JPH0645859Y2 - Infrared detector - Google Patents
Infrared detectorInfo
- Publication number
- JPH0645859Y2 JPH0645859Y2 JP1985024371U JP2437185U JPH0645859Y2 JP H0645859 Y2 JPH0645859 Y2 JP H0645859Y2 JP 1985024371 U JP1985024371 U JP 1985024371U JP 2437185 U JP2437185 U JP 2437185U JP H0645859 Y2 JPH0645859 Y2 JP H0645859Y2
- Authority
- JP
- Japan
- Prior art keywords
- support substrate
- detection element
- infrared
- infrared detection
- conductive pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Description
【考案の詳細な説明】 <産業上の利用分野> 本考案は、非接触型温度検知、人体検知等に利用される
熱型赤外線検出器に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a thermal infrared detector used for non-contact temperature detection, human body detection and the like.
<従来の技術> 熱型赤外線検出器は赤外線を熱源として利用し、その発
熱作用による赤外線検出素子の温度変化を検出する方式
であり、赤外線検出素子としては、焦電素子、サーモパ
イル、サーミスタ等が利用される。何れの赤外線検出素
子を使用した場合でも、熱型赤外線検出器は、入射赤外
線をいかに効率良く信号発生のための熱エネルギーに変
換するかが重要な技術ポイトになる。熱型赤外線検出器
の感度は一般に赤外線検出素子の板厚に反比例するか
ら、感度を上げるためには、赤外線検出素子の板厚をで
きるだけ薄くする必要があり、従来より例えば2×2×
0.05(m/m)程度の極く薄い赤外線検出素子が使用され
ている。このため、赤外線検出素子は、機械的強度が非
常に低く簡単に破損してしまうから、支持台上に固定し
て機械的強度を補強し、動作の安定性を確保する必要が
ある。この場合、入射赤外線の熱作用で赤外線検出素子
に発生した熱が放散してしまうと、素子に対する熱作用
が有効に働かず、結果として検出感度が低下してしまう
こと、支持台の熱容量が赤外線検出素子に比べて大き過
ぎると、支持台の放熱作用及び蓄熱作用により、赤外線
の急激な断続変動に対する赤外線検出素子の応答が鈍く
なり、応答時間特性が低下すること等の問題点を生じ
る。<Prior Art> A thermal infrared detector uses infrared rays as a heat source and detects a temperature change of the infrared detecting element due to its heat generating action. As the infrared detecting element, a pyroelectric element, a thermopile, a thermistor or the like is used. Used. Regardless of which infrared detection element is used, the important point of the thermal infrared detector is how efficiently the incident infrared rays are converted into thermal energy for signal generation. Since the sensitivity of a thermal infrared detector is generally inversely proportional to the thickness of the infrared detection element, it is necessary to make the thickness of the infrared detection element as thin as possible in order to increase the sensitivity.
An ultra-thin infrared detection element of about 0.05 (m / m) is used. For this reason, the infrared detection element has a very low mechanical strength and is easily damaged. Therefore, it is necessary to fix the infrared detection element on the support base to reinforce the mechanical strength and ensure the stability of operation. In this case, if the heat generated by the infrared detecting element is dissipated by the heat effect of the incident infrared rays, the heat effect on the element does not work effectively, resulting in a decrease in detection sensitivity. If the size is too large as compared with the detection element, the heat radiation effect and the heat storage effect of the support will slow the response of the infrared detection element to the rapid intermittent fluctuation of infrared rays, which causes problems such as deterioration in response time characteristics.
これらの問題点を解決する従来技術としては、米国特許
4326663号及び実開昭54-105585号がある。まず、米国特
許第4326663号明細書に開示されたものは、第6図に示
すように、赤外線検出素子1をループ状のワイヤ2によ
って支持し、赤外線検出素子1を放熱及び蓄熱作用の大
きな底板3から浮かした構造となっている。赤外線検出
素子1の両面に設けた電極1a、1bはリード線5によって
リード端子4に導通接続させてある。6はケース、7は
赤外線入射窓である。As a conventional technique for solving these problems, there are US patents.
There are 4326663 and 54-105585. First, as disclosed in U.S. Pat. No. 4,326,663, as shown in FIG. 6, an infrared detecting element 1 is supported by a loop-shaped wire 2, and the infrared detecting element 1 has a large bottom plate for radiating and accumulating heat. It has a structure that floats from 3. The electrodes 1a and 1b provided on both sides of the infrared detection element 1 are electrically connected to the lead terminal 4 by the lead wire 5. Reference numeral 6 is a case, and 7 is an infrared incident window.
次に実開昭54-105585号に開示のものは、第7図に示す
ように、アルミナ磁器等でなる薄い支持基板8の中央部
に断熱用の貫通孔9を形成すると共に、この貫通孔9の
上に赤外線検出素子1を固定し、更に、支持基板8に貫
通して設けた貫通孔10にリード端子4を挿着することに
より、このリード端子4によって支持基板8をケース6
の底板3に支持した構造となっている。Next, as disclosed in Japanese Utility Model Laid-Open No. 54-105585, as shown in FIG. 7, a through hole 9 for heat insulation is formed in the central portion of a thin support substrate 8 made of alumina porcelain or the like, and this through hole is formed. By fixing the infrared detecting element 1 on the support substrate 9 and inserting the lead terminal 4 into the through hole 10 penetrating the support substrate 8, the support substrate 8 is attached to the case 6 by the lead terminal 4.
