFRAI-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 150000007823 ocimene derivatives Chemical class 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 150000002916 oxazoles Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- BEZDDPMMPIDMGJ-UHFFFAOYSA-N pentamethylbenzene Chemical compound CC1=CC(C)=C(C)C(C)=C1C BEZDDPMMPIDMGJ-UHFFFAOYSA-N 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- INAAIJLSXJJHOZ-UHFFFAOYSA-N pibenzimol Chemical compound C1CN(C)CCN1C1=CC=C(N=C(N2)C=3C=C4NC(=NC4=CC=3)C=3C=CC(O)=CC=3)C2=C1 INAAIJLSXJJHOZ-UHFFFAOYSA-N 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- VPQBJIRQUUEAFC-UHFFFAOYSA-N selinene Natural products C1CC=C(C)C2CC(C(C)C)CCC21C VPQBJIRQUUEAFC-UHFFFAOYSA-N 0.000 description 1
- 150000003598 selinene derivatives Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- UOHMMEJUHBCKEE-UHFFFAOYSA-N tetramethylbenzene Natural products CC1=CC=C(C)C(C)=C1C UOHMMEJUHBCKEE-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- XJPBRODHZKDRCB-UHFFFAOYSA-N trans-alpha-ocimene Natural products CC(=C)CCC=C(C)C=C XJPBRODHZKDRCB-UHFFFAOYSA-N 0.000 description 1
- OLTHARGIAFTREU-UHFFFAOYSA-N triacontane Natural products CCCCCCCCCCCCCCCCCCCCC(C)CCCCCCCC OLTHARGIAFTREU-UHFFFAOYSA-N 0.000 description 1
- 239000001003 triarylmethane dye Substances 0.000 description 1
- RRBYUSWBLVXTQN-UHFFFAOYSA-N tricyclene Chemical compound C12CC3CC2C1(C)C3(C)C RRBYUSWBLVXTQN-UHFFFAOYSA-N 0.000 description 1
- RRBYUSWBLVXTQN-VZCHMASFSA-N tricyclene Natural products C([C@@H]12)C3C[C@H]1C2(C)C3(C)C RRBYUSWBLVXTQN-VZCHMASFSA-N 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical class C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- 150000004961 triphenylmethanes Chemical class 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- VMYXUZSZMNBRCN-UHFFFAOYSA-N α-curcumene Chemical compound CC(C)=CCCC(C)C1=CC=C(C)C=C1 VMYXUZSZMNBRCN-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/07—Polymeric photoconductive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/043—Photoconductive layers characterised by having two or more layers or characterised by their composite structure
- G03G5/047—Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明は感光体、特に電子写真感光体に関する。[Detailed description of the invention] Industrial applications The present invention relates to photoreceptors, particularly electrophotographic photoreceptors.
従来技術
カールソン法の発明(1938年、tlsP22217
6)以来、電子写真の応用分野は著しい発展を続け、電
子写真用感光体にも様々な材料が開発され実用化されて
きた。Prior art Invention of the Carlson method (1938, tlsP22217
6) Since then, the field of application of electrophotography has continued to make remarkable progress, and various materials have been developed and put into practical use as photoreceptors for electrophotography.
従来用いられて来た電子写真感光体材料の主なものとし
ては、非晶質セレン、セレン砒素、セレンテルル、硫化
カドミウム、酸化亜鉛、アモルファスシリコン等の無機
物質、ポリビニルカルバゾール、金属フタロシアニン、
ジスアゾ顔料、トリスアゾ顔料、ペリレン顔料、トリフ
ェニルメタン化合物、トリフェニルアミン化合物、ヒド
ラゾン化合物、スチリル化合物、ピラゾリン化合物、オ
キサゾール化合物、オキサジアゾール化合物、等の有機
物質が挙げられる。The main electrophotographic photoreceptor materials conventionally used include inorganic substances such as amorphous selenium, selenium arsenide, selenium telluride, cadmium sulfide, zinc oxide, amorphous silicon, polyvinyl carbazole, metal phthalocyanine,
Examples include organic substances such as disazo pigments, trisazo pigments, perylene pigments, triphenylmethane compounds, triphenylamine compounds, hydrazone compounds, styryl compounds, pyrazoline compounds, oxazole compounds, and oxadiazole compounds.
また、その構成形態としては、これらの物質を単体で用
いる単層型構成、結着材中に分散させて用いるバング−
型構成、機能別に電荷発生層と電荷輸送層とを設ける積
層型構成等が挙げられる。In addition, the configurations include a single-layer structure in which these substances are used alone, and a bang-like structure in which these substances are dispersed in a binder.
Examples include a mold structure and a laminated structure in which a charge generation layer and a charge transport layer are provided for each function.
しかしながら、従来用いられてきた電子写真感光体材料
にはそれぞれ欠点があった。However, the conventionally used electrophotographic photoreceptor materials each have drawbacks.
その一つとして人体への有害性が挙げられるが、前述し
たアモルファスシリコンを除く無機物質においては、い
ずれも好ましくない性質を持つものであった。One of these is their toxicity to the human body, and all inorganic substances, except for the amorphous silicon mentioned above, have unfavorable properties.
また、電子写真感光体が実際に複写機内で用いられるた
めには、帯電、露光、現像、転写、除電、清掃等の苛酷
な環境条件にさらされた場合においてら、常に安定な性
能をf(t 持している必要があるが、前述した有機物
質においては、いずれら耐久性に乏しく、性能面での不
安定要素が多かった。In addition, in order for an electrophotographic photoreceptor to be actually used in a copying machine, it must always maintain stable performance f( However, the organic substances mentioned above have poor durability and many unstable factors in terms of performance.
このような問題点を解決すべく近年、感光体、特に電子
写真用感光体にプラズマ化学蒸着法(以下、プラズマC
VD法という)により作製されたアモルファスシリコン
(以下、a −S iと略す)が採用されるに至ってい
る。In order to solve these problems, in recent years, plasma chemical vapor deposition (hereinafter referred to as plasma chemical vapor deposition) has been applied to photoreceptors, especially electrophotographic photoreceptors.
Amorphous silicon (hereinafter abbreviated as a-Si) manufactured by VD (VD method) has come to be used.
a −S i感光体は種々の優れた特性を有する。しか
しa−5tは比誘電率εが12程度と大きいため、感光
体として充分な表面電位を得るためには、本質的に最低
25μm程度の膜厚が必要であるという問題がある。a
−Si感光体は、プラズマCVD法においては膜の堆積
速度が遅いため作製に長時間を要し、さらに均質な膜の
a −S tを得ることが作製時間が長くなる程難しく
なる。その結果、a−Si感光体は白斑点ノイズ等の画
像欠陥が発生する確率が高く、さらに原料費が高いとい
う欠点等がある。The a-Si photoreceptor has various excellent properties. However, since a-5t has a large dielectric constant ε of about 12, there is a problem in that a film thickness of at least about 25 μm is essentially required in order to obtain a sufficient surface potential as a photoreceptor. a
In the plasma CVD method, the -Si photoreceptor requires a long time to produce because the film deposition rate is slow, and the longer the production time becomes, the more difficult it becomes to obtain a homogeneous film of a-Si. As a result, the a-Si photoreceptor has drawbacks such as a high probability of image defects such as white spot noise and high raw material costs.
上記の欠点を改良するための種々の試みがなされている
が、本質的に膜厚をこれより薄くすることは好ましくな
い。Although various attempts have been made to improve the above drawbacks, it is essentially not desirable to make the film thinner than this.
一方、a −S i感光体は基板とa−8tとの密着性
、さらに耐コロナ性、耐環境性あるいは耐薬品性が悪い
といった欠点も存在する。On the other hand, the a-Si photoreceptor also has drawbacks such as poor adhesion between the substrate and the a-8t, as well as poor corona resistance, environmental resistance, and chemical resistance.
そのような問題点を解消するため有機プラズマ重合膜を
a −S i感光体のオーバーコート層あるいはアンダ
ーコート層として設ける事が提案されている。前者の例
は、例えば特開昭60−61761号公報、特開昭59
−214859号公報、特開昭51−46130号公報
あるいは特開昭50−20728号公報等が知られてお
り、後者の例としては、例えば特開昭60−63541
号公報、特開昭59−136742号公報、特開昭59
−38753号公報、特開昭59−2’a161号公報
あるいは特開昭56−60447号公報等が知られてい
る。In order to solve such problems, it has been proposed to provide an organic plasma polymerized film as an overcoat layer or undercoat layer of an a-Si photoreceptor. Examples of the former are, for example, JP-A-60-61761 and JP-A-59.
JP-A-214859, JP-A-51-46130, JP-A-50-20728, etc. are known, and examples of the latter include JP-A-60-63541.
No. 59-136742, JP-A-59-136742, JP-A-59-136742
-38753, JP-A-59-2'a161, JP-A-56-60447, etc. are known.
有機プラズマ重合膜はエチレンガス、ベンゼン、芳香族
シラン等のあらゆる種類の有機化合物のガスから作製で
きること(例えばニー、ティ、ベル(A、T、Be1l
)、エム、ジエン(M 、 S hen)ら、ジャーナ
ル オブ アプライド ポリマー サイエンス(Jou
nal orApplied Polymer 5
cience)、第17巻、885−892頁(197
3年)等)が知られているが、従来の方法で作製した有
機プラズマ重合膜は絶縁性を前提とした用途に限って用
いられている。従って、それらの膜は通常のポリエチレ
ン膜のごとくlo”ΩGM程度の電気抵抗を有する絶縁
膜と考えられ、あるいは少なくともその様な膜であると
の認識のらとに用いられていた。Organic plasma polymerized films can be prepared from all kinds of organic compound gases such as ethylene gas, benzene, and aromatic silanes (e.g., Ni, T, Be1l).
), M., Shen et al., Journal of Applied Polymer Science (Jou
nal orApplied Polymer 5
science), Vol. 17, pp. 885-892 (197
3), etc.), but organic plasma polymerized films produced by conventional methods are used only for applications that require insulation. Therefore, these films were considered to be insulating films having an electrical resistance on the order of lo'' ΩGM, like ordinary polyethylene films, or at least were used with the understanding that they were such films.
特開昭60−61761号公報記載の技術は、500人
〜2μmのダイヤモンド状炭素絶縁膜を表面保護層とし
て被覆した感光体を開示している。The technique described in Japanese Patent Application Laid-Open No. 60-61761 discloses a photoreceptor coated with a diamond-like carbon insulating film having a thickness of 500 to 2 μm as a surface protective layer.
この炭素薄膜はa−Si感光体の耐コロナ放電および機
械的強度を改良するためのらのである。重合膜は非常に
薄く、電荷はトンネル効果により膜中を移動し、膜自体
電荷輸送能を必要としない。また、有機プラズマ重合膜
のキャリアー輸送性に関しては一切記載がないし、a
−S iの持つ前記した本質的問題を解決するものでな
い。This carbon thin film is used to improve the corona discharge resistance and mechanical strength of the a-Si photoreceptor. The polymer membrane is very thin, and charges move through the membrane through the tunnel effect, so the membrane itself does not require charge transport ability. Furthermore, there is no mention of the carrier transport properties of organic plasma polymerized films, and a
- It does not solve the above-mentioned essential problem of Si.
特開昭59−214859号公報には、エチレンやアセ
チレン等の有機炭化水素モノマーをプラズマ重合により
厚さ5μm程度の有機透明膜をオーバーコート層として
被膜する技術が開示されているが、その層はa−Si感
光体の剥離、耐久性、ビンポール、生産効率を改良する
ものである。有機プラズマ重合膜のキャリアー輸送性に
関しては一切記載がないし、a −S iの持つ前記し
た本質的問題を解決するものでない。Japanese Unexamined Patent Publication No. 59-214859 discloses a technique of coating an organic transparent film with a thickness of about 5 μm as an overcoat layer by plasma polymerization of organic hydrocarbon monomers such as ethylene and acetylene. This improves the peeling, durability, vinyl pole, and production efficiency of a-Si photoreceptors. There is no description whatsoever regarding the carrier transport properties of organic plasma polymerized films, and it does not solve the above-mentioned essential problems of a-Si.
特開昭51−46130号公報には、N−ビニルカルバ
ゾールをグロー放電により、表面に厚さ3μm〜0.0
01μmの有機プラズマ重合膜を形成した感光体を開示
している。この技術は、正帯電でしか使用できなかった
ポリ−N−ビニルカルバゾール系感光体を両極性帯電で
使用可能にすることを目的とする。この膜はo、oot
〜3μmと非常に薄く、オーバーコート的に使用される
。JP-A No. 51-46130 discloses that N-vinylcarbazole is coated on the surface with a thickness of 3 μm to 0.0 μm by glow discharge.
A photoreceptor on which an organic plasma polymerized film of 0.01 μm is formed is disclosed. The purpose of this technology is to make it possible to use a poly-N-vinylcarbazole photoreceptor, which could only be used with positive charging, with bipolar charging. This membrane is o, oot
It is very thin at ~3 μm and is used as an overcoat.
重合膜は非常に薄く、電荷輸送能を必要としないものと
考えられる。また、重合膜のキャリアー輸送性に関して
は一切記載がないし、a−9iの持つ前記した本質的問
題を解決するものでない。It is thought that the polymeric membrane is very thin and does not require charge transport ability. Furthermore, there is no description whatsoever regarding the carrier transportability of the polymeric membrane, and it does not solve the above-mentioned essential problems of a-9i.
特開昭50−20728号公報には、基板上に増感層、
有機光導電性電気絶縁体とを順次積層し、さらにその上
に厚さ0,1〜1μmのグロー放電重合膜を形成する技
術が開示されているが、この膜は湿式現像に耐えるよう
に表面を保護する目的のものであり、オーバーコート的
に使用される。JP-A No. 50-20728 discloses a sensitizing layer on a substrate,
A technique has been disclosed in which an organic photoconductive electrical insulator is sequentially laminated and a glow discharge polymerized film with a thickness of 0.1 to 1 μm is formed thereon. It is used as an overcoat to protect the skin.
重合膜は非常に薄く、電荷輸送能を必要としない。Polymerized membranes are very thin and do not require charge transport capabilities.
また、重合膜のキャリアー輸送性に関しては一切記載が
ないし、a −S iの持つ前記した本質的問題を解決
するものでない。Furthermore, there is no description whatsoever regarding the carrier transport properties of the polymeric membrane, and it does not solve the above-mentioned essential problems of a-Si.
特開昭60−6.3541号公報は、a−5iのアンダ
ーコート層に200人〜2μmのダイヤモンド状有機プ
ラズマ重合膜を使用した感光体について開示しているが
、その有機プラズマ重合膜は基板とa−Siの密着性を
改善する目的のものである。JP-A-60-6.3541 discloses a photoreceptor using a diamond-like organic plasma polymerized film of 200 to 2 μm as the undercoat layer of a-5i, but the organic plasma polymerized film is The purpose is to improve the adhesion between a-Si and a-Si.
重合膜は非常に薄くてよく、電荷はトンネル効果により
膜中を移動し、膜自体は電荷輸送能を必要としない。ま
た、有機プラズマ重合膜のキャリアー輸送性に関しては
一切記載がないし、a −S iの持つ前記した本質的
問題を解決するものでない。Polymerized membranes can be very thin, charges move through the membrane by tunneling, and the membrane itself does not require charge transport capabilities. Furthermore, there is no description whatsoever regarding the carrier transport properties of the organic plasma polymerized film, and it does not solve the above-mentioned essential problems of a-Si.
