JPS62218515A - Heat treatment of fe base heat resisting alloy superior in creep rupture property - Google Patents

Heat treatment of fe base heat resisting alloy superior in creep rupture property

Info

Publication number
JPS62218515A
JPS62218515A JP6025986A JP6025986A JPS62218515A JP S62218515 A JPS62218515 A JP S62218515A JP 6025986 A JP6025986 A JP 6025986A JP 6025986 A JP6025986 A JP 6025986A JP S62218515 A JPS62218515 A JP S62218515A
Authority
JP
Japan
Prior art keywords
temperature
aging treatment
hours
treatment
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6025986A
Other languages
Japanese (ja)
Inventor
Masayoshi Takano
正義 高野
Takemitsu Honjo
本庄 武光
Shuji Kinoshita
木下 修司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6025986A priority Critical patent/JPS62218515A/en
Publication of JPS62218515A publication Critical patent/JPS62218515A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain Fe base heat resisting alloy superior in smooth creep strength, etc., by hot forging ingot of Fe base heat resisting alloy having a prescribed component compsn., then applying solid soln. heat treatment by homogenization holding, next the first step ageing treatment, then the second step ageing treatment from temp. higher than previously described temp. CONSTITUTION:Steel ingot of Fe base heat resisting alloy composed of, by weight % 0.002-0.12 C, <=1.0 Si, <=2 Mn, 12-18 Cr, 20-35 Ni, 1-2 Mo, 1.2-3.0 Ti, <=1 Al, 0.001-0.015 B, 0.1-1 V and the balance Fe with inevitable impurity is hot forged. Next, the steel is soaked at 890-1,100 deg.C and solid soln. heat treated, then soaked at 650-720 deg.C for 5-35hr. Next, the steel is subjected to the second step ageing treatment in which it is heated to temp. higher than the soaking temp. by 20 deg.C, soaked for 5-35hr, then cooled, to obtain Fe base heat resisting forging alloy having previously described characteristics and superior in notch creep strength and rupture elongation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はクリープ破断性質にすぐれるFe基耐熱合金の
熱処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat treatment method for Fe-based heat-resistant alloys having excellent creep rupture properties.

(従来の技術) Fe基耐熱合金からなる鍛造構造物は、従来、例えば、
ガスタービン用ディスク等の回転体のほか等に用いられ
ているが、特に、最近においては、超高温高圧蒸気ター
ビン用ローター材として注目されている。′これらの装
置は、省エネルギーを目的として、一層高温高圧化され
る傾向にあり、また、頻度の高い起動や停止が要求され
るために、装置や鍛造構造物においては、従来以上に高
温靭性にすぐれる信転性の高い材料が要望されている。
(Prior Art) Forged structures made of Fe-based heat-resistant alloys have conventionally been manufactured using, for example,
It is used for rotating bodies such as gas turbine disks, etc., and has recently attracted attention as a rotor material for ultra-high temperature and high pressure steam turbines. ``These devices tend to be operated at higher temperatures and pressures for the purpose of energy conservation, and because they require frequent startup and shutdown, the high-temperature toughness of the devices and forged structures is becoming more demanding than ever before. There is a demand for materials with excellent reliability.

従来、かかるFe基耐熱合金には、980℃前後の温度
にて数時間時加熱保持して、固溶化処理を施し、更に、
705〜760℃の温度で十数時間時効処理を施す熱処
理方法が採用されている。
Conventionally, such Fe-based heat-resistant alloys have been subjected to solution treatment by heating and holding at a temperature of around 980°C for several hours, and then
A heat treatment method is employed in which aging treatment is performed at a temperature of 705 to 760°C for more than ten hours.

しかし、かかる熱処理方法による鍛造構造物は、平滑ク
リープ強度は高いものの、破断伸び及び切欠クリープ強
度が非常に低く、切欠弱化の傾向が著しく大きい。特に
、この傾向は、大型の鍛造品に著しい。従って、従来の
方法に従って熱処理された鍛造品を過酷な条件下で駆動
される回転体等の高温構造物として用いる場合、形状的
な応力集中部から亀裂が発生し、重大な結果を生じるお
それがある。
However, although the forged structure obtained by such a heat treatment method has high smooth creep strength, it has very low elongation at break and notch creep strength, and has a significant tendency to weaken notch. This tendency is particularly noticeable for large forged products. Therefore, when a forged product heat-treated according to the conventional method is used as a high-temperature structure such as a rotating body that is driven under harsh conditions, cracks may occur from stress concentration areas due to the shape, and serious consequences may occur. be.

(発明の目的) 本発明は、Fe基耐熱合金からなる鍛造構造物の熱処理
方法における上記した問題を解決するためになされたも
のであって、平滑クリープ強度にすぐれるのみならず、
切欠クリープ強度及び破断伸びにすぐれるFe基耐熱鍛
造合金を与える熱処理方法を提供することを目的とする
(Objective of the Invention) The present invention was made in order to solve the above-mentioned problems in a heat treatment method for a forged structure made of a Fe-based heat-resistant alloy.
The object of the present invention is to provide a heat treatment method that provides a Fe-based heat-resistant forged alloy with excellent notch creep strength and elongation at break.