The structure is supported by the bottom plate 3.
<考案が解決しようとする課題> しかしながら、第6図に示した従来例には次のような問
題点がある。<Problems to be Solved by the Invention> However, the conventional example shown in FIG. 6 has the following problems.
(イ)50μm程度の極薄に加工した赤外線検出素子1を
ワイヤ2上に一枚づつ固定するという煩雑かつ面倒な工
程を必要とするため、組立作業が面倒で、量産性に欠
け、コスト高になる欠点がある。(A) Since the infrared detection element 1 processed to be ultra-thin about 50 μm is fixed on the wire 2 one by one, a complicated and troublesome process is required, which makes the assembly work troublesome, lacks mass productivity, and is costly. There is a drawback that becomes.
(ロ)赤外線検出素子1の支持面が小さく、支持強度不
足や赤外線検出素子1の傾斜等を招き、支持が不安定に
なり易く、赤外線検出素子1の視野角度の精度が低下す
る。(B) The support surface of the infrared detection element 1 is small, resulting in insufficient support strength and inclination of the infrared detection element 1, so that the support is likely to become unstable and the accuracy of the viewing angle of the infrared detection element 1 is reduced.
(ハ)機械的強度が低く、振動、衝撃等によって赤外線
検出素子1がワイヤ2から脱落する等の事故を生じ易
い。(C) The mechanical strength is low, and an accident such as the infrared detection element 1 falling off the wire 2 due to vibration, impact, etc. is likely to occur.
次に第7図に示した従来技術には次のような問題点があ
る。Next, the conventional technique shown in FIG. 7 has the following problems.
(ニ)支持基板8に対して、断熱用の貫通孔9及びリー
ド端子4を挿着する貫通孔10等を設ける必要があるた
め、支持基板8の形状が複雑化し、その歩留まりが悪
く、高価になる。(D) Since it is necessary to provide the support substrate 8 with the through hole 9 for heat insulation and the through hole 10 into which the lead terminal 4 is inserted, the shape of the support substrate 8 becomes complicated, the yield thereof is poor, and it is expensive. become.
(ホ)支持基板8に断熱用の貫通孔9が設けられている
うえに、リード端子4が貫通孔10を通して赤外線検出素
子1の配置面側に突出するように取付けられていること
から、赤外線検出素子1の取付け面側で部品の配置でき
る領域が制限され、効率の良い部品配置をとることが困
難である。(E) Since the support substrate 8 is provided with the through hole 9 for heat insulation, and the lead terminal 4 is attached through the through hole 10 so as to project toward the arrangement surface side of the infrared detection element 1, The area where components can be arranged on the mounting surface side of the detection element 1 is limited, and it is difficult to efficiently arrange the components.
(ヘ)赤外線検出素子1を配置する場合、部品配置領域
の制限から、どうしても貫通孔9にかからざるを得ない
ため、例えば支持基板8の背面側に増幅素子となる電界
効果トランジスタや入力抵抗等の部品を配置した場合、
これらの部品から生じる熱が貫通孔9を通って赤外線検
出素子1に伝達され、誤信号を発生する。(F) When the infrared detection element 1 is arranged, the through hole 9 is unavoidable due to the limitation of the component arrangement area. Therefore, for example, a field effect transistor or an input resistor which becomes an amplification element on the back side of the support substrate 8 is provided. If you place parts such as
The heat generated from these components is transmitted to the infrared detection element 1 through the through hole 9 to generate an erroneous signal.
(ト)支持基板8に貫通して取付けたリード端子4を支
持体として、支持基板8を底板3の上に支持する構造で
あるため、底板3及びケース6に対する支持基板8の平
行度を取ることが困難である。このため、支持基板8上
の赤外線検出素子1の視野角度が、それにつれて変化し
てしまい、視野角度の精度が低下する。(G) Since the support substrate 8 is supported on the bottom plate 3 by using the lead terminal 4 penetrating the support substrate 8 as a support body, the parallelism of the support substrate 8 with respect to the bottom plate 3 and the case 6 is obtained. Is difficult. Therefore, the viewing angle of the infrared detection element 1 on the support substrate 8 changes accordingly, and the accuracy of the viewing angle decreases.
更に、第6図及び第7図の両者とも、赤外線検出素子1
からの信号取出しのため、リード線5やワイヤ2等を赤
外線検出素子1の電極に半田付けする構造であるため、
極薄の赤外線検出素子1が半田付け工程において破壊さ
れたり、或いは信号取出線が断線事故を起す等の問題点
もあった。Furthermore, in both FIG. 6 and FIG.
In order to extract the signal from the lead wire 5 or the wire 2 or the like, the structure is such that the electrode 5 of the infrared detection element 1 is soldered,
There is also a problem that the ultra-thin infrared detecting element 1 is broken in the soldering process, or the signal output line is broken.
そこで、本考案の第1の課題は、上述する従来の問題点
を解決し、断熱用の貫通孔や、リード端子を挿着する貫
通孔が不要で、支持基板の製造が容易であり、歩留まり
が高く、コストの安価な赤外線検出器を提供することで
ある。Therefore, the first problem of the present invention is to solve the above-mentioned conventional problems, and to eliminate the need for a through hole for heat insulation and a through hole for inserting a lead terminal, which facilitates the manufacturing of the support substrate and improves the yield. To provide an infrared detector that is expensive and inexpensive.