特開昭59−28161号公報には、基板上に有機プラ
ズマ重合膜、a −S iを順次形成した感光体が開示
されている。有機プラズマ重合膜は、その絶縁性を利用
したアンダーコート層でありブロッキング層、接着層あ
るいは剥離防止層として機能するものである。重合膜は
非常に薄くてよく、電荷はトンネル効果により膜中を移
動し、膜自体は電荷輸送能を必要としない。また、有機
プラズマ重合膜のキャリアー輸送性に関しては一切記載
がないし、a−9iの持つ前記した本質的問題を解決す
るものでない。JP-A-59-28161 discloses a photoreceptor in which an organic plasma polymerized film and an a-Si are sequentially formed on a substrate. The organic plasma polymerized film is an undercoat layer that takes advantage of its insulating properties and functions as a blocking layer, adhesive layer, or peel prevention layer. Polymerized membranes can be very thin, charges move through the membrane by tunneling, and the membrane itself does not require charge transport capabilities. In addition, there is no description whatsoever regarding the carrier transport properties of the organic plasma polymerized film, and it does not solve the above-mentioned essential problems of a-9i.
特開昭59−38753号公報には酸素、窒素および炭
化水素の混合ガスからプラズマ重合により10〜100
人の有機プラズマ重合薄膜を形成し、その上にa −S
i層を成膜する技術が開示されている。有機プラズマ
重合膜は、その絶縁性を利用したアンダーコート層であ
りブロッキング層あるいは剥離防止層として機能するも
のである。重合膜は非常に薄くてよく、電荷はトンネル
効果により膜中を移動し、膜自体は電荷輸送能を必要と
しない。また、有機プラズマ重合膜のキャリアー輸送性
に関しては一切記載がないし、a −S iの持つ前記
した本質的問題を解決するものでない。JP-A No. 59-38753 discloses that 10 to 100
Form an organic plasma-polymerized thin film on which a-S
A technique for forming an i-layer is disclosed. The organic plasma polymerized film is an undercoat layer that takes advantage of its insulating properties, and functions as a blocking layer or a peel-preventing layer. Polymerized membranes can be very thin, charges move through the membrane by tunneling, and the membrane itself does not require charge transport capabilities. Furthermore, there is no description whatsoever regarding the carrier transport properties of the organic plasma polymerized film, and it does not solve the above-mentioned essential problems of a-Si.
特開昭59−136742号公報には、基板上に約5μ
mの有機プラズマ重合膜、シリコン膜を順次形成する半
導体装置が開示されている。しかし、その有機プラズマ
重合膜は、基板であるアルミニウムのa−9tへの拡散
を防止する目的のものであるが、その作製法、膜質等に
関しては一切記載がない。また、有機プラズマ重合膜の
キャリアー輸送性に関しても一切記載がないし、a−8
iの持つ前記した木質的問題を解決するものでない。Japanese Patent Application Laid-open No. 59-136742 discloses that about 5μ
A semiconductor device is disclosed in which an organic plasma polymerized film and a silicon film of m are sequentially formed. However, although the purpose of this organic plasma polymerized film is to prevent the diffusion of aluminum, which is the substrate, into the a-9t, there is no description of its manufacturing method, film quality, etc. Furthermore, there is no description whatsoever regarding the carrier transport properties of organic plasma polymerized films, and a-8
It does not solve the above-mentioned wooden problem of i.
特開昭56−60447号公報には、プラズマ重合によ
る有機光導電性膜の形成方法が開示されているが、電子
写真での応用の可能性については全く言及されておらず
、さらに電荷発生層もしくは光導電層としての開示であ
り、本発明とは異なる。また、a−9iの持つ前記した
木質的問題を解決するしのではない。JP-A-56-60447 discloses a method for forming an organic photoconductive film by plasma polymerization, but there is no mention of the possibility of application in electrophotography, and furthermore, there is no mention of the possibility of application in electrophotography. Alternatively, it is disclosed as a photoconductive layer, which is different from the present invention. Moreover, it does not solve the above-mentioned woody problems of a-9i.
発明が解決しようとする問題点
以上のように、従来、感光体に用いられている有機重合
膜はアンダーコート層あるいはオーバーコート層として
使用されていたが、それらはキャリアの輸送機能を必要
としない膜であって、有機重合膜が絶縁性であるとの判
断にたって用いられている。従ってその厚さも高々5μ
皮程度の極めて薄い膜としてしか用いられず、キャリア
はトンネル効果で膜中を通過するか、トンネル効果が期
待できない場合には、実用上の残留電位としては問題に
らないですむ程度の薄い膜でしか用いられていない。Problems to be Solved by the Invention As mentioned above, organic polymer films conventionally used in photoreceptors have been used as undercoat layers or overcoat layers, but these do not require a carrier transport function. It is a film, and it is used based on the judgment that the organic polymer film is insulating. Therefore, its thickness is at most 5μ
It is used only as an extremely thin film, about the size of a skin, and the carriers pass through the film through the tunnel effect, or if a tunnel effect cannot be expected, the film is thin enough that there is no problem with the residual potential in practical use. It is only used in
本発明者らは、有機重合膜の感光体への応用を検討して
いるうちに、本来絶縁性であると考えられていた有機重
合膜がメチル基含量を増加させることにより、電気抵抗
が低下し、電荷輸送性を示し始める事を見い出した。While considering the application of organic polymer films to photoreceptors, we found that organic polymer films, which were originally thought to be insulating, decreased electrical resistance by increasing the content of methyl groups. It was discovered that the material began to exhibit charge transport properties.
本発明はその新たな知見を利用することにより、従来の
a−9i感光体の持つ問題点、すなわちa −Siの膜
厚、製造時間、製造コスト等における問題点等をすべて
解消し、また従来とは全く使用目的も、特性も異なる有
機重合膜、特に有機プラズマ重合膜を使用した感光体お
よびその製造方法を提供することを目的とする。By utilizing this new knowledge, the present invention solves all the problems of the conventional a-9i photoreceptor, such as problems in the a-Si film thickness, manufacturing time, manufacturing cost, etc. It is an object of the present invention to provide a photoreceptor using an organic polymer film, particularly an organic plasma polymer film, which has a completely different purpose and characteristics from the above, and a method for manufacturing the same.
問題点を解決するための手段
すなわち、本発明は電荷発生層(3)と電荷輸送層(2
)とを有する機能分離型感光体において、電荷輸送層(
2)として炭化水素のプラズマ重合膜を設け、該重合膜
の赤外吸収スペクトルのメチル(−CH*)基による2
960cm−’付近のピーク吸収係数α、とメチレン(
−cI−r、−)基による2925cm−’付近のピー
ク吸収係数α、との比αl/α。Means for solving the problem, that is, the present invention provides a charge generation layer (3) and a charge transport layer (2).
) in a functionally separated photoreceptor having a charge transport layer (
As 2), a hydrocarbon plasma polymerized film is provided, and the infrared absorption spectrum of the polymerized film is determined by methyl (-CH*) groups.
The peak absorption coefficient α near 960 cm-' and methylene (
-cI-r, -) group's peak absorption coefficient α near 2925 cm-', and the ratio αl/α.
が0.5ないし1.5であることを特徴とする感光体に
関する。0.5 to 1.5.
本発明感光体は少なくとも電荷発生層と電荷輸送層から
構成される。The photoreceptor of the present invention is composed of at least a charge generation layer and a charge transport layer.
本発明感光体の特徴は、電荷輸送層として炭化水素の重
合膜を設け、さらにその重合膜中に形成されたメチル基
とメチレン基が赤外吸収スペクトルのメチル基による2
960ci−’付近のピーク吸収係数α1とメチレン基
による2925cm−’付近のピーク吸収係数α、との
比α、/α、が0,5ないし1.5であることにある(
以下、本発明の重合膜をa−C@という)。The photoreceptor of the present invention is characterized by having a hydrocarbon polymer film as a charge transport layer, and furthermore, the methyl groups and methylene groups formed in the polymer film have two methyl groups in the infrared absorption spectrum.
The ratio α, /α, between the peak absorption coefficient α1 near 960 ci-′ and the peak absorption coefficient α near 2925 cm-′ due to the methylene group is 0.5 to 1.5 (
Hereinafter, the polymer film of the present invention will be referred to as a-C@).
本発明における赤外吸収スペクトルの吸収係数は透過率
と膜厚から下式[1コニ
[式中、αは吸収係数、dは膜厚、’r/’roは透過
率を表す。]
で表わされる。The absorption coefficient of the infrared absorption spectrum in the present invention is determined from the transmittance and film thickness using the following formula [1] [where α is the absorption coefficient, d is the film thickness, and 'r/'ro represents the transmittance. ] It is expressed as .
本発明のa−C膜は赤外吸収スペクトルのメチル基によ
る2960cm−’付近のピーク吸収係数α1とメチレ
ン基による2925cm−’付近のピーク吸収係数α、
との比が0.5ないし1.5、より好ましくは0.7〜
1.3、特に0.8〜1.2であるとき適しており、0
.5より小さいと好適な輸送性が得られず電子写真感光
体としては使用できず、1.5より大きいいと帯電能の
低下と膜質の劣化、成膜性の低下をきたす。The a-C film of the present invention has an infrared absorption spectrum with a peak absorption coefficient α1 around 2960 cm-' due to methyl groups, a peak absorption coefficient α1 around 2925 cm-' due to methylene groups,
The ratio of 0.5 to 1.5, more preferably 0.7 to 1.5
1.3, especially suitable when 0.8 to 1.2, and 0
.. If it is less than 5, suitable transport properties cannot be obtained and it cannot be used as an electrophotographic photoreceptor, and if it is larger than 1.5, the charging ability is decreased, the film quality is deteriorated, and the film formability is decreased.
一般にメチル基およびメチレン基に由来するピーク吸収
係数が式[I]に従い、α、/α、の値が0゜5より大
きいときはじめて比抵抗が1011Ωcm程度以下とな
り、キャリアの易動度がIO″″’cm”(V・5ec
)以上となる。In general, the peak absorption coefficient derived from methyl and methylene groups follows formula [I], and only when the value of α, /α, is larger than 0°5 does the specific resistance become approximately 1011 Ωcm or less, and the carrier mobility becomes IO''"'cm" (V・5ec
) or more.
本発明のa−C膜中には、炭素原子に由来する種々の基
、例えばメチル基、メチレン基あるいはメチン基または
種々の結合様式をした炭素原子、例えば単結合、二重結
合あるいは三重結合等が存在するが、式[I]に従いα
1/α、の値が0.5〜1.5となることが本発明にお
いては重要である。The a-C film of the present invention contains various groups derived from carbon atoms, such as methyl groups, methylene groups, or methine groups, or carbon atoms with various bonding modes, such as single bonds, double bonds, triple bonds, etc. exists, but according to formula [I] α
In the present invention, it is important that the value of 1/α is 0.5 to 1.5.
a−0層の厚さは5〜50μm、特に7〜20μmが適
当であり、5μmより薄いと表面電位が低く充分な複写
画像濃度を得ることができない。50μmより厚いと生
産性の点で好ましくない。このa−0層は透光性に優れ
比較的高暗抵抗を有するとともに電荷輸送性に富み、膜
厚を上記のように5μm以上としても電荷トラップを生
じることな(キャリアを輸送する。The thickness of the a-0 layer is suitably 5 to 50 .mu.m, particularly 7 to 20 .mu.m; if it is thinner than 5 .mu.m, the surface potential is low and sufficient density of the copied image cannot be obtained. If it is thicker than 50 μm, it is not preferable in terms of productivity. This a-0 layer has excellent light transmittance, relatively high dark resistance, and is rich in charge transport properties, and does not cause charge traps (transports carriers) even when the film thickness is 5 μm or more as described above.
a−0層を形成するための有機ガスとしては、炭化水素
が用いられる。Hydrocarbons are used as the organic gas for forming the a-0 layer.
該炭化水素における相状態は常温常圧において必ずしも
気相である必要はなく、加熱或いは減圧等により溶融、
蒸発、昇華等を経て気化しうるものであれば、液相でも
固相でも使用可能である。The phase state of the hydrocarbon does not necessarily have to be a gas phase at room temperature and normal pressure, but it can be melted by heating or reduced pressure, etc.
As long as it can be vaporized through evaporation, sublimation, etc., either liquid phase or solid phase can be used.
該炭化水素としては、例えば、メタン列炭化水素、エチ
レン列炭化水素、アセチレン列炭化水素、脂環式炭化水
素、芳香族炭化水素等が用いられる。Examples of the hydrocarbons used include methane series hydrocarbons, ethylene series hydrocarbons, acetylene series hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons.
メタン列炭化水素としては、例えば、メタン、エタン、
プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オ
クタン、ノナン、デカン、ウンデカン、ドデカン、トリ
デカン、テトラデカン、ペンタデカン、ヘキサデカン、
ヘプタデカン、オクタデカン、ノナデカン、エイコサン
、ヘンエイコサン、トコサン、トリコサン、テトラコサ
ン、ペンタコサン、ヘキサコサン、ヘプタコサン、オク
タデカン、ノナコサン、トリアコンタン、ドトリアコン
クン、ペンタトリアコンクン、等のノルマルパラフィン
並びに、イソブタン、イソペンタン、ネオペンタン、イ
ソヘキサン、ネオヘキサン、2゜3−ジメチルブタン、
2−メチルヘキサン、3−エチルベンクン、2.2−ジ
メチルペンタン、2゜4−ジメチルペンタン、3.3−
ジメチルペンタン、トリブタン、2−メチルへブタン、
3−メヂルヘブタン、2.2−ジメチルヘキサン、2,
2゜5−ジメチルヘキサン、2,2.3−)ジメチルペ
ンタン、2,2.4−)ジメチルペンタン、2.3゜3
−トリメチルペンタン、2,3.4−トリメチルペンタ
ン、イソナノン、等のイソパラフィン、等が用いられる
。Examples of methane series hydrocarbons include methane, ethane,
Propane, butane, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane,
Normal paraffins such as heptadecane, octadecane, nonadecane, eicosane, heneicosane, tocosane, tricosane, tetracosane, pentacosane, hexacosane, heptacosane, octadecane, nonacosane, triacontane, dotriaconcune, pentatriaconcune, isobutane, isopentane, neopentane, isohexane, Neohexane, 2゜3-dimethylbutane,
2-Methylhexane, 3-ethylbenkune, 2.2-dimethylpentane, 2゜4-dimethylpentane, 3.3-
dimethylpentane, tributane, 2-methylhebutane,
3-methylhebutane, 2.2-dimethylhexane, 2,
2゜5-dimethylhexane, 2,2.3-)dimethylpentane, 2,2.4-)dimethylpentane, 2.3゜3
Isoparaffins such as -trimethylpentane, 2,3,4-trimethylpentane, isonanone, etc. are used.