(発明の構成) 本発明によるクリープ破断性質にすぐれるFe基耐熱合
金の熱処理方法の第1 (以下、本発明法1という。)
は、重量%で C0.01〜0.12%、 Si1.0%以下、 Mn  2%以下、 Cr 12〜18%、 Ni  20〜35%、 Mo1〜2%、 Ti1.2〜3.0%、 AJ  1%以下、 B    0.001〜0.015%、V    0.
1〜1%、 残部鉄及び不可避的不純物よりなるFe基耐熱合金の鋼
塊を熱間鍛造した後、890〜1100℃の温度に均熱
保持して固溶化処理を施し、次いで、650〜720℃
の温度にて5〜35時間均熱保、持する第1段の時効処
理を行ない、次いで、720〜790℃の範囲であって
、且つ、上記第1段の時効処理温度よりも20℃以上高
い温度に昇温し、5〜35時時均熱保持した後、冷却す
る第2段の時効処理を行なうことを特徴とする。
(Structure of the Invention) First method of heat treatment of Fe-based heat-resistant alloy with excellent creep rupture properties according to the present invention (hereinafter referred to as the method 1 of the present invention).
is C0.01-0.12%, Si 1.0% or less, Mn 2% or less, Cr 12-18%, Ni 20-35%, Mo 1-2%, Ti 1.2-3.0% in weight%. , AJ 1% or less, B 0.001-0.015%, V 0.
After hot forging a steel ingot of an Fe-based heat-resistant alloy consisting of 1% to 1%, the balance being iron and unavoidable impurities, it is soaked and maintained at a temperature of 890 to 1100°C to undergo solid solution treatment, and then the ingot is heated to 650 to 720°C. ℃
A first stage aging treatment is carried out at a temperature of 720 to 790°C and 20°C or higher than the temperature of the first stage aging treatment. It is characterized by a second aging treatment in which the temperature is raised to a high temperature, soaked for 5 to 35 hours, and then cooled.

本発明によるクリープ破断性質にすぐれるFe基耐熱合
金の熱処理方法の第2(以下、本発明法2という。)は
、上記と同じ化学成分を有するFe基耐熱合金の鋼塊を
熱間鍛造した後、890〜1100℃の温度に均熱保持
して固溶化処理を施し、次いで、720〜790℃の温
度にて5〜35時時均熱保持する第1段の時効処理を行
ない、次いで、630〜720℃の範囲であって、且つ
、上記第1段の時効処理温度よりも20℃以上低い温度
に降温し、5〜35時時均熱保持した後、冷却する第2
段の時効処理を行なうことを特徴とする。
The second method of heat treatment of a Fe-based heat-resistant alloy with excellent creep rupture properties according to the present invention (hereinafter referred to as the present invention method 2) is a method for hot-forging a steel ingot of a Fe-based heat-resistant alloy having the same chemical composition as above. After that, a solution treatment is performed by soaking and holding at a temperature of 890 to 1100°C, and then a first stage aging treatment is performed by soaking and holding at a temperature of 720 to 790°C for 5 to 35 hours, and then, A second stage in which the temperature is lowered to a temperature in the range of 630 to 720 °C and 20 °C or more lower than the aging treatment temperature in the first stage, and after soaking and holding for 5 to 35 hours, the second stage is cooled.
It is characterized by performing aging treatment.

更に、本発明によるクリープ破断性質にすぐれるFe基
耐熱合金の熱処理方法の第3(以下、本発明法3という
。)は、上記と同じ化学成分を有するFe基耐熱合金の
鋼塊を熱間鍛造した後、890〜1100℃の温度に均
熱保持して固溶化処理を施し、次いで、650〜720
℃の温度にて5〜35時時均熱保持する第1段の時効処
理を行ない、次いで、720〜790℃の範囲であって
、且つ、上記第1段の時効処理温度よりも20℃以上高
い温度に昇温して、5〜35時時均熱保持する第2段の
時効処理を行なった後、更に、630〜720℃の温度
範囲であって、且つ、上記第2段の時効処理温度よりも
20℃以上低い温度に降温して、5〜35時時均熱保持
した後、冷却する第3段の時効処理を行なうことを特徴
とする。
Furthermore, in the third method of heat treatment of Fe-based heat-resistant alloys having excellent creep rupture properties according to the present invention (hereinafter referred to as the present invention method 3), a steel ingot of Fe-based heat-resistant alloys having the same chemical composition as above is hot-treated. After forging, it is soaked and maintained at a temperature of 890 to 1100°C and subjected to solid solution treatment, then 650 to 720°C.
A first stage aging treatment is performed by soaking and holding at a temperature of 5 to 35 hours at a temperature of 720 to 790 °C, and 20 °C or more than the above first stage aging treatment temperature. After performing the second stage aging treatment in which the temperature is raised to a high temperature and soaked for 5 to 35 hours, the second stage aging treatment is further carried out at a temperature in the range of 630 to 720°C, and as described above. It is characterized in that the temperature is lowered to a temperature 20°C or more lower than the original temperature, and after soaking and holding for 5 to 35 hours, a third stage aging treatment is performed in which the temperature is cooled.