本考案の第2の課題は他の部品に発生した熱が赤外線検
出素子に伝達されるをの阻止し、S/N比の高い赤外線検
出器を提供することである。A second object of the present invention is to provide an infrared detector having a high S / N ratio by preventing the heat generated in other parts from being transferred to the infrared detecting element.
本考案の第3の課題は赤外線検出素子の支持安定性及び
支持強度が高く、外部振動及び衝撃に対して強い赤外線
検出器を提供することである。A third object of the present invention is to provide an infrared detector which has a high stability and strength of supporting the infrared detecting element and is strong against external vibration and impact.
本考案の第4の課題は、赤外線検出素子に発生した熱が
支持基板に逃げるのを阻止して、感度及び応答時間特性
を向上させることである。A fourth object of the present invention is to prevent heat generated in the infrared detecting element from escaping to the supporting substrate, and improve sensitivity and response time characteristics.
本考案の第5の課題は、支持基板に対する赤外線検出素
子の平行度を高め、その視野角度を高精度化することで
ある。A fifth object of the present invention is to increase the parallelism of the infrared detecting element with respect to the supporting substrate and improve the viewing angle thereof.
本考案の第6の課題は、赤外線検出素子の破壊や信号取
出し線の断線事故等を起すことがなく、信頼性が高く、
製造組立の容易な赤外線検出器を提供することである。A sixth object of the present invention is high reliability without causing damage to the infrared detection element or disconnection of the signal output line,
An object of the present invention is to provide an infrared detector which is easy to manufacture and assemble.
<課題を解決するための手段> 上述した課題を解決するため、本考案は、支持基板と、
赤外線検出素子と、リード端子と、電界効果トランジス
タとを有する赤外線検出器であって、 前記支持基板は、平板状であって、厚み方向の一面上に
複数の導電パターンが付着され、他面上に他の導電パタ
ーンが付着され、側端面に前記両導電パターンを電気的
に導通する導電部が付着されており、 前記赤外線検出素子は、前記支持基板の前記一面側で前
記導電パターン上に搭載され、前記支持基板との間に前
記導電パターンの厚さに応じた間隙を形成し、電極が前
記導電パターンに導通しており、 前記リード端子は、棒状であって、先端部が前記支持基
板の前記他面側の導電パターンに当接し、前記他面側の
前記導電パターンに電気的に接続され、前記支持基板を
支持しており、 前記電界効果トランジスタは、前記支持基板の前記他面
側に配置され、前記赤外線検出素子から出力される信号
を増幅するように、前記他面側の前記導電パターンに接
続されている。<Means for Solving the Problems> In order to solve the above problems, the present invention provides a support substrate,
An infrared detector having an infrared detection element, a lead terminal, and a field-effect transistor, wherein the support substrate has a flat plate shape, and a plurality of conductive patterns are attached on one surface in a thickness direction and on the other surface. Another conductive pattern is attached to the side end face, and a conductive portion that electrically connects the both conductive patterns is attached to the side end face, and the infrared detection element is mounted on the conductive pattern on the one surface side of the support substrate. A gap corresponding to the thickness of the conductive pattern is formed between the support substrate and the electrode, the electrode is electrically connected to the conductive pattern, the lead terminal is rod-shaped, and the tip portion is the support substrate. Abutting on the conductive pattern on the other surface side, electrically connected to the conductive pattern on the other surface side, supporting the support substrate, the field effect transistor, the other surface side of the support substrate. And is connected to the conductive pattern on the other surface side so as to amplify the signal output from the infrared detection element.
<作用> 支持基板は、平板状であって、厚み方向の一面上に複数
の導電パターンが付着されており、赤外線検出素子は支
持基板の一面側で導電パターン上に搭載され、電極が導
電パターンに導通しているから、赤外線検出素子の支持
安定性及び支持強度が高くなり、外部振動及び衝撃に対
して強くなると同時に、赤外線検出素子と支持基板の面
との間に導電パターンの厚さに応じた間隙が形成され、
この間隙が断熱層となり、赤外線入射により赤外線検出
素子に発生した熱が支持基板に逃げるのを阻止し、感度
及び応答時間特性を向上させることができる。<Operation> The support substrate has a flat plate shape, and a plurality of conductive patterns are attached to one surface in the thickness direction, the infrared detection element is mounted on the conductive pattern on one surface side of the support substrate, and the electrodes are conductive patterns. Since it is electrically connected to the infrared detecting element, the supporting stability and supporting strength of the infrared detecting element becomes high, and it becomes strong against external vibration and shock, and at the same time, the thickness of the conductive pattern is increased between the infrared detecting element and the surface of the supporting substrate. A corresponding gap is formed,
This gap serves as a heat insulating layer and prevents the heat generated in the infrared detection element due to the incidence of infrared rays from escaping to the supporting substrate, thereby improving sensitivity and response time characteristics.
