JPS6221954Y2 - - Google Patents

Info

Publication number
JPS6221954Y2
JPS6221954Y2 JP1981150228U JP15022881U JPS6221954Y2 JP S6221954 Y2 JPS6221954 Y2 JP S6221954Y2 JP 1981150228 U JP1981150228 U JP 1981150228U JP 15022881 U JP15022881 U JP 15022881U JP S6221954 Y2 JPS6221954 Y2 JP S6221954Y2
Authority
JP
Japan
Prior art keywords
base
pyroelectric element
infrared detector
pyroelectric
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981150228U
Other languages
Japanese (ja)
Other versions
JPS5854534U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15022881U priority Critical patent/JPS5854534U/en
Publication of JPS5854534U publication Critical patent/JPS5854534U/en
Application granted granted Critical
Publication of JPS6221954Y2 publication Critical patent/JPS6221954Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、各種の赤外線センサまたは赤外線温
度計等に使用される焦電形の赤外線検出器に関す
る。
[Detailed Description of the Invention] The present invention relates to a pyroelectric infrared detector used in various infrared sensors or infrared thermometers.

赤外線検出器としては、光子形赤外線検出器と
熱形赤外線検出器が広く知られている。光子形赤
外線検出器は赤外線の光子エネルギーを直接電気
変換する方式に係り、pbsまたはHgde等によ
つて構成される。一方、熱形赤外線検出器は赤外
線を熱源として利用し、その発熱作用による素子
の温度変化を検出する方式であり、ボロメータ
や、Golayセル等がその代表例である。本考案
は、後者の熱形赤外線検出器の範疇に属する焦電
形赤外線検出器の改良に関するものである。
As infrared detectors, photon infrared detectors and thermal infrared detectors are widely known. A photon-type infrared detector is a method of directly converting infrared photon energy into electricity, and is constructed of PBS, H g C d Te, or the like. On the other hand, thermal infrared detectors use infrared rays as a heat source and detect changes in the temperature of the element due to the heat generation effect. Typical examples include bolometers and Golay cells. The present invention relates to an improvement of a pyroelectric infrared detector that belongs to the latter category of thermal infrared detectors.

一般に、焦電形赤外線検出器の感度Rvは、次
の(1)式で表わされる。
In general, the sensitivity R v of a pyroelectric infrared detector is expressed by the following equation (1).

但し、V:出力電圧 Iω:入射赤外線 η:輻射率 ω:角周波数(=2π) A:素子の有効面積 R:入力抵抗 G:熱放射能 τT:熱時定数 τE:電気時定数 dps/dT:焦電係数 C:体積比熱 焦電形赤外線検出器は熱の検出器であるから、
感度RVは素子の熱容量によつて左右される。熱
容量は比熱と体積とで定まるが、比熱は材料固有
の定数であるから、構造上、感度RVは素子の体
積に依存する。体積は面積Aと版厚とで定まる。
面積Aが大きくなると、熱時定数τTで定まる立
上り応答性が遅くなり、感度RVが低下するが、
全面積に入射赤外線が当つても、信号出力電圧V
は、RV・Iωとなるので、面積依存性はない。
結局、感度RVは素子の板厚に反比例することと
なるから、板厚が薄ければ薄い程、感度RVが向
上することとなる。このような理由から、従来は
赤外線検出の焦電体素子として、例えば2×2×
0.05t(mm)程度の極く薄い小形のものを使用し
ていた。
However, V: Output voltage Iω: Incident infrared rays η: Emissivity ω: Angular frequency (=2π) A: Effective area of element R: Input resistance G: Thermal radiation τT: Thermal time constant τE: Electrical time constant dp s / d T : Pyroelectric coefficient C: Volume specific heat Since a pyroelectric infrared detector is a heat detector,
The sensitivity R V depends on the heat capacity of the element. Heat capacity is determined by specific heat and volume, and since specific heat is a constant specific to the material, structurally the sensitivity R V depends on the volume of the element. The volume is determined by the area A and the plate thickness.
As the area A increases, the rise response determined by the thermal time constant τ T becomes slower, and the sensitivity R V decreases.
Even if the entire area is hit by incident infrared rays, the signal output voltage V
is R V ·Iω, so there is no area dependence.
After all, the sensitivity R V is inversely proportional to the plate thickness of the element, so the thinner the plate thickness is, the better the sensitivity R V is. For this reason, conventionally, pyroelectric elements for infrared detection, for example, 2×2×
An extremely thin and small device of about 0.05 t (mm) was used.