先ず、本発明におけるFe基耐熱合金の化学成分の限定
理由を説明する。
First, the reason for limiting the chemical composition of the Fe-based heat-resistant alloy in the present invention will be explained.

Cは、合金強度の確保とオーステナイトの安定化のみな
らず、製鋼上においても重要な元素であるが、添加量が
0.01%よりも少ないときは、強度を確保することが
できない。しかし、添加量が0.12%を越えるときは
、炭化物の析出によって合金が脆化する。
C is an important element not only for ensuring alloy strength and stabilizing austenite, but also for steel manufacturing, but when the amount added is less than 0.01%, strength cannot be ensured. However, when the amount added exceeds 0.12%, the alloy becomes brittle due to precipitation of carbides.

Stは、製鋼上、重要な元素であるが、過多に添加する
ときは、熱間加工性が著しく劣化するので、添加量は1
.0%以下とする。
St is an important element in steelmaking, but when added in excess, hot workability deteriorates significantly, so the amount added is 1.
.. 0% or less.

Mnは、Stと同様に、製鋼上重要な元素であるが、過
多に添加するときは、耐高温酸化性や強度が低下するの
で、添加量は2%以下とする。
Like St, Mn is an important element in steel manufacturing, but when added in excess, high temperature oxidation resistance and strength decrease, so the amount added is limited to 2% or less.

Niは、安定な非磁性特性を確保すると共に、析出強化
を図るために必須の元素である。かかる硬化を有効に得
るためには、少なくとも20%を添加することが必要で
ある。しかし、Niは高価な元素であり、しかも、過多
に添加するときは、逆に強度の低下を招くので、添加量
は、要求される品質を満たす限りにおいて少量とするの
が好ましい、従って、Niの添加量の1限は35%とす
る。
Ni is an essential element for ensuring stable nonmagnetic properties and for precipitation strengthening. In order to effectively obtain such hardening, it is necessary to add at least 20%. However, Ni is an expensive element, and when added in excess, it causes a decrease in strength. Therefore, it is preferable to add a small amount of Ni as long as it satisfies the required quality. The first limit for the amount of addition is 35%.

Crは、耐酸化性及び強度を付与するために添加される
。かかる効果を有効に得るためには、少なくとも12%
の添加を必要とする。上記効果の観点からは、多量であ
るほどよいが、反面、添加量が過多であるときは、組織
の安定性及び靭性の低下を招くので、添加量の上限は1
8%とする。
Cr is added to provide oxidation resistance and strength. In order to effectively obtain such an effect, at least 12%
Requires the addition of From the viewpoint of the above effects, the higher the amount, the better, but on the other hand, if the amount added is too large, it will cause a decrease in the stability and toughness of the structure, so the upper limit of the amount added is 1.
It shall be 8%.

MOは、オーステナイト地への固溶及び炭化物の析出に
よって強度を高める効果を有し、かかる効果を有効に得
るためには、1%以上の添加を必要とするが、2%を越
えて過多に添加するときは、熱間加工性及びクリープ破
断延性の低下を招来する。
MO has the effect of increasing strength through solid solution in austenite and precipitation of carbides, and in order to effectively obtain this effect, it is necessary to add 1% or more, but if it is added in excess of 2% or more. When added, it causes a decrease in hot workability and creep rupture ductility.

Tiは、本発明において、クリープ強度を決定する重要
な元素である。1.2%よりも少ない添加量では、時効
硬化特性が著しく低下し、強度が低下する。他方、3.
0%を越えて過多に添加する場合は、強度は大きいもの
の、靭性、組織安定性及び熱間加工性が低下する。
Ti is an important element that determines creep strength in the present invention. If the amount added is less than 1.2%, the age hardening properties will be significantly reduced and the strength will be reduced. On the other hand, 3.
If it is added in excess of 0%, the strength will be high, but the toughness, structural stability, and hot workability will deteriorate.

AIは、製鋼上、脱酸剤として重要であると共に、Ti
と同様に、強度を高める効果を有する。
AI is important as a deoxidizing agent in steelmaking, and it also
Similarly, it has the effect of increasing strength.

しかし、1%を越えて過多に添加するときは、却って強
度を低下させる。
However, when added in excess of 1%, the strength is rather reduced.

Bは、粒界強化元素としてクリープ破断性質を向上させ
る効果を有する。この効果を有効に得るためには、少な
くとも0.001%を添加することが必要であるが、0
.015%を越えて過多に添加するときは、熱間加工性
を低下させる。
B has the effect of improving creep rupture properties as a grain boundary strengthening element. In order to effectively obtain this effect, it is necessary to add at least 0.001%;
.. When added in excess of 0.015%, hot workability is reduced.

■は、クリープ破断伸びを向上させるために、0.1%
以上を添加することが必要である。しかし、1%を越え
る過多量の添加は、反対に破断伸びを低下させる。
■ is 0.1% to improve creep rupture elongation.
It is necessary to add the above. However, addition of an excessive amount of more than 1% causes a decrease in elongation at break.