支持基板は、他面上に他の導電パターンが付着され、側
端面に両導電パターンを電気的に導通する導電部が付着
されており、リード端子は、棒状であって、先端部が支
持基板の他面側に当接し、他面側の前記導電パターンに
接続され、支持基板を支持しているから、支持基板を、
断熱用の貫通孔やリード端子挿着孔を持たない単純な矩
形平板状とすることが可能である。このため、製造歩留
まりを向上させ、電界効果トランジスタや抵抗等の回路
部品の実装スペースを実質的に拡大し、これらの各部品
を支持基板の背面側に実装した場合に、熱が赤外線検出
素子に伝わるのを阻止し、熱による赤外線検出素子の誤
信号の発生を防止できる。Another conductive pattern is attached to the other surface of the support substrate, and a conductive portion for electrically conducting both conductive patterns is attached to the side end surface of the support substrate.The lead terminal is rod-shaped and the tip portion thereof is the support substrate. Abutting on the other surface side, connected to the conductive pattern on the other surface side, and supporting the supporting substrate,
It is possible to form a simple rectangular flat plate without a through hole for heat insulation or a lead terminal insertion hole. For this reason, the manufacturing yield is improved, the mounting space for circuit components such as field effect transistors and resistors is substantially expanded, and when these components are mounted on the back side of the support substrate, heat is transferred to the infrared detection element. It can be prevented from being transmitted, and the generation of an erroneous signal of the infrared detection element due to heat can be prevented.
導電パターンは、スクリーン印刷法等の手段によって、
その塗布厚み精度を非常に高精度に保つことができるか
ら、支持基板に対する赤外線検出素子の平行度、ひいて
はケース底板に対する赤外線検出素子の平行度を高精度
に保ち、その視野角度を高精度化することができる。The conductive pattern is formed by means such as screen printing.
Since the coating thickness accuracy can be maintained with extremely high accuracy, the parallelism of the infrared detection element with respect to the support substrate, and thus the parallelism of the infrared detection element with respect to the case bottom plate can be maintained with high accuracy, and the viewing angle can be improved. be able to.
赤外線検出素子は、電極が支持基板の一面側に備えられ
た導電パターンに導通しているから、赤外線検出素子か
らの信号取出しに当って、その電極にワイヤーまたはリ
ード線等の信号取出し線を半田付けする必要がなくな
る。従って、赤外線検出素子の破壊や信号取出し線の断
線事故等を起すことがなくなり、信頼性が向上する。In the infrared detection element, the electrode is electrically connected to the conductive pattern provided on the one surface side of the support substrate, so when taking out the signal from the infrared detection element, solder the signal extraction wire such as a wire or a lead wire to the electrode. No need to attach. Therefore, destruction of the infrared detection element and disconnection of the signal output line are prevented, and reliability is improved.
電界効果トランジスタは、支持基板の他面側に配置さ
れ、赤外線検出素子から出力される信号を増幅するよう
に、他面側の導電パターンに接続されているから、赤外
線検出器の微弱な出力信号を、ノイズの侵入しにくい最
短経路で増幅できる。このため、(S/N)比が改善でき
る。The field effect transistor is arranged on the other surface side of the support substrate and is connected to the conductive pattern on the other surface side so as to amplify the signal output from the infrared detection element. Can be amplified by the shortest path that makes it difficult for noise to enter. Therefore, the (S / N) ratio can be improved.
電界効果トランジスタは、支持基板の他面側に配置さ
れ、他面側の導電パターンに接続されているから、熱抵
抗の大きな導電パターンが電界効果トランジスタと赤外
線検出素子とを直接に接続する伝熱体となる。このた
め、電界効果トランジスタに発生した熱が赤外線検出素
子に伝わりにくくなり、熱による赤外線検出素子の誤信
号の発生を防止できる。Since the field effect transistor is arranged on the other surface side of the support substrate and connected to the conductive pattern on the other surface side, the conductive pattern having a large thermal resistance directly connects the field effect transistor and the infrared detecting element to heat transfer. Become a body. Therefore, the heat generated in the field effect transistor is less likely to be transmitted to the infrared detection element, and the generation of an erroneous signal in the infrared detection element due to heat can be prevented.
<実施例> 第1図は本考案に係る赤外線検出器の部分断面図、第2
図は同じくケースを取除いた状態での斜視図である。図
において、第6図及び第7図と同一の参照符号は同一性
ある構成部分を示している。この実施例では、アルミナ
磁器等を用いて矩形平板状に形成した絶縁性の支持基板
8の一面上の相対向する両端側に、一対の平面状の導電
パターン11及び12を形成し、導電パターン11及び12の上
に赤外線検出素子1を取付けてある。このような導電パ
ターン11及び12は、適当な金属粉末と、ガラスフリット
と、有機質ビヒクルとを混合させて調製した導電性ペー
ストを、スクリーン印刷等の手段によって塗布し、かつ
焼付ける等の従来より周知の技術によって、一定のパタ
ーン及び一定の塗布厚みとなるように、高精度で量産性
良く形成できる。また、赤外線検出素子1は、支持基板
8から前記導電パターン11、12の厚さだけ浮いた状態で
支持されることとなるから、この間隙が断熱層として働
くようになる。<Embodiment> FIG. 1 is a partial sectional view of an infrared detector according to the present invention, and FIG.
Similarly, the figure is a perspective view with the case removed. In the figure, the same reference numerals as those in FIGS. 6 and 7 denote the same components. In this embodiment, a pair of flat conductive patterns 11 and 12 are formed on opposite ends of one surface of an insulating support substrate 8 formed in a rectangular flat plate shape using alumina porcelain or the like. An infrared detecting element 1 is mounted on 11 and 12. Such a conductive pattern 11 and 12 is a conductive paste prepared by mixing a suitable metal powder, glass frit, and an organic vehicle, is applied by means such as screen printing, and is conventionally baked. By a well-known technique, it is possible to form a pattern with a constant thickness and a constant coating thickness with high precision and high mass productivity. Further, since the infrared detection element 1 is supported in a state of being floated from the support substrate 8 by the thickness of the conductive patterns 11 and 12, this gap serves as a heat insulating layer.