エチレン列炭化水素としては、例えば、エチレン、プロ
ピレン、イソブチレン、1−ブテン、2−ブテン、l−
ペンテン、2−ペンテン、2−メチル−1−ブテン、3
−メチル−1−ブテン、2−メチル−2−ブテン、1−
ヘキセン、テトラメチルエチレン、1−ヘプテン、l−
オクテン、l−ノネン、l−デセン、等のオレフィン並
びに、アレン、メチルアレン、ブタジェン、ペンタジェ
ン、ヘキサジエン、シクロペンタジェン、等のジオレフ
ィン並びに、オシメン、アロオシメン、ミルセン、ヘキ
サトリエン、等のトリオレフイン、等が用いられる。Examples of ethylene series hydrocarbons include ethylene, propylene, isobutylene, 1-butene, 2-butene, l-
Pentene, 2-pentene, 2-methyl-1-butene, 3
-Methyl-1-butene, 2-methyl-2-butene, 1-
hexene, tetramethylethylene, 1-heptene, l-
Olefins such as octene, l-nonene, l-decene, diolefins such as allene, methylalene, butadiene, pentadiene, hexadiene, cyclopentadiene, and triolefins such as ocimene, allocimene, myrcene, hexatriene, etc. are used.
アセチレン列炭化水素としては、例えば、アセチレン、
メチルアレンレン、l−ブチン、2−ノナン、1−ペン
チン、l−ヘキシン、1−ヘプチン、l−オクチン、l
−ノニン、l−デシン、等が用いられる。Examples of acetylenic hydrocarbons include acetylene,
Methylallenene, l-butyne, 2-nonane, 1-pentyne, l-hexyne, 1-heptyne, l-octyne, l
-nonine, l-decyne, etc. are used.
脂環式炭化水素としては、例えば、シクロプロパン、シ
クロブタン、シクロペンクン、シクロヘキサン、シクロ
へブタン、シクロオクタン、シクロノナン、シクロデカ
ン、シクロウンデカン、シクロドデカン、シクロトリデ
カン、シクロテトラデカン、シクロペンタデカン、シク
ロヘキサデカン、等のシクロパラフィン並びに、シクロ
プロペン、シクロブテン、シクロペンテン、シクロヘキ
セン、シクロヘプテン、シクロオクテン、シクロノネン
、シクロデセン、等のシクロオレフィン並びに、リモネ
ン、テルビルン、フエランドレン、シルベストレン、ツ
エン、カレン、ピネン、ボルニジン、カンフエン、フエ
ンチェン、シクロウンデカン、トリシクレン、ビサボジ
ン、ジンギベジン、クルクメン、フムレン、カジネンセ
スキベニヘン、セリネン、カリオフィレン、ナフタリン
、セドレン、カンホジン、フィロクラテン、ボドヵルブ
レン、ミジン、等のテルペン並びに、ステロイド等が用
いられる。Examples of alicyclic hydrocarbons include cyclopropane, cyclobutane, cyclopencune, cyclohexane, cyclohebutane, cyclooctane, cyclononane, cyclodecane, cycloundecane, cyclododecane, cyclotridecane, cyclotetradecane, cyclopentadecane, cyclohexadecane, and the like. and cycloolefins such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclononene, cyclodecene, limonene, tervirun, phelandrene, sylvestrene, thuene, carene, pinene, bornidine, kanghuen, fuenchen, Terpenes such as cycloundecane, tricyclene, bisabodin, zingibedine, curcumene, humulene, cadinensesquivenichen, selinene, caryophyllene, naphthalene, cedrene, canhodine, phylloclatene, bodocarbrene, midine, and steroids are used.
芳香族炭化水素としては、例えば、ベンゼン、トルエン
、キシレン、ヘミメリテン、プソイドクメン、メシチレ
ン、プレニテン、イソジュレン、ジュレン、ペンタメチ
ルベンゼン、ヘキサメチルベンゼン、エチルベンゼン、
プロピルベンゼン、クメン、スチレン、ビフェニル、テ
ルフェニル、ジフェニルメタン、トリフェニルメタン、
ジベンジル、スチルベン、インデン、ナフタリン、テト
ラリン、アントラセン、フェナントレン、等が用いられ
る。Examples of aromatic hydrocarbons include benzene, toluene, xylene, hemimelithene, pseudocumene, mesitylene, prenitene, isodurene, durene, pentamethylbenzene, hexamethylbenzene, ethylbenzene,
Propylbenzene, cumene, styrene, biphenyl, terphenyl, diphenylmethane, triphenylmethane,
Dibenzyl, stilbene, indene, naphthalene, tetralin, anthracene, phenanthrene, etc. are used.
キャリアガスとしてはH2、Ar、Ne5He等が適当
である。Suitable carrier gases include H2, Ar, Ne5He, and the like.
本発明においては、a−C有機重合膜は、直流、高周波
、マイクロ波プラズマ法等のプラズマ状態を経て形成す
るのが最も好ましいが、その他イオン化蒸着、イオンビ
ーム蒸着等のイオン状態を経て形成してもよいし、真空
蒸着法、スパッタリング法等の中性の粒子から形成して
もよいし、あるいはこれらの組み合わせにより形成して
もよい。In the present invention, it is most preferable to form the a-C organic polymer film through a plasma state such as a direct current, high frequency, or microwave plasma method, but it may also be formed through an ion state such as ionization vapor deposition or ion beam vapor deposition. Alternatively, it may be formed from neutral particles using a vacuum evaporation method, a sputtering method, or a combination thereof.
その際重要なことは、有機重合膜中のメチル基とメチレ
ン基に基づく赤外吸収ピーク比αl/α、が前述したご
とく0.5〜1.5になるように形成することである。What is important in this case is to form the organic polymer film so that the infrared absorption peak ratio αl/α based on methyl groups and methylene groups is 0.5 to 1.5 as described above.
また、電荷発生層は、a−C膜と同様の方法で成膜した
ほうが、製造装置コスト、工程の省力化につながり好ま
しい。Further, it is preferable that the charge generation layer is formed by the same method as the a-C film, as this leads to reductions in manufacturing equipment costs and process labor.
本発明感光体の電荷発生層は特に限定的ではなく、アモ
ルファスシリコン(a−S i)@(特性を変えるため
種々の異種元素、例えばH,C10、S、N、P、B、
ハロゲン、Ge等を含んでいてもよく、また多層構造で
あってもよい)、Se膜、5e−As膜、S e−T
e膜、CdS膜、銅フタロシアニン、酸化亜鉛等の無機
物質および/またはビスアゾ系顔料、トリアリールメタ
ン系染料、チアンン系染料、オキサジン系染料、キサン
チン系染料、ソアニン系色素、スヂリル系色素、ピリリ
ウム系染料、アゾ系顔料、キナクリドン系顔料、インジ
ゴ系顔料、ペリレン系顔料、多環キノン系顔料、ビスベ
ンズイミダゾール系顔料、インダスロン系顔料、スクア
リリウム系顔料、フタロンアニン系顔料等の有機物質を
含有する樹脂膜等が例示される。The charge generation layer of the photoreceptor of the present invention is not particularly limited, and may be made of amorphous silicon (a-Si)@(in order to change the characteristics, various different elements such as H, C10, S, N, P, B,
may contain halogen, Ge, etc., and may have a multilayer structure), Se film, 5e-As film, Se-T
e film, CdS film, copper phthalocyanine, inorganic substances such as zinc oxide and/or bisazo pigments, triarylmethane dyes, chian dyes, oxazine dyes, xanthine dyes, soanine dyes, styryl dyes, pyrylium dyes Resins containing organic substances such as dyes, azo pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, bisbenzimidazole pigments, induthrone pigments, squarylium pigments, and phthalonanine pigments. Examples include membranes and the like.
これ以外にも、光を吸収し極めて高い効率で電荷担体を
発生する材料であれば、いずれの材料であっても使用す
ることができる。In addition, any material that absorbs light and generates charge carriers with extremely high efficiency can be used.
電荷発生層は、感光体のどの位置に設けてもよく、たと
えば最上層、最下層、中間層いずれに設けてもよい。膜
厚は素材の種類、特にその分光吸収特性、露光光源、目
的等にもよるが、一般に550nmの光に対して90%
以上の吸収が得られるように設定される。a−Stの場
合で0.1〜3μmである。The charge generation layer may be provided at any position on the photoreceptor, for example, the top layer, bottom layer, or intermediate layer. The film thickness depends on the type of material, especially its spectral absorption characteristics, exposure light source, purpose, etc., but generally it is 90% for 550 nm light.
The setting is made so that the above amount of absorption can be obtained. In the case of a-St, it is 0.1 to 3 μm.
本発明においては、a−Cm電荷輸送層帯電特性を調節
するために、炭素または水素以外のへテロ原子を混入さ
せてもよい。例えば、正孔の輸送特性をさらに向上させ
るために、周期律表第■異原子あるいはハロゲン原子を
混入してもよい。電子の輸送特性をさらに向上させるた
めに周期律表第V異原子あるいはアルカリ金属原子を混
入してもよい。正負両キャリアの輸送特性をさらに向上
させるために、Si、 Ge、アルカリ土類金属、カル
コゲン原子を混入してもよい。これらの原子は複数用い
てもよいし、目的により電荷輸送層内で特定の位置だけ
に混入してもよいし、濃度分布等を有してもよいが、い
ずれの場合においても重要なことは、該重合膜中のメチ
ル基とメチレン基に基づく赤外吸収ピークの比αI/α
2が前述したごとく0.5〜1.5になるように形成す
ることである。In the present invention, a heteroatom other than carbon or hydrogen may be mixed in order to adjust the charging characteristics of the a-Cm charge transport layer. For example, in order to further improve the hole transport properties, a different atom from No. 1 of the periodic table or a halogen atom may be mixed. In order to further improve the electron transport properties, a group V different atom of the periodic table or an alkali metal atom may be mixed. In order to further improve the transport characteristics of both positive and negative carriers, Si, Ge, alkaline earth metal, or chalcogen atoms may be mixed. A plurality of these atoms may be used, or they may be mixed only at specific positions in the charge transport layer depending on the purpose, or they may have a concentration distribution, etc., but in any case, the important thing is that , the ratio αI/α of infrared absorption peaks based on methyl groups and methylene groups in the polymer film
2 is 0.5 to 1.5 as described above.
第1図から第12図は本発明感光体の一態様を示す模式
的断面図である。図中、(1)は基板、(2)は電荷輸
送層としてのa−C膜、(3)は電荷発生層を示してい
る。第1図に示す態様の感光体において、例えば十帯電
し続いて画像露光すると、電荷発生層(3)でチャージ
キャリアが発生し電子は表面電荷を中和する。一方、正
孔はa−CM(2)の優れた電荷輸送性に保証されて基
板(1)側へ輸送される。第1図の感光体を一帯電で用
いるときは、上記と反対にa−C膜(2)中を電子が輸
送される。1 to 12 are schematic cross-sectional views showing one embodiment of the photoreceptor of the present invention. In the figure, (1) indicates the substrate, (2) the a-C film as a charge transport layer, and (3) the charge generation layer. In the photoreceptor of the embodiment shown in FIG. 1, when the photoreceptor is charged, for example, ten times and then imaged, charge carriers are generated in the charge generation layer (3) and electrons neutralize the surface charges. On the other hand, holes are transported to the substrate (1) side, guaranteed by the excellent charge transport properties of a-CM (2). When the photoreceptor shown in FIG. 1 is used with one charge, electrons are transported through the a-C film (2) in the opposite manner to the above.
第2図の感光体はa−C膜(2)を最上層として用いた
例で、十帯電で用いるときは、a−C膜(2)中を電子
が、−帯電で用いるときはa−C膜(2)中を正孔が輸
送される。The photoreceptor shown in Fig. 2 is an example in which an a-C film (2) is used as the uppermost layer. Holes are transported through the C film (2).
第3図に示す感光体は、a−C1li(2)を電荷発生
層(3)の上下に用いた例で、十帯電で使用する時は、
上層のa−G膜(2)中を電子が、下層のa −C膜(
2)中を正孔が輸送され、−帯電で用いるときは、上層
のa−C膜(2)中を正孔が、下層のa −C膜(2)
中を電子が輸送される。The photoreceptor shown in FIG. 3 is an example in which a-C1li (2) is used above and below the charge generation layer (3), and when used with ten charges,
Electrons pass through the upper a-G film (2) and the lower a-C film (
2) Holes are transported through the upper a-C film (2), and when used with - charging, the holes are transported through the upper a-C film (2) and the lower a-C film (2).
Electrons are transported inside.
第4〜6図に示す感光体は、第1図から第3図において
示した感光体においてさらにオーバーコート層(4)と
して厚さ0.01〜5μmの表面保護層を設けた例で、
感光体が使用されるシステムおよび環境に応じて電荷発
生層(3)あるいは電荷輸送層a−C膜(2)の保護と
初期表面電位の向上を図ったものである。表面保護層は
公知の物質を用いればよく、本発明においては、有機プ
ラズマ重合によって設けることが製造工程の面等から望
ましい。本発明a−C膜を使用してもよい。この保護層
(4)にも必要に上りへテロ原子を混入してもよい。The photoreceptors shown in FIGS. 4 to 6 are examples of the photoreceptors shown in FIGS. 1 to 3 in which a surface protective layer with a thickness of 0.01 to 5 μm is further provided as an overcoat layer (4).
This is intended to protect the charge generation layer (3) or the charge transport layer a-C film (2) and improve the initial surface potential depending on the system and environment in which the photoreceptor is used. The surface protective layer may be formed of any known material, and in the present invention, it is desirable to provide it by organic plasma polymerization from the viewpoint of the manufacturing process. The a-C membranes of the present invention may also be used. This protective layer (4) may also contain upward heteroatoms if necessary.
第7〜9図に示す感光体は、第1図から第3図において
示した感光体においてさらにアンダーコート層(5)と
して厚さ0.01〜5μmの接着層あるいは障壁層を設
けた例で、用いる基板(1)またはその処理方法に応じ
て接着性または注入防止効果を図ったものである。The photoreceptors shown in FIGS. 7 to 9 are examples of the photoreceptors shown in FIGS. 1 to 3 in which an adhesive layer or barrier layer with a thickness of 0.01 to 5 μm is further provided as an undercoat layer (5). , the adhesion or injection prevention effect is aimed at depending on the substrate (1) used or its processing method.
アンダーコート層は公知の材料を用いればよく、この場
合も有機プラズマ重合法によって設ける事が望ましい。The undercoat layer may be made of a known material, and in this case as well, it is desirable to provide it by organic plasma polymerization.
本発明によるa−C膜を用いてもよい。更に第7〜9図
の感光体には第4〜6図で示したオーバーコート層(4
)を設けてもよい(第1O図〜第12図)。An a-C film according to the invention may also be used. Furthermore, the photoreceptor shown in FIGS. 7 to 9 is coated with an overcoat layer (4) shown in FIGS. 4 to 6.
) may be provided (Figures 1O to 12).
本発明感光体は電荷発生層と電荷輸送層とを有する。従
ってこれを製造するには少なくとも二工程を必要とする
。電荷発生層として、例えばグロー放電分解装置を用い
て形成したa −S i層を用いるときは、同一の真空
装置を用いてプラズマ重合を行なうことが可能であり、
従ってa−C電荷輸送層や表面保護層、バリア一層等は
プラズマ重合法により行なうのが特に好ましい。The photoreceptor of the present invention has a charge generation layer and a charge transport layer. Therefore, at least two steps are required to manufacture it. When using, for example, an a-Si layer formed using a glow discharge decomposition device as the charge generation layer, it is possible to perform plasma polymerization using the same vacuum device,
Therefore, it is particularly preferable to form the a-C charge transport layer, the surface protective layer, the barrier layer, etc. by plasma polymerization.