本発明の方法は、固溶化処理の後に単一段の時効処理を
行なう前記従来の熱処理方法と異なり、溶体化処理後に
多段の時効処理を施し、かくして、切欠クリープ強度と
平滑クリープ破断伸びにすぐれるFe基耐熱合金鍛造構
造物を得るものである。
Unlike the conventional heat treatment method, which performs a single-stage aging treatment after solution treatment, the method of the present invention performs a multi-stage aging treatment after solution treatment, thus achieving excellent notch creep strength and smooth creep elongation at rupture. A Fe-based heat-resistant alloy forged structure is obtained.

かかる多段時効処理によって、Fe基耐熱合金のクリー
プ破断性質が向上する理由は未だ明らかではない。しか
し、本発明者の研究によれは、クリープ破壊現象は、時
間依存型の粒界破壊を示しているので、時効保持中又は
クリープ試験中の粒界析出物に密接に関連するものとみ
られる。即ち、本発明者らの研究によれば、時効の初期
に粒界に比較的速くフィルム状のTiCの析出が起こり
、クリープ亀裂はこのフィルム状のTiCとマトリック
スとの界面から発生し、伝播することによって、破壊に
至っているものとみられる。
The reason why the creep rupture properties of Fe-based heat-resistant alloys are improved by such multi-stage aging treatment is not yet clear. However, according to the research conducted by the present inventors, the creep fracture phenomenon indicates time-dependent grain boundary fracture, and therefore appears to be closely related to grain boundary precipitates during aging holding or creep testing. That is, according to the research of the present inventors, film-like TiC precipitates relatively quickly at grain boundaries in the early stage of aging, and creep cracks are generated from the interface between this film-like TiC and the matrix and propagate. This appears to have led to its destruction.

従って、本発明による多段時効処理は、上記フィルム状
の析出物の形状を変えることによって、亀裂伝播抵抗を
高めると同時に、全体として時効時間が長くなるので、
粒内に析出しているγ゛(Ni3Ti)の粗大化が起こ
り、変形に対して粒界への応力集中を緩和することによ
り、クリープ破断性質が改善されるものと考えられる。
Therefore, the multi-stage aging treatment according to the present invention increases crack propagation resistance by changing the shape of the film-like precipitates, and at the same time increases the aging time as a whole.
It is thought that the creep rupture properties are improved by coarsening of γ゛ (Ni3Ti) precipitated within the grains and relieving stress concentration on the grain boundaries against deformation.

勿論、上記2つの因子がクリープ強度改善のすべてでは
なく、また、本発明は、何ら理論によって制限されるも
のではない。
Of course, the above two factors are not the entirety of creep strength improvement, and the present invention is not limited by any theory.

本発明の方法は、上記のような化学成分を有するFe基
耐熱合金を890〜1100℃の温度に加熱し、この温
度で0.5〜10時時均熱保持した後、油冷、空冷又は
水冷して、溶体化処理を施し、次いで、多段時効処理を
施すものである。
The method of the present invention involves heating an Fe-based heat-resistant alloy having the above-mentioned chemical components to a temperature of 890 to 1100°C, soaking at this temperature for 0.5 to 10 hours, and then cooling with oil, air, or It is water-cooled, subjected to solution treatment, and then subjected to multi-stage aging treatment.

(実施例) 以下に実施例に基づいて本発明を詳細に且つ具体的に説
明する。
(Example) The present invention will be described below in detail and specifically based on Examples.

実施例1 第1表に本発明鋼1として示す化学成分を有するFe基
耐熱合金の100kg鋳塊を熱間鍛造して50鶴角材と
し、これを1010℃で2時間加熱した後、水冷する溶
体化処理を施した後、本発明による多段時効及び従来法
による単一段時効を施した。
Example 1 A 100 kg ingot of a Fe-based heat-resistant alloy having the chemical composition shown as Inventive Steel 1 in Table 1 was hot forged to form a 50 Tsuru square material, which was heated at 1010° C. for 2 hours and then water-cooled to form a solution. After the chemical treatment, multi-stage aging according to the present invention and single-stage aging according to the conventional method were performed.

第1図に従来法、本発明法1.2及び3による熱処理を
施したFe基耐熱合金のクリープ破断試験の結果を示す
FIG. 1 shows the results of creep rupture tests of Fe-based heat-resistant alloys heat-treated by the conventional method and methods 1.2 and 3 of the present invention.

時効処理条件は次のとおりである。The aging treatment conditions are as follows.

皿米叛 740℃で16時間加熱後、冷却。dish rice rebellion After heating at 740°C for 16 hours, cool.

本光尻汰上 700℃で20時間加熱後、50℃/時間にて740℃
に昇温し、この温度に20時間保持した後、冷却。
After heating at 700℃ for 20 hours, 740℃ at 50℃/hour
The temperature was raised to , maintained at this temperature for 20 hours, and then cooled.

主光里抜又 740℃で20時間加熱後、50℃/時間にて700℃
に降温し、この温度に20時間保持した後、冷却。
After heating at 740℃ for 20 hours, 700℃ at 50℃/hour
The temperature was lowered to , and after being maintained at this temperature for 20 hours, it was cooled.

生叉里抜ニ ア00℃で20時間加熱後、50℃/時間にて、740
℃に昇温し、この温度に20時間保持し、次いで、50
℃/時間にて700℃に降温し、この温度に20時間保
持した後、冷却。
After heating for 20 hours at 00℃, 740℃ at 50℃/hour.
℃, held at this temperature for 20 hours, then heated to 50℃.
The temperature was lowered to 700°C at a rate of °C/hour, maintained at this temperature for 20 hours, and then cooled.