導電パターン11、12に対する赤外線検出素子1の取付け
に当っては、赤外線検出素子1の電極1a及び1bをリード
電極部1a1及び1b1によて赤外線検出素子1の側端面に導
出し、導電パターン11、12に半田付け等の手段によって
接続する。When attaching the infrared detection element 1 to the conductive patterns 11 and 12, the electrodes 1a and 1b of the infrared detection element 1 are led out to the side end surface of the infrared detection element 1 by the lead electrode portions 1a 1 and 1b 1 to be electrically conductive. The patterns 11 and 12 are connected by means such as soldering.
更にこの実施例では、支持基板8の背面側、つまり赤外
線検出素子1を配置してある面とは反対側の面にも、導
電パターン13、14を形成してある。これらの導電パター
13、14は、支持基板8の側端面に形成された導電部15、
16によって、それぞれ、表面側の導電パターン11、12に
導通接続されている。導電部15、16は例えば導電性樹脂
の塗布または導電性ペーストの塗布焼付によるものによ
って形成する。Further, in this embodiment, the conductive patterns 13 and 14 are formed also on the back surface side of the support substrate 8, that is, the surface opposite to the surface on which the infrared detection element 1 is arranged. These conductive patterns
Reference numerals 13 and 14 denote conductive portions 15 formed on the side end surface of the support substrate 8,
16 are conductively connected to the conductive patterns 11 and 12 on the front surface side, respectively. The conductive portions 15 and 16 are formed, for example, by coating a conductive resin or baking a conductive paste.
そして、裏面側の導電パターン13、14及び回路構成に応
じて裏面側に形成される導電パターンを利用して、電界
効果トランジスタやその入力抵抗等の増幅回路用部品を
マウントすると共に、リード端子4を半田付け等の手段
によって接続固定する。例えば第5図に示すように、電
界効果トランジスタFET及び入力抵抗Rgを用いた増幅回
路を構成する場合を例にとって説明すると、第3図及び
第4図に示すように、表面側の導電パターン11、12に導
通させた導電パターン13−14間に、厚膜抵抗体等による
入力抵抗Rgを形成すると共に、導電パターン13及び別に
形成された導電パターン17、18に電界効果トランジスタ
FETを接続し、更に、導電パターン14、17及び18のそれ
ぞれに、リード端子4の先端部を直接に半田付け固定す
るのである。Then, by utilizing the conductive patterns 13 and 14 on the back surface side and the conductive pattern formed on the back surface side according to the circuit configuration, the amplification circuit components such as the field effect transistor and its input resistance are mounted, and the lead terminal 4 is mounted. Are connected and fixed by means such as soldering. For example, as shown in FIG. 5, a case of constructing an amplifier circuit using a field effect transistor FET and an input resistance Rg will be described as an example. As shown in FIGS. 3 and 4, the front surface side conductive pattern 11 , 12 is formed between the conductive patterns 13-14 which are electrically connected to the conductive patterns 13 and 12, and a field effect transistor is formed on the conductive pattern 13 and the separately formed conductive patterns 17 and 18.
The FETs are connected, and the tip portions of the lead terminals 4 are directly soldered and fixed to the conductive patterns 14, 17 and 18, respectively.
上述のように、導電パターン11、12によってその厚さだ
け支持基板8から浮かした状態で赤外線検出素子1を支
持すると、赤外線検出素子1の下面と支持基板8の上面
との間に形成される間隙を断熱層として利用し、赤外線
検出素子1に発生した熱が支持基板8に放散するのを阻
止し、赤外線検出素子1の感度及び応答時間特性を向上
させることができる。As described above, when the infrared detecting element 1 is supported by the conductive patterns 11 and 12 while being floated from the supporting substrate 8 by the thickness thereof, it is formed between the lower surface of the infrared detecting element 1 and the upper surface of the supporting substrate 8. By using the gap as a heat insulating layer, it is possible to prevent the heat generated in the infrared detection element 1 from radiating to the support substrate 8 and improve the sensitivity and response time characteristics of the infrared detection element 1.
しかも、断熱用の貫通孔のみならず、リード端子4を挿
着する貫通孔も不要になり、支持基板8の製造が容易に
なり、歩留まりが向上し、コストが安価になるととも
に、電界効果トランジスタFETや入力抵抗Rg等の回路部
品の実装スペースが拡大され、これらの各部品を支持基
板の背面側に実装した場合にも、その発熱が赤外線検出
素子1に伝わることもなくなり、熱による赤外線検出素
子1の誤信号の発生を防止でき、S/N比が改善される。Moreover, not only the through-holes for heat insulation but also the through-holes for inserting the lead terminals 4 are not necessary, the supporting substrate 8 is easily manufactured, the yield is improved, the cost is low, and the field-effect transistor is also available. The mounting space of circuit parts such as FET and input resistance Rg is expanded, and even when each of these parts is mounted on the back side of the support substrate, the generated heat will not be transmitted to the infrared detection element 1, and infrared detection by heat will be detected. The generation of an erroneous signal in the device 1 can be prevented and the S / N ratio can be improved.