本発明による電子写真感光体の電荷輸送層は、例えば、
気相状態の分子を減圧下で放電分解し、発生したプラズ
マ雰囲気中に含まれる活性中性種あるいは荷電種を基板
上に拡散、電気力、あるいは磁気力等により誘導し、基
板上での再結合反応により固相として堆積させる、所謂
プラズマ重合反応から生成されることが好ましい。The charge transport layer of the electrophotographic photoreceptor according to the present invention includes, for example,
Molecules in the gas phase are decomposed by discharge under reduced pressure, and activated neutral species or charged species contained in the generated plasma atmosphere are diffused onto the substrate, induced by electric force, magnetic force, etc., and regenerated on the substrate. It is preferably produced from a so-called plasma polymerization reaction, in which it is deposited as a solid phase by a bonding reaction.
第13図および第14図は本発明に係る感光体の製造装
置で容量結合型プラズマCVD装置を示す。第13図は
平行平板型プラズマCVD装置、第14図は円筒型プラ
ズマCVD装置を示す。FIGS. 13 and 14 show a capacitively coupled plasma CVD apparatus which is a photoreceptor manufacturing apparatus according to the present invention. FIG. 13 shows a parallel plate plasma CVD apparatus, and FIG. 14 shows a cylindrical plasma CVD apparatus.
まず、第13図を用いて説明する。First, explanation will be given using FIG. 13.
第13図中、(701)〜(706)は常温において気
相状態にある原料化合物及びキャリアガスを密封した第
1乃至第6タンクで、各々のタンクは第1乃至第6調節
弁(707)〜(712)と第1乃至第6流量制御器(
713)〜(71g)に接続されている。In FIG. 13, (701) to (706) are the first to sixth tanks in which the raw material compound and carrier gas, which are in a gas phase at room temperature, are sealed, and each tank is connected to the first to sixth control valves (707). ~ (712) and the first to sixth flow rate controllers (
713) to (71g).
図中、(719)〜(721)は常温において液相また
は固相状態にある原料化合物を封入した第1乃至第3容
器で、各々の容器は気化のため第1乃至第3加熱IK(
722)〜(724)により与熱可能であり、さらに各
々の容器は第7乃至第9調節弁(725)〜(727)
と第7乃至第9流量制御器(72111)〜(730)
に接続されている。In the figure, (719) to (721) are first to third containers filled with raw material compounds that are in a liquid or solid phase at room temperature, and each container has a first to third heating IK (
722) to (724), and each container has seventh to ninth control valves (725) to (727).
and seventh to ninth flow rate controllers (72111) to (730)
It is connected to the.
これらのガスは混合器(731)で混合された後、主管
(732)を介して反応室(733)に送り込まれる。These gases are mixed in a mixer (731) and then sent into a reaction chamber (733) via a main pipe (732).
途中の配管は、常温において液相または固相状態にあっ
た原料化合物が気化したガスが、途中で凝結しないよう
に、適宜配置された配管加熱器(734)により、与熱
可能とされている。The pipes along the way can be heated by appropriately placed pipe heaters (734) so that the gas, which is the vaporized raw material compound that is in a liquid or solid state at room temperature, does not condense on the way. .
反応室内には接地電極(735)と電力印加電極(73
6)が対向して設置され、各々の電極は電極加熱器(7
37)により与熱可能とされている。Inside the reaction chamber, there is a ground electrode (735) and a power application electrode (73).
6) are installed facing each other, and each electrode is connected to an electrode heater (7).
37) allows for heating.
電力印加電極には、高周波電力用整合器(73g)を介
して高周波電源(739)、低周波電力用整合機(74
0)を介して低周波電源(741)、ローパスフィルタ
(742)を介して直流電源(743)が接続されてお
り、接続選択スイッチ(744)により周波数の異なる
電力が印加可能とされている。The power application electrode is connected to a high frequency power source (739) and a low frequency power matching device (74) via a high frequency power matching device (73g).
A low frequency power source (741) is connected through a low-frequency power source (741) and a DC power source (743) is connected through a low-pass filter (742), and power with different frequencies can be applied by a connection selection switch (744).
反応室内の圧力は圧力制御弁(745)により調整可能
であり、反応室内の減圧は、排気系選択弁(746)を
介して、拡散ポンプ(747)、油回転ポンプ(748
)、或いは冷却除外装置(749)、メカニカルブース
ターポンプ(750)、油回転ポンプにより行われる。The pressure inside the reaction chamber can be adjusted by a pressure control valve (745), and the pressure inside the reaction chamber can be reduced by using a diffusion pump (747) and an oil rotary pump (748) through an exhaust system selection valve (746).
), or by a cooling exclusion device (749), mechanical booster pump (750), or oil rotary pump.
排ガスについては、さらに適当な除外装置(753)に
より安全無害化した後、大気中に排気される。The exhaust gas is further rendered safe and harmless by an appropriate exclusion device (753) before being exhausted into the atmosphere.
これら排気系配管についても、常温において液相または
固相状態にあった原料化合物が気化したガスが、途中で
凝結しないように、適宜配置された配管加熱器により、
与熱可能とされている。These exhaust system pipings are also heated by appropriately placed piping heaters to prevent the vaporized gas from the raw material compounds, which are in a liquid or solid phase at room temperature, from condensing on the way.
It is said that heating is possible.
反応室ら同様の理由から反応室加熱1K(751)によ
り与熱可能とされ、内部に配された電極上に導電性基板
(752)が設置される。For the same reason as the reaction chamber, it is possible to heat the reaction chamber by heating 1K (751), and a conductive substrate (752) is installed on the electrode arranged inside the reaction chamber.
第13図において導電性基板(752)は接地電極(7
35)に固定して配されているが、電力印加電極(73
B)に固定して配されてもよく、更に双方に配されてい
てもよい。In FIG. 13, the conductive substrate (752) is the ground electrode (752).
35), but the power application electrode (73
B) may be fixedly arranged, or may be further arranged on both sides.
第14図に示した装置も基本的には第13図に示した装
置と同様であり、反応室(733)内の形態が基板(7
52)が円筒形であることに応じて、変更されているも
のである。基板は接地電極(735)を兼ね、電力印加
電極(736)及び電極加熱器(737)共に円筒形態
をなしている。The apparatus shown in FIG. 14 is basically the same as the apparatus shown in FIG. 13, and the shape of the inside of the reaction chamber (733) is
52) is changed in accordance with the fact that it is cylindrical. The substrate also serves as a ground electrode (735), and both the power application electrode (736) and electrode heater (737) have a cylindrical shape.
以上の構成において、反応室は、拡散ポンプ(747)
により予め1O−4乃至10−F′程度にまで減圧し、
真空度の確認と装置内部に吸着したガスの脱着を行う。In the above configuration, the reaction chamber includes a diffusion pump (747)
Reduce the pressure in advance to about 10-4 to 10-F' by
Check the degree of vacuum and desorb the gas adsorbed inside the device.
同時に電極加熱器(737)により、電極(736)並
びに電極に固定して配された導電性基板(752)を所
定の温度まで昇温する。At the same time, the electrode heater (737) heats the electrode (736) and the conductive substrate (752) fixedly disposed on the electrode to a predetermined temperature.
次いで、第1乃至第6タンク(701)〜(706)及
び第1乃至第3容器(719)〜(721)から原料ガ
スを第1乃至第9流量制御器(713)〜(718)、
(728)〜(730)を用いて定流量化しながら反応
室(733)に導入し、圧力調節弁により反応室(73
3)内を一定の減圧状態に保つ。Next, the raw material gas is transferred from the first to sixth tanks (701) to (706) and the first to third containers (719) to (721) to the first to ninth flow rate controllers (713) to (718),
(728) to (730) to introduce it into the reaction chamber (733) at a constant flow rate, and then use the pressure control valve to introduce it into the reaction chamber (733).
3) Maintain a constant reduced pressure inside.
ガス流量が安定化した後、接続選択スイッチ(744)
により、たとえば高周波電源(739)を選択し、電力
印加電極(736)に高周波電力を投入する。After the gas flow rate has stabilized, press the connection selection switch (744)
For example, a high frequency power source (739) is selected, and high frequency power is applied to the power application electrode (736).
両電極間には放電が開始され、時間と共に基板(752
)上に固相のa−C膜が形成される。A discharge starts between both electrodes, and as time passes, the substrate (752
) a solid-phase a-C film is formed on the top.
この電荷輸送層は本発明により生成した前述のα、/α
、比が0.5〜1.5であることを特徴とする。このα
I/α、比は製造条件、例えば、電力、電源周波数、電
極間隔、圧力、基板温度、原料ガス、ガス濃度、ガス流
量等により制御することができる。例えば、電力を上げ
ることでメチル基の数を減らしα、/α、比の値を小さ
くすることができる。同様の制御は、電極間隔を狭くす
る、基板温度を高くする、圧力を高くする、原料ガスの
分子爪を低くする、ガス流量を多くすること等で可能で
ある。また、直流電源(743)から50V−IKVの
バイアス電圧を重畳印加しても同様の制御か可能である
。勿論、制御の方向を逆にすれば、逆の効果が得られる
。これらの制御手法は、該電荷輸送層に、さらなる特性
、例えば、硬度、透光性等を付与する目的から、あるい
は製造上の安定性を確保する目的から、複数の手法を°
適宜採用すればよい。This charge transport layer is the above-mentioned α, /α produced by the present invention.
, the ratio is 0.5 to 1.5. This α
The I/α ratio can be controlled by manufacturing conditions such as electric power, power frequency, electrode spacing, pressure, substrate temperature, source gas, gas concentration, gas flow rate, etc. For example, by increasing the power, the number of methyl groups can be reduced and the value of α, /α, ratio can be reduced. Similar control can be achieved by narrowing the electrode spacing, increasing the substrate temperature, increasing the pressure, lowering the molecular claw of the source gas, increasing the gas flow rate, etc. Further, similar control is possible even if a bias voltage of 50V-IKV is superimposed and applied from the DC power supply (743). Of course, the opposite effect can be obtained by reversing the direction of control. These control methods include multiple methods for the purpose of imparting additional properties, such as hardness and translucency, to the charge transport layer, or for the purpose of ensuring manufacturing stability.
It may be adopted as appropriate.
以下、実施例を挙げて本発明を説明する。The present invention will be explained below with reference to Examples.
実施例1
(1)(a−0層の形成)
第13図に示すグロー放電分解装置において、まず、反
応室(733)の内部を10−8Torr程度の高真空
にした後、第1および第2調整弁(707)および(7
0g)を開放し、第1タンク(701)よりCIH,ガ
ス、第2タンク(702)よりH,ガスを出力圧ゲージ
IKg/cm”の下でマスフローコントローラ(713
)および(714)内へ流入させた。そして、各マスフ
ローコントローラの目盛を調整して、CtHhの流量を
30secm、 Haを40secmとなるように設定
して反応室(733)内へ流入した。夫々の流量が安定
した後に、反応室(723)の内圧が0 、5 Tor
rとなるように調整した。一方、導電性基板(752)
としては、3X50Xb
用いて250℃に予じめ加熱しておき、各ガス流量が安
定し、内圧が安定した状態で高周波電源(739)を投
入し電力印加電極(736)にl OOwattsの電
力(周波数13.56MI[z)を印加して約4時間プ
ラズマ重合を行ない、導電性基板(752)上に、厚さ
約7μmの電荷輸送層を形成した。Example 1 (1) (Formation of a-0 layer) In the glow discharge decomposition apparatus shown in FIG. 2 regulating valves (707) and (7
0g/cm), CIH gas is supplied from the first tank (701), and H gas is supplied from the second tank (702) to the mass flow controller (713) under the output pressure gauge IKg/cm".
) and (714). Then, the scales of each mass flow controller were adjusted, and the flow rates of CtHh and Ha were set to 30 sec and 40 sec, respectively, and flowed into the reaction chamber (733). After each flow rate stabilizes, the internal pressure of the reaction chamber (723) becomes 0 and 5 Torr.
It was adjusted to be r. On the other hand, a conductive substrate (752)
For example, preheat to 250°C using 3X50Xb, and when the flow rate of each gas is stable and the internal pressure is stable, turn on the high frequency power supply (739) and apply 1 OOwatts of power to the power application electrode (736). Plasma polymerization was performed for about 4 hours by applying a frequency of 13.56 MI [z) to form a charge transport layer with a thickness of about 7 μm on the conductive substrate (752).
以上のようにして得られたa−C@をフーリエ変換赤外
吸収分光装置(パーキン・ニルマー製)で測定したスペ
クトルチャートを第15図に示す。第15図中、aは2
925cm−’の、bは2960cm−’の透過率ピー
クである。測定は、a−C膜をKBr上に載置し、解像
度2cm−’で測定した。式[1]よりa−C膜の赤外
吸収ピーク比α、(2960)/α、(2925)は0
.92であった。FIG. 15 shows a spectrum chart obtained by measuring a-C@ obtained as described above with a Fourier transform infrared absorption spectrometer (manufactured by Perkin-Nilmer). In Figure 15, a is 2
925 cm-', b is the transmittance peak at 2960 cm-'. The measurement was performed by placing the a-C film on KBr and measuring at a resolution of 2 cm-'. From formula [1], the infrared absorption peak ratio α, (2960)/α, (2925) of the a-C film is 0.
.. It was 92.
(II) (?(を荷発生層の形成)高周波電源(7
39)からの電力印加を一次停止し、反応室の内部を真
空にした。(II) (? (Formation of charge generation layer) High frequency power source (7
39) was temporarily stopped, and the inside of the reaction chamber was evacuated.
第4および第2調整弁(710)および(708)を開
放し、第4タンク(704)よりS ’r Haガス、
第2タンク(702)からH,ガスを出力圧ゲージIK
g/cm”の下でマスフローコントローラ(716)お
よび(714)内へ流入させた。各マスフローコントロ
ーラの目盛を調整して、SiH*の流量を90sccm
SHtの流量を210secmに設定し、反応室に流入
させた。The fourth and second regulating valves (710) and (708) are opened, and S'r Ha gas is discharged from the fourth tank (704).
Output pressure gauge IK for H and gas from the second tank (702)
g/cm" into the mass flow controllers (716) and (714). The scale of each mass flow controller was adjusted to control the flow rate of SiH* to 90 sccm.
The flow rate of SHt was set at 210 sec, and the SHt was allowed to flow into the reaction chamber.
夫々の流量が安定した後に、反応室(7:L()の内圧
が1.0Torrとなるよう調整した。After each flow rate became stable, the internal pressure of the reaction chamber (7:L) was adjusted to 1.0 Torr.
ガス流量が安定し、内圧が安定した状態で高周波電源(
739)を投入し、電力印加電極(736)に150W
の電力(周波数13.56MHz)を印加してグロー放
電を発生させた。このグロー放電を40分間行ない厚さ
1μmのa−Si:H電荷発生層を形成させた。When the gas flow rate is stable and the internal pressure is stable, turn on the high frequency power supply (
739) and apply 150W to the power application electrode (736).
electric power (frequency: 13.56 MHz) was applied to generate glow discharge. This glow discharge was performed for 40 minutes to form a 1 μm thick a-Si:H charge generation layer.