上述のように、此種の焦電体素子は非常に薄い
ものであるから、安定に動作させるには、支持台
等に固定して補強することが必要である。この場
合、赤外線の熱作用で焦電体素子に加わつた熱が
支持台を通して放散してしまうと、素子に対する
熱作用が有効に働かず、結果として検出器の感度
Vが低下してしまうこと、支持台の熱容量が焦
電体素子の熱容量に比べて大き過ぎると、支持台
の放熱作用と蓄熱作用により、赤外線の急激な断
続変動に対する焦電体素子の応答が鈍くなり、検
出器の応答時間性が低下すること等の問題点を生
じる。これらの問題点を解決する技術的手段とし
て、従来は第1図乃至第4図に示すような支持構
造をとつていた。
As mentioned above, this type of pyroelectric element is very thin, so in order to operate stably, it is necessary to fix it to a support stand or the like for reinforcement. In this case, if the heat applied to the pyroelectric element due to the thermal effect of infrared rays is dissipated through the support base, the thermal effect on the element will not work effectively, resulting in a decrease in the sensitivity R V of the detector. If the heat capacity of the support base is too large compared to the heat capacity of the pyroelectric element, the response of the pyroelectric element to rapid intermittent fluctuations in infrared rays will be slow due to the heat dissipation and heat storage effects of the support base, and the response of the detector will be reduced. This causes problems such as a decrease in temporality. As a technical means to solve these problems, support structures as shown in FIGS. 1 to 4 have conventionally been used.

まず、第1図に示す従来例では、焦電体素子1
の一面側にワイヤ2を接続固定し、このワイヤ2
の一端を底板3に植設したリード端子4に絡げて
半田付け固定することにより、焦電体素子1を放
熱、蓄熱作用の大なる底板3から浮かした構造と
なつている。焦電体素子1の両面に設けた電極1
a、1bのうち、表側の電極1aはリード線5に
よつてリード端子6に導通接続させ、電極1bは
前記ワイヤ2をリード線としてリード端子4に導
通接続させてある。また、底板3を金属板材等で
構成した場合は、電極1aを導通接続するリード
端子6は絶縁ガラス等の絶縁物7を介して底板3
に植設する。なお、8は底板3と共に外装ケース
を構成する蓋体であり、その中央部に赤外線入射
窓9を設けてある。
First, in the conventional example shown in FIG.
Connect and fix the wire 2 to one side of the
One end of the pyroelectric element 1 is tied to a lead terminal 4 implanted in the bottom plate 3 and fixed by soldering, so that the pyroelectric element 1 is suspended from the bottom plate 3, which has a large heat dissipation and heat storage function. Electrodes 1 provided on both sides of the pyroelectric element 1
Of the electrodes a and 1b, the front electrode 1a is electrically connected to a lead terminal 6 through a lead wire 5, and the electrode 1b is electrically connected to a lead terminal 4 using the wire 2 as a lead wire. Further, when the bottom plate 3 is made of a metal plate material or the like, the lead terminal 6 for electrically connecting the electrode 1a is connected to the bottom plate 3 through an insulator 7 such as insulating glass.
to be planted. Note that 8 is a lid that constitutes an exterior case together with the bottom plate 3, and an infrared entrance window 9 is provided in the center of the lid.