また、導電パターン11、12の厚みをスクリーン印刷法等
の手段によって高精度化し、支持基板8及び底板3に対
する赤外線検出素子1の平行度を高精度に保ち、その視
野角度ωを端精度化することができる。しかも、赤外線
検出素子1を平面状の導電パターン11、12上に保持させ
たことにより、赤外線検出素子1の支持安定性が高くな
り、外部振動及び衝撃に対して強くなる。In addition, the thickness of the conductive patterns 11 and 12 is made highly precise by means such as screen printing, the parallelism of the infrared detection element 1 with the support substrate 8 and the bottom plate 3 is kept highly accurate, and the viewing angle ω is made highly accurate. be able to. Moreover, by holding the infrared detection element 1 on the planar conductive patterns 11 and 12, the support stability of the infrared detection element 1 is increased, and the infrared detection element 1 is resistant to external vibration and impact.
また、赤外線検出素子1の電極1a、1bを、支持基板8上
の導電パターン11、12に導通接続させたことにより、赤
外線検出素子1の信号取出しに当って、ワイヤーまたは
リード線等の信号取出し線を半田付けする必要がなくな
る。従って、赤外線検出素子1の破壊や信号取出し線の
断線事故等を起すことがなくなり、信頼性が向上する。Further, by connecting the electrodes 1a and 1b of the infrared detection element 1 to the conductive patterns 11 and 12 on the support substrate 8 in a conductive manner, when extracting the signal of the infrared detection element 1, signal extraction of wires or lead wires is performed. Eliminates the need to solder wires. Therefore, the infrared detection element 1 is not broken or the signal lead-out line is not broken, so that the reliability is improved.
更に、支持基板8の背面側に導電パターン13及び14を形
成し、これらの導電パター13、14を、支持基板8の側端
面に形成された導電部15、16によって、それぞれ、表面
側の導電パターン11、12に導通接続させたことにより、
導電パターン13、14に対して、電界効果トランジスタFE
Tや入力抵抗Rg等の回路用部品をマウントし、リード端
子4を半田付け等の手段によって接続固定することが可
能になり、これらの各部品の実装が容易になる。Further, conductive patterns 13 and 14 are formed on the back surface side of the support substrate 8, and these conductive patterns 13 and 14 are respectively formed on the front surface side by the conductive portions 15 and 16 formed on the side end surfaces of the support substrate 8. By making conductive connection to patterns 11 and 12,
For the conductive patterns 13 and 14, the field effect transistor FE
It becomes possible to mount circuit components such as T and the input resistance Rg, and connect and fix the lead terminal 4 by means such as soldering, which facilitates mounting of these components.
電界効果トランジスタFETは、支持基板8の他面側に配
置され、赤外線検出素子1から出力される信号を増幅す
るように、他面側の導電パターンに接続されているか
ら、赤外線検出素子1の微弱な出力信号を、ノイズの侵
入しにくい最短経路で増幅できる。このため、(S/N)
比が改善できる。The field-effect transistor FET is arranged on the other surface side of the support substrate 8 and is connected to the conductive pattern on the other surface side so as to amplify the signal output from the infrared detection element 1. A weak output signal can be amplified by the shortest path that makes it difficult for noise to enter. Therefore, (S / N)
The ratio can be improved.
電界効果トランジスタFETは、支持基板8の他面側に配
置され、他面側の導電パターン13、17、18に接続されて
いるから、熱抵抗の大きな導電パターン13、17、18が電
界効果トランジスタFETと赤外線検出素子1とを直接に
接続する伝熱体となる。このため、電界効果トランジス
タFETに発生した熱が赤外線検出素子1に伝わりにくく
なり、熱による赤外線検出素子1の誤信号の発生を防止
できる。Since the field effect transistor FET is arranged on the other surface side of the support substrate 8 and is connected to the conductive patterns 13, 17, 18 on the other surface side, the conductive patterns 13, 17, 18 having a large thermal resistance are the field effect transistors. It becomes a heat transfer body that directly connects the FET and the infrared detection element 1. Therefore, the heat generated in the field effect transistor FET is less likely to be transferred to the infrared detection element 1, and the generation of an erroneous signal in the infrared detection element 1 due to the heat can be prevented.
<考案の効果> 以上述べたように、本考案によれば、次のような効果が
得られる。<Effects of the Invention> As described above, according to the present invention, the following effects can be obtained.
(a)支持基板は、平板状であって、厚み方向の一面上
に複数の導電パターンが付着されており、赤外線検出素
子は支持基板の一面側で導電パターン上に搭載され、電
極が導電パターンに導通しているから、赤外線検出素子
の支持安定性及び支持強度が高くなり、外部振動及び衝
撃に対して強くなると共に、赤外線検出素子と支持基板
の面との間の間隙が断熱層となり、赤外線入射により赤
外線検出素子に発生した熱が支持基板に逃げるのを阻止
し、感度及び応答時間特性を向上させた赤外線検出器を
提供できる。(A) The support substrate has a flat plate shape and a plurality of conductive patterns are attached to one surface in the thickness direction, the infrared detection element is mounted on the conductive pattern on one surface side of the support substrate, and the electrodes are conductive patterns. Since it is electrically connected to the infrared detecting element, the supporting stability and supporting strength of the infrared detecting element are increased, and it becomes strong against external vibration and impact, and the gap between the infrared detecting element and the surface of the supporting substrate becomes a heat insulating layer, It is possible to provide an infrared detector in which the heat generated in the infrared detection element due to the incidence of infrared rays is prevented from escaping to the supporting substrate, and the sensitivity and response time characteristics are improved.