得られた感光体は初期表面電位(VO)=−300vo
ltのときの半減露光量E1/2は0.25(2ux・
secであった。また、この感光体に対して作像して転
写したところ、鮮明な画像が得られた。The obtained photoreceptor had an initial surface potential (VO) of -300vo
The half-reduction exposure amount E1/2 at lt is 0.25 (2ux・
It was sec. Furthermore, when an image was formed and transferred onto this photoreceptor, a clear image was obtained.
実施例2
(I) 第14図に示すグロー放電分解装置において
、まず、反応室(733)の内部をl O−’ Tor
r程度の高真空にした後、第1および第2調整弁(70
7)および(70g)を開放し、第1タンク(701)
よりC5Hzガス、第2タンク(702)よりH,ガス
を出力圧ゲージIKg/cm2の下でマスフローコント
ローラ(713)および(714)内へ流入させた。そ
して、各マスフローコントローラの目盛1m整して、C
t Htの流量を90secm、 t(tを120 s
ecmとなるように設定して反応室(733)内へ流入
した。夫々の流量が安定した後に、反応室(733)の
内圧が1.0Torrとなるように調整した。一方、導
電性円筒基板(752)としては、直径60u×長さ2
80j11のアルミニウム管を用いて200℃に予じめ
加熱しておき、各ガス流量が安定し、内圧が安定した状
態で高周波電源(739)を投入し電力印加電極(73
6)に100 wattsの電力(周波数13.56M
Hz)を印加して約7時間プラズマ重合を行ない、導電
性円筒基板(752)上に、赤外吸収ピーク比α1/α
2(2960)/α、(2925)が0.80なる厚さ
約10μIの電荷輸送層を形成した。Example 2 (I) In the glow discharge decomposition apparatus shown in FIG. 14, first, the inside of the reaction chamber (733) was heated to
After creating a high vacuum of about r, the first and second regulating valves (70
7) and (70g), and open the first tank (701).
C5Hz gas from the second tank (702) and H gas from the second tank (702) were flowed into the mass flow controllers (713) and (714) under an output pressure gauge of I kg/cm2. Then, adjust the scale of each mass flow controller by 1 m, and
t Ht flow rate is 90 sec, t (t is 120 s
ecm and flowed into the reaction chamber (733). After each flow rate became stable, the internal pressure of the reaction chamber (733) was adjusted to 1.0 Torr. On the other hand, the conductive cylindrical substrate (752) has a diameter of 60u and a length of 2
A 80j11 aluminum tube is heated in advance to 200°C, and when the flow rate of each gas is stable and the internal pressure is stable, the high frequency power source (739) is turned on and the power application electrode (73
6) 100 watts of power (frequency 13.56M
Hz) was applied for about 7 hours, and an infrared absorption peak ratio α1/α was applied on the conductive cylindrical substrate (752).
A charge transport layer having a thickness of about 10 μI with 2(2960)/α and (2925) of 0.80 was formed.
(II) 高周波電源(739)からの電力印加を一
次停正し、反応室の内部を真空にした。(II) The application of power from the high frequency power source (739) was temporarily stopped, and the inside of the reaction chamber was evacuated.
第4および第2調整弁(710)および(70g)を開
放し、第4タンク(704)よりS i H、ガス、第
2タンク(702)からH,ガスを出力圧ゲージ1Kg
/cm”の下でマスフローコントローラ(716)およ
び(714)内へ流入させた。各マスフローコントロー
ラの目盛を調整して、SiH,の流量を90 secm
SHtの流量を400 secmに設定し、反応室に流
入させた。夫々の流量が安定した後に、反応室(733
)の゛内圧が1.0Torrとなるよう調整した。Open the fourth and second regulating valves (710) and (70g), and output S i H gas from the fourth tank (704) and H gas from the second tank (702) to an output pressure gauge of 1 kg.
/cm" into the mass flow controllers (716) and (714). The scale of each mass flow controller was adjusted to adjust the flow rate of SiH to 90 sec.
The flow rate of SHt was set to 400 sec, and it was allowed to flow into the reaction chamber. After each flow rate stabilizes, the reaction chamber (733
) was adjusted so that the internal pressure was 1.0 Torr.
ガス流量が安定し、内圧が安定した状態で高周波電源(
739)を投入し、電力印加電極(736)に150W
の電力(周波数13.56MHz)を印加してグロー放
電を発生させた。このグロー放電を40分間行ない厚さ
1μmのa−8t:H電荷発生層を形成させた。When the gas flow rate is stable and the internal pressure is stable, turn on the high frequency power supply (
739) and apply 150W to the power application electrode (736).
electric power (frequency: 13.56 MHz) was applied to generate glow discharge. This glow discharge was performed for 40 minutes to form a 1 μm thick a-8t:H charge generation layer.
得られた感光体は初期表面電位(V o) = −60
0voltのときの半減露光量E1/2は0.31+2
ux−secであった。また、この感光体に対して作像
して転写したところ、鮮明な画像が得られた。The obtained photoreceptor has an initial surface potential (Vo) = -60
The half-decreased exposure amount E1/2 at 0 volt is 0.31+2
It was ux-sec. Furthermore, when an image was formed and transferred onto this photoreceptor, a clear image was obtained.
実施例3
CI) 第13図に示すグロー放電分解装置において
、まず、反応室(733)の内部をl O’−” To
rr程度の高真空にした後、第1および第2調整弁(7
07)および(708)を開放し、第1タンク(701
)よりCH4ガス、第2タンク(702)よりH,ガス
を出力圧ゲージIKg/cm″の下でマスフローコント
ローラ(713)および(714)内へ流入させた。そ
して、各マスフローコントローラの目盛を調整して、C
H,の流量を40 scc+n、 H、を50 scc
mとなるように設定して反応室(733)内へ流入した
。夫々の流量が安定した後に、反応室(733)の内圧
が0.8T orrとなるように調整した。一方、導電
性基板(752)としては、3x50x50mn+のア
ルミニウム板を用いて300℃に予じめ加熱しておき、
各ガス流量が安定し、内圧が安定した状態で高周波電源
(739)を投入し電力印加電極(736)に300w
attsの電力(周波数13.56MH2)を印加して
約12時間プラズマ重合を行ない、導電性基板(752
)上に赤外吸収ピーク比α、(2960)/αバ292
5)が1.15なる厚さ約9μ肩の電荷輸送層を形成し
た。Example 3 CI) In the glow discharge decomposition apparatus shown in FIG. 13, first, the inside of the reaction chamber (733) was
After creating a high vacuum of about rr, open the first and second regulating valves (7
07) and (708), and open the first tank (701).
) from the second tank (702) and H gas from the second tank (702) into the mass flow controllers (713) and (714) under the output pressure gauge IKg/cm''.Then, the scale of each mass flow controller was adjusted. Then, C
The flow rate of H is 40 scc+n, and the flow rate of H is 50 scc.
m, and flowed into the reaction chamber (733). After each flow rate became stable, the internal pressure of the reaction chamber (733) was adjusted to 0.8 Torr. On the other hand, as the conductive substrate (752), a 3x50x50mn+ aluminum plate was used and preheated to 300°C.
When the flow rate of each gas is stable and the internal pressure is stable, turn on the high frequency power supply (739) and apply 300W to the power application electrode (736).
Atts electric power (frequency 13.56 MH2) was applied to perform plasma polymerization for about 12 hours, and the conductive substrate (752 MH2
) above is the infrared absorption peak ratio α, (2960)/α 292
5) was 1.15, and a charge transport layer having a thickness of approximately 9 μm was formed.
(n) 高周波電源(739)からの電力印加を停止
し、反応室の内部を充分排気した後、リークし試料を取
り出した。次いで、別の真空蒸着装置でA s x S
1143を抵抗加熱法にて約3μmの膜厚となるよう
に、工程(I)で設けた電荷輸送層に積層した。(n) After stopping the application of power from the high-frequency power source (739) and sufficiently exhausting the interior of the reaction chamber, leakage occurred and the sample was taken out. Then, in another vacuum evaporation device, A s x S
1143 was laminated on the charge transport layer provided in step (I) using a resistance heating method to a thickness of about 3 μm.
得られた感光体は初期表面電位(V o) = + 6
50voltのときの半減露光””’1/2は0.23
(2ux・secであった。また、この感光体に対して
作像して転写したところ、鮮明な画像が得られた。The obtained photoreceptor has an initial surface potential (Vo) = + 6
Half-exposure ""'1/2 at 50 volts is 0.23
(2ux·sec) When an image was formed and transferred onto this photoreceptor, a clear image was obtained.
実施例4
(1) 第14図に示すグロー放電分解装置において
、まず、反応室(733)の内部を10−6Torr程
度の高真空にした後、第1ないし第3調整弁(707)
ないしく709)を開放し、第1タンク(701)より
C,H,ガス、第2タンク(702)よりCH、ガス、
第3タンク(7(13)よりH,ガスを出力圧ゲージI
Kg/cm”の下でマスフローコントローラ(713)
ないしく715)内へ流入させた。そして、各マスフロ
ーコントローラの目盛を調整して、C,I−1,の流m
を55sccm、 CH4を60sccm、 FItを
100 sccmとなるように設定して反応室(733
)内へ流入した。Example 4 (1) In the glow discharge decomposition apparatus shown in FIG. 14, first, the inside of the reaction chamber (733) is made into a high vacuum of about 10-6 Torr, and then the first to third regulating valves (707)
or 709), C, H, gas from the first tank (701), CH, gas, from the second tank (702),
Output pressure gauge I for H and gas from the third tank (7 (13))
Mass flow controller (713) under “Kg/cm”
or 715). Then, by adjusting the scale of each mass flow controller, the flow m of C, I-1,
Set the reaction chamber (733 sccm) to 55 sccm, CH4 to 60 sccm, and FIt to 100 sccm
) flowed into the interior.
夫々の流量が安定した後に、反応室(733)の内圧が
2 、 Otorrとなるように調整した。一方、導電
性円筒型基板(752)としては、直径80 mms長
さ320mmのアルミニウム管を用いて250℃に予じ
め加熱しておき、各ガス流量が安定し、内圧が安定した
状態で高周波電源(739)を投入し、電力印加電極(
736)に、200 wattsの電力(周波数13.
56MH2)を印加して約3時間プラズマ重合を行ない
、導電性円筒型基板(752)上に、赤外吸収ピーク比
α、(2960)/α、(2925)が1゜02なる厚
さ約5μ肩の電荷輸送層を形成した。After each flow rate became stable, the internal pressure of the reaction chamber (733) was adjusted to 2.0 Torr. On the other hand, as the conductive cylindrical substrate (752), an aluminum tube with a diameter of 80 mm and a length of 320 mm is used, which is heated to 250°C in advance. Turn on the power supply (739) and connect the power application electrode (
736), 200 watts of power (frequency 13.
56MH2) was applied for about 3 hours to perform plasma polymerization for about 3 hours, and a layer with a thickness of about 5μ with an infrared absorption peak ratio α, (2960)/α, (2925) of 1°02 was formed on the conductive cylindrical substrate (752). A shoulder charge transport layer was formed.
(IT) 高周波電源(739)からの電力印加を一
次停止し、反応室の内部を真空にした。(IT) The application of power from the high frequency power source (739) was temporarily stopped, and the inside of the reaction chamber was evacuated.
第4および第3調整弁(710)および(709)を開
放し、第4タンク(704)より5il−14ガス、第
3タンク(703)から1−1 tガスを出力圧ゲージ
I Kg/cm”の下でマスフローコントローラ(71
0)オよび(709)内へ流入させた。各マスフローコ
ントローラの目盛を調整して、SiH,の流量を90s
ecm、 H2の流量を400secmに設定し、反応
室に流入させた。Open the fourth and third regulating valves (710) and (709), and output 5 il-14 gas from the fourth tank (704) and 1-1 t gas from the third tank (703) to the output pressure gauge I Kg/cm. ” under the mass flow controller (71
0) and (709). Adjust the scale of each mass flow controller to adjust the flow rate of SiH for 90 seconds.
ecm, the flow rate of H2 was set to 400 sec, and was allowed to flow into the reaction chamber.
また同様にして第5タンク(705)よりHlで50p
pm濃度に希釈されたB t HeガスをlO105c
流入さ仕た。夫々の流量が安定した後に、反応室(73
3)の内圧が1.0Torrとなるよう調整した。Similarly, from the 5th tank (705), use Hl for 50p.
B t He gas diluted to pm concentration was
The influx was made. After each flow rate is stabilized, the reaction chamber (73
3) The internal pressure was adjusted to 1.0 Torr.
ガス流量が安定し、内圧が安定した状態で高周波電源(
739)を投入し、円筒型電力印加電極(736)に1
50Wの電力(周波数13.56MHz)を印加してグ
ロー放電を発生させた。このグロー放電を40分間行な
い厚さ1μmのa−9i:H電荷発生層を形成させた。When the gas flow rate is stable and the internal pressure is stable, turn on the high frequency power supply (
739) and 1 to the cylindrical power application electrode (736).
A glow discharge was generated by applying a power of 50 W (frequency 13.56 MHz). This glow discharge was performed for 40 minutes to form a 1 μm thick a-9i:H charge generation layer.
得られた感光体は初期表面電位(Vo)=+450vo
ltのときの半減露光量E1/2は0.25σux’s
ecであった。また、この感光体に対して作像して転写
したところ、鮮明な画像が得られた。The obtained photoreceptor had an initial surface potential (Vo) = +450vo
The half-decreased exposure amount E1/2 at lt is 0.25σux's
It was ec. Furthermore, when an image was formed and transferred onto this photoreceptor, a clear image was obtained.
実施例5
(I) 第13図に示すグロー放電分解装置において
、まず、反応室(733)の内部をI O−’ Tor
r程度の高真空にした後、第6及び第7調整弁(712
)及び(725)を開放し、第6タンク(706)より
Heガス、第1容器(719)よりスチレンガスをマス
フローコントローラ(71g)ないしく728)内へ流
入させた。Example 5 (I) In the glow discharge decomposition apparatus shown in FIG. 13, first, the inside of the reaction chamber (733) was heated to
After creating a high vacuum of about r, the sixth and seventh regulating valves (712
) and (725) were opened, and He gas from the sixth tank (706) and styrene gas from the first container (719) were allowed to flow into the mass flow controllers (71g) to 728).
第1容器(719)は第1加熱器(722)により約5
0°Cに加熱した状態で用いた。そして、各マスフロー
コントローラの目盛を調整して、スチレンの流量を18
secm、Heを30 secmとなるように設定して
反応室(733)内へ流入した。夫々の流量が安定した
後に、反応室(733)の内圧が0 、 S tart
となるように調整した。一方、導電性基板(752)と
しては、3X50X5(1+iのアルミニウム板を用い
て50℃に予じめ加熱しておき、各ガス流量が安定し、
内圧が安定した状態で低周波電源(741)を投入し電
力印加電極(736)にI 50 wattsの電力(
周波数30K)Tz)を印加して約40分間プラズマ重
合を行ない、導電性基板(752)上に、赤外吸収ピー
ク比α、(2960)/αバ2925)が0゜85なる
厚さ約5μ屑の電荷輸送層を形成した。The first container (719) is heated by the first heater (722) to
It was used heated to 0°C. Then, adjust the scale of each mass flow controller to increase the flow rate of styrene to 18
secm, and He was set to 30 secm and flowed into the reaction chamber (733). After each flow rate becomes stable, the internal pressure of the reaction chamber (733) becomes 0 and Start
It was adjusted so that On the other hand, as the conductive substrate (752), a 3x50x5 (1+i) aluminum plate is used and heated to 50°C in advance to stabilize the flow rate of each gas.