しかしながら、この第1図に示した従来例は、
50μm程度の極薄に加工した焦電体素子1をワイ
ヤ2上に一枚づつ固定するという煩雑、かつ面倒
な工程を必要とするため、取付作業が困難で、量
産性に欠け、コスト高になる欠点がある。また、
焦電体素子1の支持面が小さく、支持強度不足や
焦電体素子1の傾斜等を招き、支持が不安定にな
り易いこと、機械的強度が低く、振動、衝撃に対
して弱いこと等の欠点もあつた。
However, the conventional example shown in FIG.
It requires a complicated and troublesome process of fixing the pyroelectric elements 1, which are processed to be ultra-thin with approximately 50 μm, onto the wire 2 one by one, which makes the installation work difficult, lacks mass productivity, and increases costs. There is a drawback. Also,
The support surface of the pyroelectric element 1 is small, leading to insufficient support strength and tilting of the pyroelectric element 1, which tends to make the support unstable, and the mechanical strength is low, making it vulnerable to vibrations and shocks. There were also some shortcomings.

次に、第2図に示す従来例では、底板3上に石
英等で成る絶縁ベース10を接着等の手段で固着
し、この絶縁ベース10上に焦電体素子1の一面
側を接着固定した構造となつている。
Next, in the conventional example shown in FIG. 2, an insulating base 10 made of quartz or the like is fixed on the bottom plate 3 by adhesive or other means, and one side of the pyroelectric element 1 is fixed on the insulating base 10 by adhesive. It has a structure.

この従来例は、焦電体素子1の支持安定性が高
く、機械的強度が大で、振動、衝撃に対して強い
等の利点はあるが、焦電体素子1の一方の電極1
bが絶縁ベース10上に対接して固着されてしま
うため、電極1bの導出が困難になる欠点があ
る。
Although this conventional example has advantages such as high support stability of the pyroelectric element 1, high mechanical strength, and resistance to vibration and shock, one electrode of the pyroelectric element 1
Since the electrodes 1b are fixed to the insulating base 10 in contact with each other, there is a drawback that it becomes difficult to lead out the electrode 1b.

次に、第3図に示す従来例では、アルミナ磁器
等で成る比較的薄い絶縁ベース11を、底板3か
ら浮かした状態で、リード端子4,6によつて支
持し、この絶縁ベース11上に焦電体素子1の一
面側を接着固定した構造となつている。
Next, in the conventional example shown in FIG. It has a structure in which one side of the pyroelectric element 1 is fixed with adhesive.

この従来例の場合は、放熱、蓄熱作用の小さい
絶縁ベース11を使用できる利点はあるが、絶縁
ベース11上に50μm前後の極薄の焦電体素子1
を接着しなければならず、取付作業が困難で、量
産性に欠け、コスト高になること、第2図の場合
と同様に電極1bの導出が困難になること等の欠
点がある。
In the case of this conventional example, there is an advantage that an insulating base 11 with small heat dissipation and heat storage effects can be used, but an ultra-thin pyroelectric element 1 of around 50 μm is placed on the insulating base 11.
This method has drawbacks such as difficult attachment work, lack of mass productivity, high cost, and difficulty in leading out the electrode 1b as in the case of FIG. 2.

次に、第4図に示す従来例は、底板3上に金属
ベース12を接着等の手段で固着し、この金属ベ
ース12上に焦電体素子1の一面側を導電接着材
等を用いて接着固定した構造となつている。
Next, the conventional example shown in FIG. 4 has a structure in which a metal base 12 is fixed onto a bottom plate 3 by means of adhesion or the like, and one side of a pyroelectric element 1 is adhesively fixed onto this metal base 12 using a conductive adhesive or the like.

この従来例の場合は、電極1bの導出が容易で
あるという利点はあるが、金属ベース12を用い
ているため、放熱性が高く、特に低周波応答が良
くないこと、焦電体素子1が単結晶もしくは多結
晶セラミクスであるのに対し、ベース12が金属
であるため、同一の刃物で切断することができ
ず、製造、加工及び組立が面倒で、量産性に欠け
ること、ベース12が金属であるため、断熱性を
高めるためのベース12の加工が困難になること
等々の欠点は避けられない。
This conventional example has the advantage that the electrode 1b can be easily derived, but since the metal base 12 is used, the heat dissipation is high, the low frequency response is not particularly good, and the pyroelectric element 1 is In contrast to single crystal or polycrystalline ceramics, the base 12 is made of metal, so it cannot be cut with the same blade, making manufacturing, processing and assembly troublesome, and lacks mass productivity. Therefore, disadvantages such as difficulty in processing the base 12 to improve heat insulation are inevitable.