また、クリープ試験条件は、平滑クリープ強度について
は、650℃にて46kgf/mm2の応力、切欠クリ
ープ破断強度については、650℃にて60kgf/n
+m”の応力とした。以下においても同じである。
In addition, the creep test conditions were as follows: 46 kgf/mm2 stress at 650°C for smooth creep strength, and 60 kgf/n at 650°C for notched creep rupture strength.
+m'' stress. The same applies to the following.

第1図に示す結果から明らかなように、従来法による合
金は、平滑クリープ破断強度にはすぐれるものの、破断
伸び及び切欠クリープ破断強度が著しく劣る。この従来
法に比べて、本発明法1及び2による合金はいずれも、
切欠クリープ強度及び破断伸びにおいて格段に改善され
ている。
As is clear from the results shown in FIG. 1, the alloy produced by the conventional method has excellent smooth creep rupture strength, but is significantly inferior in elongation at break and notched creep rupture strength. Compared to this conventional method, both the alloys according to methods 1 and 2 of the present invention have
Significantly improved notch creep strength and elongation at break.

実施例2 本実施例においては、本発明法による多段時時効処理に
おける格段の時効処理温度及び時効処理時間の適宜値を
求めた。
Example 2 In this example, appropriate values of the aging treatment temperature and aging treatment time in the multi-stage aging treatment according to the method of the present invention were determined.

(1)  本生皿迭1 上記と同じ化学成分を有する合金に種々の温度及び時間
条件にて2段時効処理を施して、そのクリープ破断強度
を調べた。結果を第2表及び第2図に示す。特に、第2
図に示すように、第1段の時効処理温度(a)が650
℃よりも低い場合は、時効が起こり難いために、平滑及
び切欠いずれのクリープ破断強度も共に低い。しかし、
650〜720℃の範囲の温度とするときは、平滑及び
切欠いずれのクリープ破断強度も向上する。720℃を
越える高温では、過時効となるために、クリープ破断強
度が急激に低下する。これらの結果から、第1段の時効
処理温度は、650〜720℃の範囲が最適であること
が示される。
(1) Raw plate 1 An alloy having the same chemical composition as above was subjected to two-stage aging treatment under various temperature and time conditions, and its creep rupture strength was investigated. The results are shown in Table 2 and Figure 2. Especially the second
As shown in the figure, the aging treatment temperature (a) of the first stage was 650
When the temperature is lower than 0.degree. C., aging is difficult to occur, and both the smooth and notched creep rupture strengths are low. but,
When the temperature is in the range of 650 to 720°C, both smooth and notched creep rupture strength is improved. At high temperatures exceeding 720°C, creep rupture strength rapidly decreases due to overaging. These results indicate that the optimum temperature for the first stage aging treatment is in the range of 650 to 720°C.

また、第2段の時効処理温度(C)は、第3図に示すよ
うに、800℃では過時効になる結果、クリープ破断強
度が急激に低下するので、720〜790℃の範囲が最
適であることが示される。
In addition, as shown in Figure 3, the second stage aging treatment temperature (C) is optimally in the range of 720 to 790°C, as overaging occurs at 800°C and the creep rupture strength rapidly decreases. It is shown that something is true.

次に、上記した温度範囲において、最適の時効温度を調
べた。結果を第4図に示す。第1段の時効処理時間(b
)は、5時間よりも少ないときは、切欠クリープ強度の
低下が認められ、他方、40時間を越えても、大幅なり
リープ破断強度の低下はない。従って、上限の時間を省
エネルギーの観点より考慮した場合、第1段の時効処理
時間(b)は、5〜35時間が好適である。
Next, the optimum aging temperature was investigated within the above temperature range. The results are shown in Figure 4. First stage aging treatment time (b
), when the time is less than 5 hours, a decrease in notch creep strength is observed, while on the other hand, even after 40 hours, there is no significant decrease in the leap rupture strength. Therefore, when considering the upper limit time from the viewpoint of energy saving, the first stage aging treatment time (b) is preferably 5 to 35 hours.

同様にして、第2段の時効処理時間(d)について調べ
た結果、第4図に示すように、5〜35時間が好適であ
る。
Similarly, as a result of examining the second stage aging treatment time (d), as shown in FIG. 4, 5 to 35 hours is suitable.

(2)生又皿抜1 前記と同じ化学成分を有する合金を同様に1010℃に
均熱保持する溶体化処理を施した後、種々の温度(a)
にて20時時均熱保持し、そのまま種々の温度(b)に
降温し、この温度で20時時均熱保持して、クリープ破
断試験を行なった。
(2) Uncooked or plated 1 An alloy having the same chemical composition as above is subjected to solution treatment in which it is soaked and held at 1010°C, and then heated at various temperatures (a).
The specimens were soaked for 20 hours at a temperature of 100 mL, then lowered to various temperatures (b), and kept soaked at this temperature for 20 hours to conduct a creep rupture test.