When the internal pressure is stable, turn on the low frequency power supply (741) and apply a power of I 50 watts to the power application electrode (736).
Plasma polymerization is carried out for about 40 minutes by applying a frequency of 30 K) Tz), and a layer of about 5 μm in thickness with an infrared absorption peak ratio α, (2960)/α 2925) of 0°85 is formed on the conductive substrate (752). A charge transport layer of debris was formed.
(■)低周波電源(741)からの電力印加を一次停止
し、反応室の内部を真空にした。(■) The application of power from the low frequency power source (741) was temporarily stopped, and the inside of the reaction chamber was evacuated.
第4および第3調整弁(710)および(709)を開
放し、第4タンク(704)よりSiH,ガス、第3タ
ンク(703)からH,ガスを出力圧ゲージIKg/a
m”の下でマスフローコントローラ(716)および(
715)内へ流入させた。各マスフローコントローラの
目盛を調整して、SiH<の流量を90secm、 H
,の流量を210secmに設定し、反応室に流入させ
た。夫々の流量が安定した後に、反応室(733)の内
圧が1.0Torrとなるよう調整した。Open the fourth and third regulating valves (710) and (709), and output SiH and gas from the fourth tank (704), and H and gas from the third tank (703) through the output pressure gauge IKg/a.
mass flow controller (716) and (
715). Adjust the scale of each mass flow controller to set the flow rate of SiH< to 90 sec, H
, was set at 210 sec to flow into the reaction chamber. After each flow rate became stable, the internal pressure of the reaction chamber (733) was adjusted to 1.0 Torr.
ガス流量が安定し、内圧が安定した状態で高周波電源(
739)を投入し、電力印加電極(73B)に150W
の電力(周波数13.56MH2)を印加してグロー放
電を発生させた。このグロー放電を40分間行ない厚さ
1μmのa−9i:H電荷発生層を形成させた。When the gas flow rate is stable and the internal pressure is stable, turn on the high frequency power supply (
739) and applied 150W to the power application electrode (73B).
electric power (frequency: 13.56 MH2) was applied to generate glow discharge. This glow discharge was performed for 40 minutes to form a 1 μm thick a-9i:H charge generation layer.
得られた感光体は初期表面電位(Vo)=−so。The obtained photoreceptor had an initial surface potential (Vo)=-so.
voltのときの半減露光量Et 72は0.39(2
ux−secであった。また、この感光体に対して作像
して転写したところ、鮮明な画像が得られた。The half-decreased exposure amount Et 72 at the time of volt is 0.39 (2
It was ux-sec. Furthermore, when an image was formed and transferred onto this photoreceptor, a clear image was obtained.
実施例6
(1) 第14図に示すグロー放電分解装置において
、まず、反応室(733)の内部をI O−” Tor
r程度の高真空にした後、第1ないし第3調整弁(70
7)ないしく709)を開放し、第1タンク(701)
よりC2H4ガス、第2タンク(702)よりブタジェ
ンガス、第3タンク(703)よりF(2ガスを出力圧
ゲージtKg/cm”の下でマスフローコントローラ(
713)ないしく715)内へ流入させた。そして、各
マスフローコントローラの目盛を調整して、Ct H4
の流量を55 secm、ブタジェンを55secm、
Haを101005eとなるように設定して反応室(
733)内へ流入した。夫々の流mが安定した後に、反
応室(733)の内圧が1 、5 torrとなるよう
に調整した。Example 6 (1) In the glow discharge decomposition apparatus shown in FIG. 14, first, the inside of the reaction chamber (733) was heated to
After creating a high vacuum of about r, open the first to third regulating valves (70
7) Open or 709) and remove the first tank (701).
C2H4 gas from the second tank (702), butadiene gas from the second tank (702), and F (2 gases) from the third tank (703).
713) or 715). Then, adjust the scale of each mass flow controller to obtain Ct H4.
Flow rate of 55 sec, Butadiene 55 sec,
Set Ha to 101005e and prepare the reaction chamber (
733). After each flow m became stable, the internal pressure of the reaction chamber (733) was adjusted to 1.5 torr.
一方、導電性円筒型基板(752)としては、直径80
mm、長さ320mmのアルミニウム管を用し・て5
0°Cに予じめ加熱しておき、各ガス流量が安定し、内
圧が安定した状態で高周波電源(739)を投入し電力
印加電極(736)に200 wattsの電力(周波
数13.56MHz)を印加して約12時間プラズマ重
合を行ない、導電性円筒型基板(752)上に、赤外吸
収ピーク比α、(2960)/α、(2925)が1.
2なる厚さ約20μ次の電荷輸送層を形成した。On the other hand, the conductive cylindrical substrate (752) has a diameter of 80 mm.
Using an aluminum tube with a length of 5 mm and a length of 320 mm.
Preheat to 0°C, and with each gas flow rate stabilized and internal pressure stabilized, turn on the high frequency power supply (739) and apply 200 watts of power (frequency 13.56MHz) to the power application electrode (736). was applied for about 12 hours, and the infrared absorption peak ratio α, (2960)/α, (2925) was 1.
A charge transport layer having a thickness of approximately 20 μm was formed.
([1) 高周波電源(739)からの電力印加を一
次停止し、反応室の内部を真空にした。([1) The application of power from the high frequency power source (739) was temporarily stopped, and the inside of the reaction chamber was evacuated.
第4および第3調整弁(710)および(709)を開
放し、第4タンク(704)よりS iHaガス、第3
タンク(703)からH,ガスを出力圧ゲージIKg/
cm”の下でマスフローコントローラ(716)および
(715)内へ流入させた。各マスフローコントローラ
の目盛を調整して、5IH4の流量を90sccmSH
zの流量を300 secmに設定し、反応室に流入さ
せた。夫々の流量が安定した後に、反応室(733)の
内圧が1.0Torrとなるよう調整した。The fourth and third regulating valves (710) and (709) are opened, and SiHa gas is supplied from the fourth tank (704) and the third
Output pressure gauge IKg/H gas from tank (703)
cm'' into the mass flow controllers (716) and (715). Adjust the scale of each mass flow controller to adjust the flow rate of 5IH4 to 90 sccmSH.
The flow rate of z was set to 300 sec and flowed into the reaction chamber. After each flow rate became stable, the internal pressure of the reaction chamber (733) was adjusted to 1.0 Torr.
ガス流量が安定し、内圧が安定した状態で高周波電源(
739)を投入し、円筒型電極板(752)に150W
の電力(周波数13.56MHz)を印加してグロー放
電を発生させた。このグロー放電を40分間行ない厚さ
1μmのa−Si:H電荷発生層を形成させた。When the gas flow rate is stable and the internal pressure is stable, turn on the high frequency power supply (
739) and 150W to the cylindrical electrode plate (752).
electric power (frequency: 13.56 MHz) was applied to generate glow discharge. This glow discharge was performed for 40 minutes to form a 1 μm thick a-Si:H charge generation layer.
得られた感光体は初期表面電位(Vo)=−600vo
ltのときの半減露光””’1/2は0.3012ux
−88Cであった。また、この感光体に対して作像して
転写したところ、鮮明な画像が得られた。The obtained photoreceptor had an initial surface potential (Vo) = -600vo
Half exposure at lt is 0.3012ux
-88C. Furthermore, when an image was formed and transferred onto this photoreceptor, a clear image was obtained.
実施例7
(T) 第13図に示すグロー放電分解装置において
、まず、反応室(733)の内部を10− ’ Tor
r程度の高真空にした後、第1ないし第2調整弁(70
7)ないしく708)を開放し、第1タンク(701)
よりC1H4ガス、第2タンク(702)よりH,ガス
を出力圧ゲージIKg/cn+’の下でマスフローコン
トローラ(713)ないしく714)内へ流入させた。Example 7 (T) In the glow discharge decomposition apparatus shown in FIG. 13, the inside of the reaction chamber (733) was heated to 10-' Torr.
After creating a high vacuum of about r, open the first or second regulating valve (70
7) Open or 708) and remove the first tank (701).
C1H4 gas from the second tank (702) and H gas from the second tank (702) were flowed into the mass flow controller (713) or 714) under the output pressure gauge IKg/cn+'.
そして、各マスフローコントローラの目盛を調整して、
C、I−I 、の流量を180secmSI−1tを2
40 secmとなるように設定して反応室(733)
内へ流入した。Then, adjust the scale of each mass flow controller,
The flow rate of C, I-I, is 180 secSI-1t is 2
The reaction chamber (733) was set to 40 sec.
It flowed inside.
夫々の流量が安定した後に、反応室(733)の内圧が
o 、 5 torrとなるように調整した。一方、導
電性基板(752)としては、3X50X50xmのア
ルミニウム板を用いて250℃に予じめ加熱しておき、
各ガス流量が安定し、内圧が安定した状態で高周波電源
(739)を投入し電力印加電極(736)に500
wattsの電力(周波数13 、56 MI−rz)
を印加して約6時間プラズマ重合を行ない、導電性基板
(752)上に、赤外吸収ピーク比α、(2960)/
α。After each flow rate became stable, the internal pressure of the reaction chamber (733) was adjusted to 0.5 torr. On the other hand, as the conductive substrate (752), a 3 x 50 x 50 x m aluminum plate was used and preheated to 250°C.
When the flow rate of each gas is stable and the internal pressure is stable, turn on the high frequency power supply (739) and apply 500% to the power application electrode (736).
watts power (frequency 13, 56 MI-rz)
was applied for about 6 hours, and an infrared absorption peak ratio α, (2960)/
α.
(2925)が0.70なる厚さ約18μmの電荷輸送
層を形成した。A charge transport layer having a thickness of approximately 18 μm and having (2925) of 0.70 was formed.
(II) 高周波電源(739)からの電力印加を停
止し、反応室の内部を充分排気した後、リークし試料を
取り出した。次いで別の真空蒸着装置でAs25exを
抵抗加熱法にて約3μ肩の膜厚となるように、工程(1
)で設けた電荷輸送層に積層した。(II) After stopping the application of power from the high-frequency power source (739) and sufficiently exhausting the inside of the reaction chamber, leakage occurred and the sample was taken out. Next, in another vacuum evaporation device, As25ex was heated to a thickness of about 3 μm using a resistance heating process (step 1).
) was laminated on the charge transport layer provided in ( ).
得られた感光体は初期表面電位(Vo)=+600vo
ltのときの半減露光””l/2は1 、5 Qux
・secであった。実施例1乃至6に比較して感度的に
はやや低いものの、実用上問題のない感度が得られた。The obtained photoreceptor had an initial surface potential (Vo) = +600vo
Half-exposure ""l/2 at lt is 1,5 Qux
・It was sec. Although the sensitivity was slightly lower than that of Examples 1 to 6, a sensitivity with no practical problems was obtained.
また、この感光体に対して作像して転写したところ、鮮
明な画像が得られた。Furthermore, when an image was formed and transferred onto this photoreceptor, a clear image was obtained.
実施例8
(1) 第14図に示すグロー放電分解装置において
、まず、反応室(733)の内部を10″″QTorr
程度の高真空にした後、第1ないし第3調整弁(707
)ないしく709)を開放し、第1タンク(701)よ
りCyHaガス、第2タンク(702)よりCs Hs
ガス、第3タンク(7(13)よりHtガスを出力圧ゲ
ージ11[g/cm’の下でマスフローコントローラ(
713)ないしく715)内へ流入させた。そして、各
マスフローコントローラの目盛を調整して、C,tI4
aの流量を30secm、C5Haを305ccn+S
H,をl 005ccn+となるように設定して反応室
(733)内へ流入した。Example 8 (1) In the glow discharge decomposition apparatus shown in FIG. 14, first, the inside of the reaction chamber (733) was
After making the vacuum as high as possible, open the first to third regulating valves (707
) or 709), CyHa gas is supplied from the first tank (701), and Cs Hs is supplied from the second tank (702).
Gas, Ht gas is supplied from the third tank (7 (13)) to the mass flow controller (under the output pressure gauge 11 [g/cm').
713) or 715). Then, adjust the scale of each mass flow controller to obtain C, tI4.
Flow rate of a is 30sec, C5Ha is 305ccn+S
H, was set to 1005ccn+ and flowed into the reaction chamber (733).
夫々の流量が安定した後に、反応室(733)の内圧が
0 、8 torrとなるように調整した。一方、導電
性円筒型基板(752)としてはい直径80+nm、長
さ320市のアルミニウム管を用いて60℃に予じめ加
熱しておき、各ガス流量が安定し、内圧が安定した状態
で高周波電源(739)を投入し電力印加電極(736
)に200 wattsの電力(周波数13.56 M
tl Z)を印加して約15時間プラズマ重合を行な
い、導電性円筒型基板(752)上に、赤外吸収ピーク
比α、(2960)/α、(2925)が1.30なる
厚さ約20μ肩の電荷輸送層を形成した。After each flow rate became stable, the internal pressure of the reaction chamber (733) was adjusted to 0.8 torr. On the other hand, as the conductive cylindrical substrate (752), an aluminum tube with a diameter of 80+ nm and a length of 320 mm is preheated to 60°C, and when the flow rate of each gas is stable and the internal pressure is stable, high frequency Turn on the power supply (739) and connect the power application electrode (736).
) with 200 watts of power (frequency 13.56 M
Plasma polymerization is performed for about 15 hours by applying tl Z), and a layer is formed on the conductive cylindrical substrate (752) to a thickness such that the infrared absorption peak ratio α, (2960)/α, (2925) is 1.30. A charge transport layer with a thickness of 20μ was formed.
(II) 高周波型R(739)からの電力印加を一
次停止し、反応室の内部を真空にした。(II) The application of power from the high frequency type R (739) was temporarily stopped, and the inside of the reaction chamber was evacuated.
第4および第3調整弁(710)および(709)を開
放し、第4タンク(704)よりSiH,ガス、第3タ
ンク(703)からH,ガスを出力圧ゲージ1Kg/c
m”の下でマス70−コントローラ(716)および(
715)内へ流入させた。各マスフローコントローラの
目盛を調整して、5IH4の流量を100secm、
Htの流量を4 Q Osccmに設定し、反応室に流
入させた。夫々の流量が安定した後に、反応室(733
)の内圧が0.8Torrとなるよう調整した。The fourth and third regulating valves (710) and (709) are opened, and SiH and gas are supplied from the fourth tank (704), and H and gas are supplied from the third tank (703) using an output pressure gauge of 1 kg/c.
mass 70-controller (716) and (
715). Adjust the scale of each mass flow controller to set the flow rate of 5IH4 to 100 seconds,
The flow rate of Ht was set to 4 Q Osccm and was allowed to flow into the reaction chamber. After each flow rate stabilizes, the reaction chamber (733
) was adjusted so that the internal pressure was 0.8 Torr.
ガス流量が安定し、内圧が安定した状態で高周波電源(
739)を投入し、電力印加電極(736)に150W
の電力(周波数13.56MHz)を印加してグロー放
電を発生させた。このグロー放電を35分間行ない厚さ
1μmのa−Si:H電荷発生層を形成させた。When the gas flow rate is stable and the internal pressure is stable, turn on the high frequency power supply (
739) and apply 150W to the power application electrode (736).
electric power (frequency: 13.56 MHz) was applied to generate glow discharge. This glow discharge was performed for 35 minutes to form a 1 μm thick a-Si:H charge generation layer.