本考案は上述する従来の欠点を除去し、焦電体
素子の支持安定性が高く、機械的強度が大で、振
動、衝撃等に強く、低周波応答性に優れ、しかも
電極の導出及び製造、加工、組立が容易で量産性
に富む高信頼度かつ安価な赤外線検出器を提供す
ることを目的とする。
The present invention eliminates the above-mentioned conventional drawbacks, has high support stability for the pyroelectric element, has high mechanical strength, is resistant to vibrations and shocks, has excellent low frequency response, and has the ability to derive and manufacture electrodes. The purpose of the present invention is to provide a highly reliable and inexpensive infrared detector that is easy to process and assemble, and is suitable for mass production.

上記目的を達成するため、本考案に係る赤外線
検出器は、焦電体素子を素体自体が導電性を有す
る酸化物焼結体でなるベース上に取付けたことを
特徴とする。
In order to achieve the above object, an infrared detector according to the present invention is characterized in that a pyroelectric element is mounted on a base made of an oxide sintered body whose element body itself is conductive.

以下実施例たる添付図面を参照して本考案の内
容を具体的に説明する。第5図は本考案に係る赤
外線検出器の正面断面図である。図において、第
1図乃至第4図と同一の参照符号は同一性ある構
成部分を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The content of the present invention will be specifically described below with reference to the accompanying drawings which are examples. FIG. 5 is a front sectional view of the infrared detector according to the present invention. In the figures, the same reference numerals as in FIGS. 1 to 4 indicate the same components.

この実施例では、底板4上に導電性焼結体でな
るベース14を接着等の手段によつて固着し、こ
の導電性焼結体ベース14の面上に、板厚方向の
両面に電極1a、1bを形成した焦電体素子の電
極1bを、導電性接着材を用いて面付け固定して
ある。前記ベース14を構成する導電性焼結体は
導電性フエライト等の酸化物焼結体でなり、素体
自体が導電性を有する。
In this embodiment, a base 14 made of a conductive sintered body is fixed on the bottom plate 4 by adhesive or other means, and electrodes 1a are placed on both sides of the conductive sintered body base 14 in the thickness direction. , 1b of the pyroelectric element are fixed on a surface using a conductive adhesive. The conductive sintered body constituting the base 14 is made of an oxide sintered body such as conductive ferrite, and the element body itself has conductivity.

上述のように、ベース14を導電性を有する酸
化物焼結体によつて構成し、これに焦電体素子1
を、取付ける構造であると、次のような作用効果
を得ることができる。
As described above, the base 14 is made of a conductive oxide sintered body, and the pyroelectric element 1 is attached to the base 14.
If the structure is such that it is installed, the following effects can be obtained.

(イ) ベース14が裏面の電極1bに対するリード
導体となるので、電極1bの導出が非常に容易
になる。例えば、底板3上にリード線15等を
接続し、このリード線15をリード端子4に接
続するだけの構造で、ベース14の表面に導電
膜を設ける等の構造をとることなく、電極1b
をベース14を介してリード端子4に導通させ
ることができる。
(a) Since the base 14 serves as a lead conductor for the electrode 1b on the back surface, it becomes very easy to lead out the electrode 1b. For example, a structure in which a lead wire 15 or the like is connected to the bottom plate 3 and the lead wire 15 to the lead terminal 4 is used, and the electrode 1b is not provided with a conductive film on the surface of the base 14.
can be electrically connected to the lead terminal 4 via the base 14.

(ロ) 焦電体素子1とこれを支持するベース14と
が共に焼結体となるから、同一の刃物を用い
て、同一工程内で切断加工を施すことができ
る。このため、量産性が高くなる。
(b) Since both the pyroelectric element 1 and the base 14 that supports it are sintered bodies, they can be cut in the same process using the same cutting tool. Therefore, mass productivity is improved.