結果を第3表に示す。クリープ試験の条件は前記と同じ
である。この結果から、第1段の時効処理温度は720
〜790℃、第2段の時効処理温度は630〜720℃
が好適であることが示される。
The results are shown in Table 3. The conditions for the creep test were the same as described above. From this result, the aging treatment temperature in the first stage is 720.
~790℃, second stage aging treatment temperature is 630~720℃
is shown to be suitable.

また、各段における時効処理時間についても、本発明法
1と同様な試験の結果から5〜35時間が好適であるこ
とが確認された。
Furthermore, as for the aging treatment time in each stage, it was confirmed from the results of a test similar to that of Method 1 of the present invention that 5 to 35 hours is suitable.

(3)主光里迭盈 前記と同じ化学成分を有する合金を同様に1010℃に
均熱保持する溶体化処理を施した後、種々の温度(a)
にて20時時均熱保持し、そのまま種々の温度(b)に
昇温し、その温度で20時時均熱保持した後、更にその
まま種々の温度(c)に降温し、その温度で20時時均
熱保持した後、冷却する3段時効処理を行なった。クリ
ープ破断試験の結果を第4表に示す。クリープ試験の条
件は前記と同じである。この結果から、時効処理温度は
、第1段が650〜720℃、第2段が720〜790
℃、第3段が630〜720℃が好適であることが示さ
れる。
(3) An alloy having the same chemical composition as above was subjected to solution treatment in which it was soaked and held at 1010°C, and then heated at various temperatures (a).
After soaking for 20 hours at the same temperature, the temperature was raised to various temperatures (b), and after soaking and holding at that temperature for 20 hours, the temperature was further lowered to various temperatures (c), and at that temperature it was heated for 20 hours. A three-stage aging treatment was performed in which the specimen was soaked for a period of time and then cooled. The results of the creep rupture test are shown in Table 4. The conditions for the creep test were the same as described above. From this result, the aging treatment temperature is 650-720℃ for the first stage and 720-790℃ for the second stage.
It is shown that 630-720°C is suitable for the third stage.

また、各段における時効処理時間についても、本発明法
1と同様な試験の結果から5〜35時間が好適であるこ
とが確認された。
Furthermore, as for the aging treatment time in each stage, it was confirmed from the results of a test similar to that of Method 1 of the present invention that 5 to 35 hours is suitable.

実施例3 第1表に示す化学成分を有する本発明mB及びC並びに
比較mA及びDを用いて、実施例1と同じ固溶化処理の
後、実施例1において示したと同じ本発明法1.2及び
3による時効処理を施した。
Example 3 Using the inventive mB and C and the comparative mA and D having the chemical components shown in Table 1, the same inventive method 1.2 as shown in Example 1 was carried out after the same solution treatment as in Example 1. Aging treatment according to 3.

また、比較のために、従来法による時効処理も行なった
。これらについて、クリープ破断試験を行なった結果を
第5表に示す。
For comparison, aging treatment was also performed using a conventional method. Table 5 shows the results of a creep rupture test performed on these.

比較鋼Aは、Ti量が本発明で規定するよりも過少であ
るので、切欠破断強度が著しく低い。比較鋼りは、反対
にTi量が本発明で規定するよりも過多であって、同様
に切欠破断強度が著しく低い。
Comparative steel A has an extremely low notch rupture strength because the Ti content is less than that specified in the present invention. On the other hand, the comparative steel has an excessive amount of Ti than specified in the present invention, and similarly has a significantly low notch rupture strength.

これら比較鋼に対して、本発明法によれば、すぐれた平
滑クリープ破断強度のみならず、すぐれた切欠クリープ
強度と破断伸びを有するFe基耐熱鍛造合金を得ること
ができることが明らかである。
Compared to these comparative steels, it is clear that according to the method of the present invention, an Fe-based heat-resistant forged alloy having not only excellent smooth creep strength at rupture but also excellent notched creep strength and elongation at fracture can be obtained.

(発明の効果) 以上のように、本発明の方法によれは、切欠クリープ強
度及び破断延性が著しく改善されるので、本発明の方法
によるFe基耐熱合金からなる鍛造品は厳しい安定性が
要求される高温条件下での回転構造物に好適である。
(Effects of the Invention) As described above, the method of the present invention significantly improves the notch creep strength and fracture ductility, so the forged product made of the Fe-based heat-resistant alloy produced by the method of the present invention has strict stability requirements. Suitable for rotating structures under high temperature conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Fe基耐熱合金を従来法及び本発明の方法に
従って時効処理を施したときのクリープ破断強度を示す
グラフ、第2図は、第1段の時効処理後、そのまま昇温
しで第2段の時効処理を施したときの第1段の時効温度
とクリープ破断強度との関係を示すグラフ、第4図は、
第1段の時効処理後、そのまま昇温しで第2段の時効処
理を施したときの第2段の時効温度とクリープ破断強度
との関係を示すグラフ、第3図は、第1段の時効処理後
、そのまま昇温しで第2段の時効処理を施したときの第
1段及び第2段での時効処理時間とクリープ破断強度と
の関係を示すグラフである。 第1図 ■ 第2図 4b斜a(セ)xzohr 第3図 痔りガ逅度C(セ)λ2θAt 第4図
Figure 1 is a graph showing the creep rupture strength of Fe-based heat-resistant alloys subjected to aging treatment according to the conventional method and the method of the present invention. Figure 4 is a graph showing the relationship between the first stage aging temperature and creep rupture strength when the second stage aging treatment is performed.
Figure 3 is a graph showing the relationship between the second-stage aging temperature and the creep rupture strength when the temperature is raised as it is after the first-stage aging treatment and the second-stage aging treatment is performed. It is a graph showing the relationship between the aging treatment time in the first stage and the second stage and the creep rupture strength when the second stage aging treatment is performed by raising the temperature as it is after the aging treatment. Fig. 1 ■ Fig. 2 4b oblique a (ce)