得られた感光体は初期表面電位(Vo)=−400vo
ltのときの半減露光”1/2は0.52Qux・Se
Cであった。実施例1〜6と比べて膜厚の割りには帯電
能が低いものの、実用上は全く問題のない特性が得られ
た。また、この感光体に対して作像して転写したところ
、鮮明な画像が得られた。The obtained photoreceptor had an initial surface potential (Vo) = -400vo
Half exposure "1/2" at lt is 0.52 Qux Se
It was C. Although the charging ability was lower compared to Examples 1 to 6 in relation to the film thickness, characteristics with no problems in practical use were obtained. Furthermore, when an image was formed and transferred onto this photoreceptor, a clear image was obtained.
実施例9
CI) 第13図に示すグロー放電分解装置において
、まず、反応室(733)の内部をlo’Torr程度
の高真空にした後、第1及び第78整弁(707)及び
(725)を開放し、第1タンク(701)よりH,ガ
ス、第1容器(719))よりC,8,4ガスをマスフ
ローコントローラ(713)ないしく728)内へ流入
させた。第1容器(719)は第1加熱器(722)に
より約70℃に加熱した状態で用いた。そして、各マス
フローコントローラの目盛を調整して、H,の流mを3
00sccm、 Ce1−(+4を30secmとなる
ように設定して反応室(733)内へ流入した。夫々の
流量が安定した後に、反応室(733)の内圧が0.3
torrとなる上うに調整した。一方、導電性基板(7
52)としては、3X50X50xmのアルミニウム板
を用いて30℃に予じめ加熱しておき、各ガス流量が安
定し、内圧が安定した状態で高周波電源(739)を投
入し電力印加電極(736)に50 wattsの電力
(周波数13.56M)iZ)を印加して約6時間プラ
ズマ重合を行ない、導電性基板(752)上に、赤外吸
収ピーク比α、(2960)/α、(2925)が1.
5なる厚さ約18μ肩の電荷輸送層を形成した。Example 9 CI) In the glow discharge decomposition apparatus shown in FIG. ) was opened, and H and gas were allowed to flow from the first tank (701), and C, 8, and 4 gases were allowed to flow from the first container (719)) into the mass flow controllers (713) to 728). The first container (719) was heated to about 70° C. by the first heater (722) before use. Then, adjust the scale of each mass flow controller to increase the flow m of H by 3
00sccm and Ce1-(+4 were set to 30sec and flowed into the reaction chamber (733). After each flow rate became stable, the internal pressure of the reaction chamber (733) decreased to 0.3
I adjusted it so that it would be torr. On the other hand, a conductive substrate (7
As for 52), use an aluminum plate of 3 x 50 x 50 x m and preheat it to 30°C, and when the flow rate of each gas is stable and the internal pressure is stable, turn on the high frequency power supply (739) and connect the power application electrode (736). A power of 50 watts (frequency 13.56 M, iZ) was applied to perform plasma polymerization for about 6 hours, and an infrared absorption peak ratio α, (2960)/α, (2925) was formed on the conductive substrate (752). is 1.
A charge transport layer having a thickness of about 18 microns was formed.
(n) 高周波電源(739)からの電力印加を一次
停止し、反応室の内部を真空にした。(n) The application of power from the high frequency power source (739) was temporarily stopped, and the inside of the reaction chamber was evacuated.
第4および第3調整弁(71(1)および(709)を
開放し、第4タンク(704)よりS iH4ガス、第
3タンク(703)からH,ガスを出力圧ゲージIKg
/cm”の下でマスフローコントローラ(716)およ
び(715)内へ流入させた。各マスフローコントロー
ラの目盛を調整して、S iHaの流量を90 sec
m、 Htの流量を180secmに設定し、反応室に
流入させた。また同様にして第5タンク(705)より
H3で50ppma度に希釈されたBtHaガスをIO
sccm流入させた。夫々の流量が安定した後に、反応
室(733)の内圧が1,0Torrとなるよう調整し
た。Open the fourth and third regulating valves (71(1) and (709), and output SiH4 gas from the fourth tank (704) and H gas from the third tank (703) to the output pressure gauge IKg.
/cm" into the mass flow controllers (716) and (715). The scale of each mass flow controller was adjusted to adjust the flow rate of SiHa to 90 sec.
The flow rate of Ht was set at 180 sec, and the Ht was allowed to flow into the reaction chamber. Similarly, BtHa gas diluted to 50 ppma with H3 from the fifth tank (705) was IO.
sccm inflow. After each flow rate became stable, the internal pressure of the reaction chamber (733) was adjusted to 1.0 Torr.
ガス流量が安定し、内圧が安定した状態で高周波電源(
739)を没入し、電力印加電極(736)に170W
の電力(周波数13 、56 Ml−1z)を印加して
グロー放電を発生させた。このグロー放電を30分間行
ない厚さ1μmのa−Si:H電荷発生層を形成させた
。When the gas flow rate is stable and the internal pressure is stable, turn on the high frequency power supply (
739) and apply 170W to the power application electrode (736).
A glow discharge was generated by applying electric power (frequency 13, 56 Ml-1z). This glow discharge was performed for 30 minutes to form a 1 μm thick a-Si:H charge generation layer.
得られた感光体は初期表面電位(V O) = + 3
50voltのときの半減露光量El/2は0.49Q
ux−secであった。実施例1〜8と比べて単位膜厚
当たりの帯電能は低いものの、電子写真用感光体として
寄与し得る性能が得られた。また、この感光体に対して
作像して転写したところ、画像が得られた。The obtained photoreceptor has an initial surface potential (V O) = + 3
The half-decreased exposure amount El/2 at 50 volts is 0.49Q
It was ux-sec. Although the charging ability per unit film thickness was lower than that of Examples 1 to 8, performance capable of contributing as an electrophotographic photoreceptor was obtained. Further, when an image was formed and transferred onto this photoreceptor, an image was obtained.
実施例10
(I) 第14図に示すグロー放電分解装置において
、まず、反応室(733)の内部をL O−’ Tor
r程度の高真空にした後、第1ないし第3調整弁(70
7)ないしく709)を開放し、第1タンク(701)
よりC、I−1、ガス、第2タンク(702)よりCH
,ガス、第3タンク(703)よりH,ガスを出力圧ゲ
ージIKg/cm’の下でマスフローコントローラ(7
13)ないしく715)内へ流入させた。そして、各マ
スフローコントローラの目盛を調整して、C、I−t、
の流量を200secm、 CH4を180 secm
、 I(tを100 secmとなるように設定して反
応室(733)内へ流入した。Example 10 (I) In the glow discharge decomposition apparatus shown in FIG. 14, first, the inside of the reaction chamber (733) was heated to
After creating a high vacuum of about r, open the first to third regulating valves (70
7) Open or 709) and remove the first tank (701).
From C, I-1, gas, from the second tank (702) CH
, gas, and H gas from the third tank (703) under the output pressure gauge IKg/cm' of the mass flow controller (703).
13) or 715). Then, by adjusting the scale of each mass flow controller, C, I-t,
The flow rate of CH4 is 200 sec, and the flow rate of CH4 is 180 sec.
, I(t) was set to 100 seconds and flowed into the reaction chamber (733).
夫々の流量が安定した後に、反応室(733)の内圧が
2 、 Otorrとなるように調整した。一方、導電
性円筒型基板(752)としては、直径80朋、長さ3
20n+mのアルミニウム管を用いて300℃に予じめ
加熱しておき、各ガス流量が安定し、内圧が安定した状
態で高周波電源(739)を投入し電力印加電極(73
6)に300wattsの電力(周波数13゜56MH
z)を印加して約2時間プラズマ重合を行ない、導電性
円筒型基板(752)上に、赤外吸収ピーク比α、(2
960)/αバ2925)が0.5なる厚さ約10μl
の電荷輸送層を形成した。After each flow rate became stable, the internal pressure of the reaction chamber (733) was adjusted to 2.0 Torr. On the other hand, the conductive cylindrical substrate (752) has a diameter of 80 mm and a length of 3 mm.
A 20n+m aluminum tube is preheated to 300°C, and when the flow rate of each gas is stabilized and the internal pressure is stable, the high frequency power source (739) is turned on and the power application electrode (73
6) 300 watts of power (frequency 13゜56MH)
z) to perform plasma polymerization for about 2 hours, and infrared absorption peak ratio α, (2
960)/α2925) is 0.5, about 10 μl thick.
A charge transport layer was formed.
(II) 高周波電源(739)からの電力印加を一
次停止し、反応室の内部を真空にした。(II) The application of power from the high frequency power source (739) was temporarily stopped, and the inside of the reaction chamber was evacuated.
第4および第3調整弁(710)および(709)を開
放し、第4タンク(704)よりSiH4ガス、第3タ
ンク(703)からH,ガスを出力圧ゲージIKg/c
a+”の下でマスフローコントローラ(716)および
(715)内へ流入させた。各マスフローコントローラ
の目盛を調整して、SiH4の流量をl 20sccr
a、 H*の流量を400 secmに設定し、反応室
に流入させた。また同様にして第5タンク(705)よ
りH8で50ppmet度に希釈されたB t Hsガ
スを12sccn+流入させた。夫々の流量が安定した
後に、反応室(733)の内圧が1.0Torrとなる
よう調整した。Open the fourth and third regulating valves (710) and (709), and output SiH4 gas from the fourth tank (704) and H gas from the third tank (703) using the output pressure gauge IKg/c.
a+" into the mass flow controllers (716) and (715). Adjust the scale of each mass flow controller to adjust the flow rate of SiH4 to 1 20 sccr.
a, The flow rate of H* was set to 400 sec, and it was allowed to flow into the reaction chamber. Similarly, 12 sccn+ of B t Hs gas diluted with H8 to 50 ppmet was introduced from the fifth tank (705). After each flow rate became stable, the internal pressure of the reaction chamber (733) was adjusted to 1.0 Torr.
ガス流量が安定し、内圧が安定した状態で高周波電源(
739)を投入し、円筒型電極板(752)に200W
の電力(周波数13.56MHz)を印加してグロー放
電を発生させた。このグロー放電を30分間行ない厚さ
1μmのa−8i:I−I電荷発生層を形成させた。When the gas flow rate is stable and the internal pressure is stable, turn on the high frequency power supply (
739) and 200W to the cylindrical electrode plate (752).
electric power (frequency: 13.56 MHz) was applied to generate glow discharge. This glow discharge was performed for 30 minutes to form a 1 μm thick a-8i:II charge generation layer.
得られた感光体は初期表面電位(V o) = + 4
50voltのときの半減露光量El/2はlQ、3(
2ux−secであった。実施例1〜8と比べて感度は
低いものの、電子写真感光体として寄与し得る性能が得
られた。また、この感光体に対して作像して転写したと
ころ、画像が得られた。The obtained photoreceptor has an initial surface potential (V o) = + 4
The half-decreased exposure amount El/2 at 50 volts is lQ, 3(
It was 2ux-sec. Although the sensitivity was lower than in Examples 1 to 8, performance capable of contributing as an electrophotographic photoreceptor was obtained. Further, when an image was formed and transferred onto this photoreceptor, an image was obtained.
比較例1
実施例1において工程(IXa−C層の形成)を省略し
、工程(n)と同一条件で膜厚6μmのa−9i:H層
を形成せしめ、a−Si:H感光体を得た。Comparative Example 1 The step (formation of IXa-C layer) in Example 1 was omitted, and an a-9i:H layer with a film thickness of 6 μm was formed under the same conditions as step (n), and an a-Si:H photoreceptor was formed. Obtained.
得られた感光体は初期表面電位(Vo)=−100Vで
半減露光@E1/2はQ、7 Lux−secであり
、十極性では充分な帯電能を示さず、良好な作像は行え
なかった。The obtained photoreceptor had an initial surface potential (Vo) of -100V and a half-life exposure @E1/2 of Q, 7 Lux-sec, and did not exhibit sufficient charging ability with ten polarity, making it impossible to form a good image. Ta.
本発明による電荷輸送層が帯電能の向上に著しく寄与し
、かつ好適な輸送性を有する事が理解された。It was understood that the charge transport layer according to the present invention significantly contributes to improving charging ability and has suitable transport properties.
比較例2
実施例1の工程(r)で作製された本発明による電荷輸
送層の代わりに、α、(2960)/α、(2925)
の比が0.15なるポリエチレン膜を有機重合の常法に
より作製し、その上に工程(n)を施した。得られた積
層膜は、本発明と赤外吸収ピーク比が異なるだけである
。帯電能は実施例1と同等であるものの、感度はa −
S 4層に起因するわずかの電位減衰を有する程度で、
半減値には至らないものであった。本発明の電荷輸送層
の優位性が認められた。Comparative Example 2 Instead of the charge transport layer according to the invention prepared in step (r) of Example 1, α, (2960)/α, (2925)
A polyethylene film having a ratio of 0.15 was prepared by a conventional method of organic polymerization, and step (n) was performed thereon. The obtained laminated film differs from the present invention only in the infrared absorption peak ratio. Although the charging ability is the same as in Example 1, the sensitivity is a −
To the extent that there is a slight potential attenuation due to the S4 layer,
This did not reach the half-reduced value. The superiority of the charge transport layer of the present invention was recognized.
比較例3
(1) 第14図に示すグロー放電分解装置において
、まず、反応室(733)の内部を10− @Torr
程度の高真空にした後、第1ないし2!11整弁(70
7)ないしく70g)を開放し、第1タンク(701)
よりC!H,ガス、第2タンク(702)よりH,ガス
を出力圧ゲージIKg/am”の下でマスフローコント
ローラ(713)ないしく714)内へ流入させた。そ
して、各マスフローコントローラの目盛を調整して、C
,H。Comparative Example 3 (1) In the glow discharge decomposition apparatus shown in FIG. 14, first, the inside of the reaction chamber (733) was heated to 10-@Torr.
After creating a high vacuum of about
7) Open the first tank (701)
More C! H, gas was flowed from the second tank (702) into the mass flow controller (713) or 714) under the output pressure gauge IKg/am". Then, the scale of each mass flow controller was adjusted. T,C
,H.
の流量を250 sccm、 !−1、を350 se
cmとなるように設定して反応室(733)内へ流入し
た。夫々の流量が安定した後に、反応室(733)の内
圧、が0.5torrとなるように調整した。一方、導
電性円筒型基板(752)としては、直径80mm、長
さ320mmのアルミニウム管を用いて2508Cに予
じめ加熱しておき、各ガス流量が安定し、内圧が安定し
た状態で高周波電源(739)を投入し電力印加電極(
736)に500 wattsの電力(周波数13.5
6MHz)を印加して約2時間プラズマ重合を行ない、
導電性円筒型基板(752)上に、赤外吸収ピーク比α
、(2960)/α、(2925)が0.45なる厚さ
約7μlの電荷輸送層を形成した。Flow rate of 250 sccm, ! -1, 350 se
cm, and flowed into the reaction chamber (733). After each flow rate became stable, the internal pressure of the reaction chamber (733) was adjusted to 0.5 torr. On the other hand, as the conductive cylindrical substrate (752), an aluminum tube with a diameter of 80 mm and a length of 320 mm is used, which is heated to 2508C in advance, and when the flow rate of each gas is stable and the internal pressure is stable, a high frequency power source is applied. (739) and power application electrode (
736) with 500 watts of power (frequency 13.5
6 MHz) to perform plasma polymerization for about 2 hours,
On the conductive cylindrical substrate (752), the infrared absorption peak ratio α
, (2960)/α, and (2925) of 0.45, a charge transport layer having a thickness of approximately 7 μl was formed.