(ハ) ベース14は導電性フエライト等の酸化物焼
結体であるから、断熱性が高い。しかも、この
酸化物焼結体は素体自体が導電性を有してお
り、ベース14の表面に断熱作用を低下させる
金属導電膜等を形成する必要がない。このた
め、断熱性が高くなり、低周波での応答性が向
上する。
(c) Since the base 14 is a sintered body of oxide such as conductive ferrite, it has high heat insulation properties. Moreover, this oxide sintered body itself has conductivity, and there is no need to form a metal conductive film or the like on the surface of the base 14 that reduces the heat insulation effect. Therefore, the heat insulation properties are improved, and the response at low frequencies is improved.

(ニ) ベース14が焼結体であるから、断熱性を高
めるための工夫が容易である。例えば第6図に
示すように、焦電体素子1を取付ける面側に溝
16を設けたり、或は第7図に示すように、貫
通孔17を設けて断熱性を高める場合、成形工
程で一挙に形成することができる。
(d) Since the base 14 is a sintered body, it is easy to devise ways to improve the heat insulation properties. For example, if a groove 16 is provided on the surface on which the pyroelectric element 1 is attached, as shown in FIG. 6, or a through hole 17 is provided as shown in FIG. 7, to improve heat insulation, it is necessary to Can be formed all at once.

(ホ) ベース14が導電性焼結体であるから、ベー
ス14の研磨が容易である。このため、ベース
14を研磨してその高さを調節し、視野角度の
調整を行なう場合の作業が非常に容易になる。
しかも、素体自体が導電性を有する焼結体であ
るから、研磨面をどの位置にもつてきても、研
磨面が常に導電面となり、ベース14の研磨面
に対して、焦電体素子1を直接に密着して導通
させることができる。このため、視野角を研磨
位置によつて定まる高精度の値に設定できる。
(e) Since the base 14 is a conductive sintered body, polishing of the base 14 is easy. This greatly facilitates the work of adjusting the viewing angle by polishing the base 14 to adjust its height.
Moreover, since the element body itself is a sintered body having conductivity, no matter where the polished surface is placed, the polished surface always becomes a conductive surface, and the pyroelectric element 1 can be brought into direct contact with each other for conduction. Therefore, the viewing angle can be set to a highly accurate value determined by the polishing position.

(ヘ) 焦電体素子1をベース14上に密着して取付
けることができるので、支持安定性が高く、機
械的強度が大で、振動、衝撃に対して強い赤外
線検出器を実現することができる。
(f) Since the pyroelectric element 1 can be mounted closely on the base 14, an infrared detector with high support stability, high mechanical strength, and resistance to vibration and shock can be realized. can.

以上詳説したように、本考案に係る赤外線検出
器は、焦電体素子を、素体自体が導電性を有する
酸化物焼結体でなるベース上に取付けたことを特
徴とするから、焦電体素子の支持安定性が高く、
機械的強度が大で、振動、衝撃等に強く、低周波
応答性に優れ、しかも電極の導出、及び製造、加
工、組立てが容易で量産性に富む高信頼度かつ安
価な赤外線検出器を提供することができる。
As explained in detail above, the infrared detector according to the present invention is characterized in that the pyroelectric element is mounted on a base made of an oxide sintered body that itself has conductivity, so that the infrared detector according to the present invention is The support stability of the body element is high,
We provide a highly reliable and inexpensive infrared detector that has high mechanical strength, is resistant to vibrations and shocks, has excellent low frequency response, and is easy to derive electrodes, manufacture, process, and assemble, and is highly suitable for mass production. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は従来の赤外線検出器の別々
の例における各正面断面図、第5図は本考案に係
る赤外線検出器の正面断面図、第6図及び第7図
はベースの別々の実施例を示す各斜視図である。 1……焦電体素子、1a,1b……電極、14
……導電性焼結体、16……溝、17……貫通
孔。
1 to 4 are front sectional views of different examples of conventional infrared detectors, FIG. 5 is a front sectional view of an infrared detector according to the present invention, and FIGS. 6 and 7 are different examples of the base. It is each perspective view which shows the Example. 1... Pyroelectric element, 1a, 1b... Electrode, 14
... Conductive sintered body, 16 ... Groove, 17 ... Through hole.