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で C  0.01〜0.12%、 Si 1.0%以下、 Mn 2%以下、 Cr 12〜18%、 Ni 20〜35%、 Mo 1〜2%、 Ti 1.2〜3.0%、 Al 1%以下、 B  0.001〜0.015%、 V  0.1〜1%、 残部鉄及び不可避的不純物よりなるFe基耐熱合金の鋼
塊を熱間鍛造した後、890〜1100℃の温度に均熱
保持して固溶化処理を施し、次いで、650〜720℃
の温度にて5〜35時間均熱保持する第1段の時効処理
を行ない、そのまま720〜790℃の範囲であって、
且つ、上記第1段の時効処理温度よりも20℃以上高い
温度に昇温し、5〜35時間均熱保持した後、冷却する
第2段の時効処理を行なうことを特徴とするクリープ破
断性質にすぐれるFe基耐熱合金の熱処理方法。
(1) Weight%: C 0.01-0.12%, Si 1.0% or less, Mn 2% or less, Cr 12-18%, Ni 20-35%, Mo 1-2%, Ti 1.2 ~3.0%, Al 1% or less, B 0.001-0.015%, V 0.1-1%, after hot forging a Fe-based heat-resistant alloy steel ingot consisting of the balance iron and unavoidable impurities. , subjected to solid solution treatment by soaking and holding at a temperature of 890 to 1100°C, and then heated to 650 to 720°C.
The first aging treatment is carried out by soaking and holding at a temperature of 5 to 35 hours, and the temperature is in the range of 720 to 790 °C,
In addition, the creep rupture property is characterized in that a second stage aging treatment is performed in which the temperature is raised to a temperature 20° C. or more higher than the first stage aging treatment temperature, and the temperature is soaked for 5 to 35 hours, and then the second stage is cooled. A heat treatment method for Fe-based heat-resistant alloys with excellent properties.
(2)重量%で C  0.01〜0.12%、 Si 1.0%以下、 Mn 2%以下、 Cr 12〜18%、 Ni 20〜35%、 Mo 1〜2%、 Ti 1.2〜3.0%、 Al 1%以下、 B  0.001〜0.015%、 V  0.1〜1%、 残部鉄及び不可避的不純物よりなるFe基耐熱合金の鋼
塊を熱間鍛造した後、890〜1100℃の温度に均熱
保持して固溶化処理を施し、次いで、720〜790℃
の温度にて5〜35時時均熱保持する第1段の時効処理
を行ない、そのまま630〜720℃の範囲であって、
且つ、上記第1段の時効処理温度よりも20℃以上低い
温度に降温し、5〜35時間均熱保持した後、冷却する
第2段の時効処理を行なうことを特徴とするクリープ破
断性質にすぐれるFe基耐熱合金の熱処理方法。
(2) Weight%: C 0.01-0.12%, Si 1.0% or less, Mn 2% or less, Cr 12-18%, Ni 20-35%, Mo 1-2%, Ti 1.2 ~3.0%, Al 1% or less, B 0.001-0.015%, V 0.1-1%, after hot forging a Fe-based heat-resistant alloy steel ingot consisting of the balance iron and unavoidable impurities. , subjected to solid solution treatment by soaking and holding at a temperature of 890 to 1100 °C, then 720 to 790 °C
The first aging treatment is carried out by soaking for 5 to 35 hours at a temperature of 630 to 720 °C,
In addition, the creep rupture property is characterized in that the temperature is lowered to a temperature 20°C or more lower than the first stage aging treatment temperature, and after soaking and holding for 5 to 35 hours, a second stage aging treatment is performed. An excellent heat treatment method for Fe-based heat-resistant alloys.
(3)重量%で C  0.01〜0.12%、 Si 1.0%以下、 Mn 2%以下、 Cr 12〜18%、 Ni 20〜35%、 Mo 1〜2%、 Ti 1.2〜3.0%、 Al 1%以下、 B  0.001〜0.015%、 V  0.1〜1%、 残部鉄及び不可避的不純物よりなるFe基耐熱合金の鋼
塊を熱間鍛造した後、890〜1100℃の温度に均熱
保持して固溶化処理を施し、次いで、650〜720℃
の温度にて5〜35時間均熱保持する第1段の時効処理
を行ない、次いで、720〜790℃の範囲であって、
且つ、上記第1段の時効処理温度よりも20℃以上高い
温度に昇温して、5〜35時間均熱保持する第2段の時
効処理を行なった後、630〜720℃の範囲であって
、且つ、上記第2段の時効処理温度よりも20℃以上低
い温度に降温して、5〜35時間均熱保持した後、冷却
する第3段の時効処理を行なうことを特徴とするクリー
プ破断性質にすぐれるFe基耐熱合金の熱処理方法。
(3) Weight%: C 0.01-0.12%, Si 1.0% or less, Mn 2% or less, Cr 12-18%, Ni 20-35%, Mo 1-2%, Ti 1.2 ~3.0%, Al 1% or less, B 0.001-0.015%, V 0.1-1%, after hot forging a Fe-based heat-resistant alloy steel ingot consisting of the balance iron and unavoidable impurities. , subjected to solid solution treatment by soaking and holding at a temperature of 890 to 1100°C, and then heated to 650 to 720°C.
A first stage aging treatment is carried out by soaking and holding at a temperature of 720 to 790 °C for 5 to 35 hours, and then a temperature of 720 to 790 °C,
In addition, after performing a second aging treatment in which the temperature is raised to a temperature higher than the first aging treatment temperature by 20°C or more and soaked for 5 to 35 hours, the temperature is 630 to 720°C. Creep characterized in that the temperature is lowered to a temperature 20° C. or more lower than the aging treatment temperature in the second stage, and after soaking and holding for 5 to 35 hours, a third stage aging treatment is performed in which the temperature is cooled. A heat treatment method for a Fe-based heat-resistant alloy with excellent fracture properties.
JP6025986A 1986-03-17 1986-03-17 Heat treatment of fe base heat resisting alloy superior in creep rupture property Pending JPS62218515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6025986A JPS62218515A (en) 1986-03-17 1986-03-17 Heat treatment of fe base heat resisting alloy superior in creep rupture property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6025986A JPS62218515A (en) 1986-03-17 1986-03-17 Heat treatment of fe base heat resisting alloy superior in creep rupture property