(b)支持基板は、他面上に他の導電パターンが付着さ
れ、側端面に両導電パターンを電気的に導通する導電部
が付着されており、リード端子は、棒状であって、先端
部が支持基板の他面側に当接し、他面側の導電パターン
に接続され、支持基板を支持しているから、支持基板
を、断熱用の貫通孔やリード端子挿着孔を持たない単純
な矩形平板状とし、製造歩留まりを向上させ、回路部品
の実装スペースを実質的に拡大し、これらの各部品を支
持基板の背面側に実装した場合に、熱が赤外線検出素子
に伝わるのを阻止し、熱による赤外線検出素子の誤信号
の発生を防止し得る赤外線検出器を提供できる。(B) Another conductive pattern is attached to the other surface of the support substrate, and a conductive portion that electrically connects both conductive patterns is attached to the side end surface of the support substrate. The lead terminal is rod-shaped and has a tip portion. Contacts the other surface side of the support substrate, is connected to the conductive pattern on the other surface side, and supports the support substrate. Therefore, the support substrate has a simple structure that does not have a through hole for heat insulation or a lead terminal insertion hole. The rectangular flat plate shape improves the manufacturing yield, substantially expands the circuit component mounting space, and prevents heat from being transmitted to the infrared detection element when each of these components is mounted on the back side of the support substrate. It is possible to provide an infrared detector capable of preventing the generation of an erroneous signal of the infrared detection element due to heat.
(c)導電パターンは、スクリーン印刷法等の手段によ
って、その塗布厚み精度を非常に高精度に保つことがで
きるから、支持基板に対する赤外線検出素子の平行度、
ひいてはケース底板に対する赤外線検出素子の平行度を
高精度に保ち、その視野角度を高精度化した赤外線検出
器を提供できる。(C) Since the conductive pattern can maintain the coating thickness accuracy with a very high accuracy by means such as a screen printing method, the parallelism of the infrared detecting element with respect to the supporting substrate,
Consequently, it is possible to provide an infrared detector in which the parallelism of the infrared detection element with respect to the bottom plate of the case is maintained with high accuracy and the viewing angle thereof is improved with high accuracy.
(d)赤外線検出素子は、電極が支持基板の一面側に備
えられた導電パターンに導通しているから、赤外線検出
素子の破壊や信号取出し線の断線事故等を起すことのな
い高信頼度の赤外線検出器を提供できる。(D) In the infrared detection element, since the electrodes are electrically connected to the conductive pattern provided on the one surface side of the support substrate, the infrared detection element has a high reliability and does not cause the destruction of the infrared detection element or the disconnection of the signal output line. An infrared detector can be provided.
(e)電界効果トランジスタは、支持基板の他面側に配
置され、赤外線検出素子から出力される信号を増幅する
ように、他面側の導電パターンに接続されているから、
(S/N)比の改善された赤外線検出器を提供できる。(E) Since the field effect transistor is arranged on the other surface side of the support substrate and is connected to the conductive pattern on the other surface side so as to amplify the signal output from the infrared detection element,
An infrared detector having an improved (S / N) ratio can be provided.
(f)電界効果トランジスタは、支持基板の他面側に配
置され、他面側の導電パターンに接続されているから、
電界効果トランジスタに発生した熱による赤外線検出素
子の誤信号の発生を防止し得る赤外線検出器を提供でき
る。(F) Since the field effect transistor is arranged on the other surface side of the support substrate and is connected to the conductive pattern on the other surface side,
It is possible to provide an infrared detector capable of preventing generation of an erroneous signal of the infrared detection element due to heat generated in the field effect transistor.
第1図は本考案に係る赤外線検出器の部分断面図、第2
図は同じくケースを取除いた状態での斜視図、第3図は
支持基板の平面図、第4図は同じく支持基板の底面図、
第5図は増幅回路を含んだ赤外線検出回路図、第6図は
従来の赤外線検出器の正面部分断面図、第7図は同じく
別の従来例の正面部分断面図である。 1……赤外線検出素子、8……支持基板 11、12……導電パターン 13、14……導電パターン 15、16……導電部1 is a partial sectional view of an infrared detector according to the present invention, FIG.