Claims (1)

【実用新案登録請求の範囲】 (1) 焦電体素子を素体自体が導電性を有する酸化
物焼結体でなるベース上に取付けたことを特徴
とする赤外線検出器。 (2) 前記ベースは、1個以上の孔を有することを
特徴とする実用新案登録請求の範囲第1項に記
載の赤外線検出器。 (3) 前記ベースは、一本以上の溝を有することを
特徴とする実用新案登録請求の範囲第1項に記
載の赤外線検出器。 (4) 前記焦電体素子と前記ベースとは、導電性接
着剤で接続固定したことを特徴とする実用新案
登録請求の範囲第1項、第2項または第3項に
記載の赤外線検出器。 (5) 前記ベースは、導電性フエライトで成ること
を特徴とする実用新案登録請求の範囲第1項、
第2項、第3項または第4項に記載の赤外線検
出器。
[Claims for Utility Model Registration] (1) An infrared detector characterized in that a pyroelectric element is mounted on a base made of an oxide sintered body that itself has conductivity. (2) The infrared detector according to claim 1, wherein the base has one or more holes. (3) The infrared detector according to claim 1, wherein the base has one or more grooves. (4) The infrared detector according to claim 1, 2, or 3, wherein the pyroelectric element and the base are connected and fixed using a conductive adhesive. . (5) Claim 1 of the utility model registration claim, characterized in that the base is made of conductive ferrite;
The infrared detector according to item 2, 3 or 4.
JP15022881U 1981-10-09 1981-10-09 infrared detector Granted JPS5854534U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15022881U JPS5854534U (en) 1981-10-09 1981-10-09 infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15022881U JPS5854534U (en) 1981-10-09 1981-10-09 infrared detector

Publications (2)

Publication Number Publication Date
JPS5854534U JPS5854534U (en) 1983-04-13
JPS6221954Y2 true JPS6221954Y2 (en) 1987-06-04

Family

ID=29942963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15022881U Granted JPS5854534U (en) 1981-10-09 1981-10-09 infrared detector

Country Status (1)

Country Link
JP (1) JPS5854534U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626819Y2 (en) * 1984-08-28 1994-07-20 ティーディーケイ株式会社 Electronic parts
JP4800883B2 (en) * 2006-09-06 2011-10-26 日置電機株式会社 Infrared sensor manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677730A (en) * 1979-11-28 1981-06-26 Sanyo Electric Co Ltd Pyroelectric infrared-ray detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248874U (en) * 1975-10-03 1977-04-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677730A (en) * 1979-11-28 1981-06-26 Sanyo Electric Co Ltd Pyroelectric infrared-ray detector

Also Published As

Publication number Publication date
JPS5854534U (en) 1983-04-13

Similar Documents

Publication Publication Date Title
JPS6129648B2 (en)
JPS6221954Y2 (en)
US3707695A (en) Infrared intensity detector using a pyroelectric polymer
Stokowski et al. Ion-beam milled, high-detectivity pyroelectric detectors
GB2100058A (en) Pyroelectric detector
JPS5866828A (en) Pyroelectric chip and its production
JPH06160177A (en) Infrared ray detector
US2983887A (en) Radiation sensitive devices
JPH0512656B2 (en)
JPS6140929B2 (en)
JPS6039785Y2 (en) Pyroelectric temperature sensing element
Lavrenčkičk et al. Technology of double parallel pyroelectric detector
JP3045559B2 (en) Pirani vacuum gauge
JPS6025557Y2 (en) Pyroelectric infrared detection element
JPS6031027A (en) Pyroelectric detector
JPH05832Y2 (en)
JPS6025555Y2 (en) Pyroelectric infrared detection element
JPS5913926A (en) Pyroelectric element
JPH0645859Y2 (en) Infrared detector
JPS6015149Y2 (en) Pyroelectric infrared detection element
JPS6035016B2 (en) Thermistor bolometer
JPS6239693B2 (en)
JPS6047540B2 (en) Pyroelectric infrared detection element
JPH0449556Y2 (en)
JPS6330984Y2 (en)