Publications (1)

Publication Number Publication Date
JPS62218515A true JPS62218515A (en) 1987-09-25

Family

ID=13136986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6025986A Pending JPS62218515A (en) 1986-03-17 1986-03-17 Heat treatment of fe base heat resisting alloy superior in creep rupture property

Country Status (1)

Country Link
JP (1) JPS62218515A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473058A (en) * 1987-09-14 1989-03-17 Mitsubishi Heavy Ind Ltd Extra-high-temperature and-pressure steam turbine rotor
WO1996032517A1 (en) * 1995-04-12 1996-10-17 Mitsubishi Jukogyo Kabushiki Kaisha High-strength and high-toughness heat-resisting steel
KR20030090975A (en) * 2002-05-24 2003-12-01 현대자동차주식회사 Method for improving fatigue limit of exhaust valve for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473058A (en) * 1987-09-14 1989-03-17 Mitsubishi Heavy Ind Ltd Extra-high-temperature and-pressure steam turbine rotor
WO1996032517A1 (en) * 1995-04-12 1996-10-17 Mitsubishi Jukogyo Kabushiki Kaisha High-strength and high-toughness heat-resisting steel
US5817192A (en) * 1995-04-12 1998-10-06 Mitsubishi Jukogyo Kabushiki Kaisha High-strength and high-toughness heat-resisting steel
KR20030090975A (en) * 2002-05-24 2003-12-01 현대자동차주식회사 Method for improving fatigue limit of exhaust valve for vehicle

Similar Documents

Publication Publication Date Title
US6030469A (en) Fully martensitic steel alloy
CN106756509B (en) A kind of high-temperature alloy structural steel and its Technology for Heating Processing
US2562854A (en) Method of improving the high-temperature strength of austenitic steels
CN109136765A (en) A kind of hot die steel and preparation method thereof
US6146478A (en) Heat treatment process for material bodies made of a high-temperature-resistant iron-nickel superalloy, and heat-treatment material body
US5863494A (en) Iron-nickel superalloy of the type in 706
JPH04218642A (en) Low thermal expansion superalloy
Heck et al. INCONEL® alloy 783: An oxidation-resistant, low expansion superalloy for gas turbine applications
JP4212132B2 (en) Ferritic heat resistant steel having martensitic structure and method for producing the same
JPS62218515A (en) Heat treatment of fe base heat resisting alloy superior in creep rupture property
JPS61136622A (en) Manufacture of high strength low alloy ultrathick steel material
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
CN112048604B (en) Preparation process of low-alloy high-temperature bolt
JP2001073092A (en) 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE
JPH11256278A (en) Cobalt-free maraging steel
US8663404B2 (en) Heat treatment method and components treated according to the method
JP3975110B2 (en) Steel wire, manufacturing method thereof and spring
JPS6338420B2 (en)
JPS63145750A (en) Low alloy steel for turborotor
JPH01230723A (en) Manufacture of turbine rotor
JPS63157839A (en) Steam turbine rotor
JP2556029B2 (en) Method for producing high corrosion resistant iron-based precipitation hardening alloy
JPS63134648A (en) Precipitation hardening-type high tensile steel excellent in corrosion resistance
JPS5926647B2 (en) Method for manufacturing non-magnetic steel with excellent mechanical properties
RU2790708C1 (en) High-entropy alloy and method of its deformation-heat treatment