Similarly, FIG. 3 is a perspective view with the case removed, FIG. 3 is a plan view of the support substrate, FIG. 4 is a bottom view of the support substrate,
FIG. 5 is an infrared detection circuit diagram including an amplifier circuit, FIG. 6 is a front partial sectional view of a conventional infrared detector, and FIG. 7 is a front partial sectional view of another conventional example. 1 ... Infrared detecting element, 8 ... Support substrate 11, 12 ... Conductive pattern 13, 14 ... Conductive pattern 15, 16 ... Conductive part
───────────────────────────────────────────────────── フロントページの続き (72)考案者 竹門 徹 東京都中央区日本橋1丁目13番1号 テイ ーデイーケイ株式会社内 (72)考案者 太田 義明 東京都中央区日本橋1丁目13番1号 テイ ーデイーケイ株式会社内 (56)参考文献 特開 昭58−95224(JP,A) 実開 昭58−180433(JP,U) 実開 昭59−95234(JP,U) 欧州特許出願公開131996(EP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toru Takemon Inventor Toru Takemon 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation (72) Inventor Yoshiaki Ota 1-13-1 Nihonbashi, Chuo-ku, Tokyo Tay DK Corporation (56) Reference JP-A-58-95224 (JP, A) Actually opened 58-180433 (JP, U) Actually opened 59-95234 (JP, U) European Patent Application Publication 131996 (EP, A)
Claims (3)
子と、電界効果トランジスタとを有する赤外線検出器で
あって、 前記支持基板は、平板状であって、厚み方向の一面上に
複数の導電パターンが付着され、他面上に他の導電パタ
ーンが付着され、側端面に前記両導電パターンを電気的
に導通する導電部が付着されており、 前記赤外線検出素子は、前記支持基板の前記一面側で前
記導電パターン上に搭載され、前記支持基板との間に前
記導電パターンの厚さに応じた間隙を形成し、電極が前
記導電パターンに導通しており、 前記リード端子は、棒状であって、先端部が前記支持基
板の前記他面側の導電パターンに当接し、前記他面側の
前記導電パターンに電気的に接続され、前記支持基板を
支持しており、 前記電界効果トランジスタは、前記支持基板の前記他面
側に配置され、前記赤外線検出素子から出力される信号
を増幅するように、前記他面側の前記導電パターンに接
続されている 赤外線検出器。1. An infrared detector having a support substrate, an infrared detection element, a lead terminal, and a field effect transistor, wherein the support substrate is flat and has a plurality of layers on one surface in the thickness direction. A conductive pattern is attached, another conductive pattern is attached on the other surface, and a conductive portion that electrically connects the conductive patterns is attached to the side end surface, and the infrared detection element is the support substrate. It is mounted on the conductive pattern on one surface side, forms a gap corresponding to the thickness of the conductive pattern with the support substrate, the electrode is electrically connected to the conductive pattern, and the lead terminal is rod-shaped. There, the tip portion is in contact with the conductive pattern on the other surface side of the support substrate, is electrically connected to the conductive pattern on the other surface side, supports the support substrate, the field effect transistor, , An infrared detector arranged on the other surface side of the support substrate and connected to the conductive pattern on the other surface side so as to amplify a signal output from the infrared detection element.
録請求の範囲第1項に記載の赤外線検出器。2. The infrared detector according to claim 1, wherein the conductive portion is made of a conductive resin.
録請求の範囲第1項に記載の赤外線検出器。3. The infrared detector according to claim 1, wherein the conductive portion is a baked conductor and is registered as a utility model.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985024371U JPH0645859Y2 (en) | 1985-02-22 | 1985-02-22 | Infrared detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985024371U JPH0645859Y2 (en) | 1985-02-22 | 1985-02-22 | Infrared detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61140927U JPS61140927U (en) | 1986-09-01 |
JPH0645859Y2 true JPH0645859Y2 (en) | 1994-11-24 |
Family
ID=30518458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1985024371U Expired - Lifetime JPH0645859Y2 (en) | 1985-02-22 | 1985-02-22 | Infrared detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0645859Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0650743Y2 (en) * | 1988-07-20 | 1994-12-21 | 株式会社堀場製作所 | Infrared detector |
JP4686504B2 (en) * | 2007-06-11 | 2011-05-25 | 株式会社堀場製作所 | Infrared detector manufacturing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5895224A (en) * | 1981-12-01 | 1983-06-06 | Matsushita Electric Ind Co Ltd | Infrared ray detector |
JPS58180434U (en) * | 1982-05-28 | 1983-12-02 | 松下電器産業株式会社 | Pyroelectric infrared sensor |
JPS58180433U (en) * | 1982-05-28 | 1983-12-02 | 松下電器産業株式会社 | Pyroelectric infrared sensor |
-
1985
- 1985-02-22 JP JP1985024371U patent/JPH0645859Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61140927U (en) | 1986-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6865953B2 (en) | Force sensors | |
US5631421A (en) | Piezoelectric acceleration transducer | |
KR100218560B1 (en) | Pyroelectric-type infrared receiving element and infrared sensor utilizing the same | |
US6347555B1 (en) | Force sensor circuit | |
US4950427A (en) | Transistor device | |
JPH0645859Y2 (en) | Infrared detector | |
US5539319A (en) | Surface potential electrometer | |
US5665914A (en) | Semiconductor acceleration sensor and its fabrication method | |
JPH05291482A (en) | Hybrid integrated circuit device and fabrication thereof | |
JPH049560Y2 (en) | ||
JPH1082695A (en) | Pyroelectric infrared sensor element | |
JP3211074B2 (en) | Infrared detector | |
US5148707A (en) | Heat-sensitive flow sensor | |
JPH10170377A (en) | Pressure detecting device | |
JPH08278196A (en) | Infrared detector and manufacture thereof | |
JP2732413B2 (en) | Acceleration sensor | |
JP2543419Y2 (en) | Structure for holding infrared detector | |
JPH11194060A (en) | Pressure sensor | |
JPH0512656B2 (en) | ||
JPH06160183A (en) | Infrared ray detector | |
JP2002372474A (en) | Semiconductor sensor device | |
JPS63275926A (en) | Semiconductor pressure sensor | |
JPH09184756A (en) | Pyroelectric infrared detector and its manufacturing method | |
JPH0886691A (en) | Pyroelectric infrared detector | |
JP4244372B2 (en) | Semiconductor sensor device |