(II) 高周波電源(739)からの電力印加を一
次停止し、反応室の内部を真空にした。(II) The application of power from the high frequency power source (739) was temporarily stopped, and the inside of the reaction chamber was evacuated.
第4および第3調整弁(710)および(709)を開
放し、第4タンク(704)よりSiH,ガス、第3タ
ンク(703)からH,ガスを出力圧ゲージIKg/c
m”の下でマス70−コントローラ(716)および(
715)内へ流入させた。各マスフローコントローラの
目盛を調整して、5IH4の流量を90secmSH,
の流量を400secmに設定し、反応室に流入させた
。Open the fourth and third regulating valves (710) and (709), and output SiH and gas from the fourth tank (704), and H and gas from the third tank (703) through the output pressure gauge IKg/c.
mass 70-controller (716) and (
715). Adjust the scale of each mass flow controller to adjust the flow rate of 5IH4 to 90secSH,
The flow rate was set at 400 sec, and the mixture was allowed to flow into the reaction chamber.
夫々の流1が安定した後に、反応室(733)の内圧が
1.0Torrとなるよう調整した。After each stream 1 became stable, the internal pressure of the reaction chamber (733) was adjusted to 1.0 Torr.
ガス流量が安定し、内圧が安定した状態で高周波電源(
7:19)を投入し、電力印加電極(L12)に150
Wの電力(周波数13.56MHz)を印加してグロー
放電を発生させた。このグロー放電を40分間行ない厚
さ1μmのa−9t:H電荷発生層を形成させた。When the gas flow rate is stable and the internal pressure is stable, turn on the high frequency power supply (
7:19) and applied 150 to the power application electrode (L12).
A glow discharge was generated by applying a power of W (frequency: 13.56 MHz). This glow discharge was performed for 40 minutes to form a 1 μm thick a-9t:H charge generation layer.
得られた感光体は初期表面電位を(V o) = −3
50voltとして画像露光を行っても半減電位まで達
せず、電子写真用感光体としては使用できないことが理
解された。The obtained photoreceptor has an initial surface potential of (V o) = −3
It was understood that even if image exposure was carried out at 50 volts, the half potential could not be reached, and that the photoreceptor could not be used as an electrophotographic photoreceptor.
比較例4
(I) 第13図に示すグロー放電分解装置において
、まず、反応室(7:(3)の内部をl O−’ To
rr程度の高真空にした後、第1及び第7調整弁(70
7)及び(725)を開放し、第1タンク(701)よ
りH,ガス、第1容器(719)よりスチレンガスをマ
スフローコントローラ(71,3)及び(728)内へ
流入させた。Comparative Example 4 (I) In the glow discharge decomposition apparatus shown in FIG.
After creating a high vacuum of about rr, open the first and seventh regulating valves (70
7) and (725) were opened, and H and gas from the first tank (701) and styrene gas from the first container (719) were allowed to flow into the mass flow controllers (71, 3) and (728).
第1容器(719)は第1加熱器(722)により約5
0°Cに加熱した状態で用いた。そして、各マスフロー
コントローラの目盛を調整して、H,の流量を60 s
cc+n、スチレンを60 sccmとなるように設定
して反応室(733)内へ流入した。夫々の流量が安定
した後に、反応室(733)の内圧が0,8Torrと
なるように調整した。一方、導電性基板(752)とし
ては、3X50X50jutのアルミニウム板を用いて
50℃に予じめ加熱しておき、各ガス流量が安定し、内
圧が安定した状態で低周波電源(741)を投入し電力
印加電極(736)に150wattsの電力(周波数
100KH2)を印加して約50分プラズマ重合を行な
い、導電性基板(752)上に、赤外吸収ピーク比α、
(296Q)/αt(2925)が16なる厚さ約10
μ屑の電荷輸送層を形成した。The first container (719) is heated by the first heater (722) to
It was used heated to 0°C. Then, adjust the scale of each mass flow controller to adjust the flow rate of H to 60 s.
cc+n, and styrene was set to 60 sccm and flowed into the reaction chamber (733). After each flow rate became stable, the internal pressure of the reaction chamber (733) was adjusted to 0.8 Torr. On the other hand, as the conductive substrate (752), use an aluminum plate of 3 x 50 x 50 juts, preheat it to 50°C, and turn on the low frequency power supply (741) when the flow rate of each gas is stable and the internal pressure is stable. Then, 150 watts of power (frequency 100 KH2) was applied to the power application electrode (736) to perform plasma polymerization for about 50 minutes, and the infrared absorption peak ratio α,
(296Q)/αt(2925) is 16 and the thickness is approximately 10
A charge transport layer of μ scrap was formed.
この時、かなり荒れた膜質が観察された。At this time, a considerably rough film quality was observed.
(U) 低周波電源(741)からの電力印加を一次
停止し、反応室の内部を真空にした。(U) The application of power from the low frequency power source (741) was temporarily stopped, and the inside of the reaction chamber was evacuated.
第4および第37A整弁(710)および(709)を
開放し、第4タンク(704)よりSiH,ガス、第3
タンク(703)からH2ガスを出力圧ゲージIKg/
cm”の下でマスフローコントローラ(716)および
(715)内へ流入させた。各マスフローコントローラ
の目盛を調整して、SiH,の流量を90sccmSH
tの流量を200 secmに設定し、反応室に流入さ
せた。また同様にして第5タンク(705)よりH3で
50ppm濃度に希釈されたB t Haガスを101
05e流入させた。夫々の流量が安定した後に、反応室
(733)の内圧が1.0Torrとなるよう調整した
。The 4th and 37A regulating valves (710) and (709) are opened, and SiH, gas, and
Output pressure gauge IKg/H2 gas from tank (703)
cm'' into the mass flow controllers (716) and (715).The scale of each mass flow controller was adjusted to adjust the flow rate of SiH to 90 sccm SH.
The flow rate at t was set to 200 sec, and the sample was allowed to flow into the reaction chamber. Similarly, B t Ha gas diluted with H3 to a concentration of 50 ppm was supplied from the fifth tank (705) to 101
05e flowed in. After each flow rate became stable, the internal pressure of the reaction chamber (733) was adjusted to 1.0 Torr.
ガス流量が安定し、内圧か安定した状態で高周波電源(
739)を投入し、電力印加電極(7:(6)に150
Wの電力(周波数13.56MI−(Z)を印加してグ
ロー放電を発生させた。このグロー放電を40分間行な
い厚さ1μmのa−St:H電荷発生層を形成させた。When the gas flow rate is stable and the internal pressure is stable, turn on the high frequency power supply (
739) and the power applying electrode (7:(6) to 150
A glow discharge was generated by applying a power of W (frequency: 13.56 MI-(Z)). This glow discharge was carried out for 40 minutes to form an a-St:H charge generation layer having a thickness of 1 μm.
得られた感光体は初期表面電位が(Vo)=+20vo
ltにしか過ぎず、部分的に剥離を生じており、感光体
としての性能は有していないことが理解される。The obtained photoreceptor has an initial surface potential of (Vo)=+20vo
It is understood that the photoreceptor did not have the performance as a photoreceptor because it was only lt and peeling occurred partially.
発明の効果
本発明による有機プラズマ重合膜を電荷輸送層にaする
感光体は電荷輸送性、帯電能に優れ、膜厚が薄くても充
分な表面電位を得ることができ、かつ良好な画像を得る
ことができろ。本発明に従えば、電荷発生層にa−5i
を使用する場合、従来のa−9i悪感光では達成するこ
とのできなかった薄膜の感光体を得ることができる。Effects of the Invention The photoreceptor in which the organic plasma polymerized film of the present invention is used as a charge transport layer has excellent charge transport properties and charging ability, can obtain a sufficient surface potential even with a thin film thickness, and can produce good images. You can get it. According to the present invention, the charge generation layer includes a-5i.
When using this method, it is possible to obtain a thin film photoreceptor that could not be achieved with conventional a-9i photoreceptors.
本発明感光体はその原料が安価であり、必要な各層が同
一の槽内で成膜できるとともに、膜厚が薄くてよいので
、製造コストが安く、かつ製造時間が短くて済む。 本
発明による有機プラズマ重合膜は、薄膜に形成してもピ
ンホールが生じにくく、均質に形成することができるの
で、薄膜化が容易である。さらに耐コロナ性、耐酸性、
耐湿性、耐熱性および剛直性にも優れているので、表面
保護層として使用すると感光体の耐久性が向上する。In the photoreceptor of the present invention, the raw materials thereof are inexpensive, each necessary layer can be formed in the same tank, and the film thickness may be thin, so that the manufacturing cost is low and the manufacturing time is short. The organic plasma polymerized film according to the present invention is difficult to form pinholes even when formed into a thin film, and can be formed homogeneously, so that it can be easily made into a thin film. In addition, corona resistance, acid resistance,
It also has excellent moisture resistance, heat resistance, and rigidity, so when used as a surface protective layer, it improves the durability of the photoreceptor.
第1図から第12図は本発明感光体の模式的断面図を示
す。
第13図および第14図は感光体製造用装置の一例を示
す図である。
第15図はa−C層の赤外吸収スペクトルを示す図であ
る。
図中の記号は以下の通りである。
(1)・・・基板 (2)・・・電荷輸送層(a
−C層)(3)・・・電荷発生層 (4)・・・オーバ
ーコート層(5)・・・アンダーコート層
(701)〜(706)・・・タンク
(707)〜(712)及び(725)〜(727)・
・・調節弁(713)〜(71g)及び(728)〜(
730)・・・1lll1111W(マスフローコント
ローラー)(719)〜(721)・・・容器(722
)〜(724)・・・加熱器(731)・・・混合器
(732)・・・主管(733)・・・反応室
(734)・・・配管加熱器(735)・・・接地電
極 (736)・・・電力印加電極(737)・・・
電力加熱器 (738)・・・高周波電力整合器(73
9)・・・高周波電源
(740)・・・低周波電力用整合器
(741)・・・低周波電源 (742)・・・ローパ
スフィルタ(743)・・・直流電源 (744)・
・・接続選択スイッチ(745)・・・圧力制御弁 (
746)・・・排気系選択弁(747)・・・拡散ポン
プ (74g)・・・油回転ポンプ(749)・・・冷
却除外装置
(750)・・・メカニカルブースタポンプ(751)
・・・反応加熱器 (752)・・・導電性基板(75
3)・・・除外装置
図面の浄書(内容に変更なし)
°第11!I 第21!I
@3図第4図 第5図$6rM
第7f!il! 第8図 第9’!!1
1110図 $11111 11123!
115t!1
追 数(cm”)1 to 12 show schematic cross-sectional views of the photoreceptor of the present invention. FIG. 13 and FIG. 14 are diagrams showing an example of an apparatus for manufacturing a photoreceptor. FIG. 15 is a diagram showing an infrared absorption spectrum of the a-C layer. The symbols in the figure are as follows. (1)...Substrate (2)...Charge transport layer (a
-C layer) (3)...charge generation layer (4)...overcoat layer (5)...undercoat layer (701) to (706)...tank (707) to (712) and (725) ~ (727)・
...Control valves (713) to (71g) and (728) to (
730)...1llll1111W (mass flow controller) (719) to (721)... Container (722
) ~ (724)... Heater (731)... Mixer
(732)...Main pipe (733)...Reaction chamber
(734)...Pipe heater (735)...Ground electrode (736)...Power application electrode (737)...
Power heater (738)...High frequency power matching device (73
9)...High frequency power supply (740)...Low frequency power matching box (741)...Low frequency power supply (742)...Low pass filter (743)...DC power supply (744)...
... Connection selection switch (745) ... Pressure control valve (
746)...Exhaust system selection valve (747)...Diffusion pump (74g)...Oil rotary pump (749)...Cooling exclusion device (750)...Mechanical booster pump (751)
... Reaction heater (752) ... Conductive substrate (75
3)...Engraving of excluded equipment drawings (no changes in content) ° 11th! I 21st! I
@3 Figure 4 Figure 5 $6rM 7th f! Il! Figure 8 9'! ! 1
Figure 1110 $11111 11123!
115t! 1 Additional number (cm”)
Claims (1)
能分離型感光体において、電荷輸送層(2)として炭化
水素のプラズマ重合膜を設け、該重合膜の赤外吸収スペ
クトルのメチル(−CH_3)基による2960cm^
−^1付近のピーク吸収係数α_1とメチレン(−CH
_2−)基による2925cm^−^1付近のピーク吸
収係数α_2との比α_1/α_2が0.5ないし1.
5であることを特徴とする感光体。1. In a functionally separated photoreceptor having a charge generation layer (3) and a charge transport layer (2), a hydrocarbon plasma polymerized film is provided as the charge transport layer (2), and the infrared absorption spectrum of the polymerized film is 2960cm^ due to methyl (-CH_3) group
The peak absorption coefficient α_1 near -^1 and methylene (-CH
The ratio α_1/α_2 to the peak absorption coefficient α_2 near 2925 cm^-^1 due to the _2-) group is 0.5 to 1.
5. A photoconductor characterized in that:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61063744A JPS62220960A (en) | 1986-03-20 | 1986-03-20 | Photosensitive body |
EP87104170A EP0238095A1 (en) | 1986-03-20 | 1987-03-20 | Photosensitive member composed of charge transporting layer and charge generating layer |
US07/395,188 US4906544A (en) | 1986-03-20 | 1989-08-18 | Photosensitive member of plasma polymerized amorphous carbon charge transporting layer and charge generating layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61063744A JPS62220960A (en) | 1986-03-20 | 1986-03-20 | Photosensitive body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62220960A true JPS62220960A (en) | 1987-09-29 |
Family
ID=13238218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61063744A Pending JPS62220960A (en) | 1986-03-20 | 1986-03-20 | Photosensitive body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62220960A (en) |
-
1986
- 1986-03-20 JP JP61063744A patent/JPS62220960A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62220961A (en) | Photosensitive body | |
JPS6373259A (en) | Photosensitive body | |
JPS62220960A (en) | Photosensitive body | |
JPS62220959A (en) | Photosensitive body | |
JPS6381481A (en) | Photosensitive body | |
JPS62289848A (en) | Photosensitive body | |
JPS62238569A (en) | Photosensitive body | |
JPS62238570A (en) | Photosensitive body | |
JPS62238574A (en) | Photosensitive body | |
JPS6365447A (en) | Photosensitive body | |
JPS63218963A (en) | Photosensitive body | |
JPS62238571A (en) | Photosensitive body | |
JPS6373260A (en) | Photosensitive body | |
JPS63169655A (en) | Photosensitive body | |
JPS62238572A (en) | Photosensitive body | |
JPS6326658A (en) | Photosensitive body | |
JPS62299973A (en) | Photosensitive body | |
JPS6381461A (en) | Photosensitive body | |
JPS63218961A (en) | Photosensitive body | |
JPS63218962A (en) | Photosensitive body | |
JPH01133060A (en) | Photosensitive body | |
JPS6381462A (en) | Photosensitive body | |
JPS6381485A (en) | Photosensitive body | |
JPS63309965A (en) | Photosensitive body | |
JPS6373261A (en) | Photosensitive body |