JPS63145750A - Low alloy steel for turborotor - Google Patents

Low alloy steel for turborotor

Info

Publication number
JPS63145750A
JPS63145750A JP29144286A JP29144286A JPS63145750A JP S63145750 A JPS63145750 A JP S63145750A JP 29144286 A JP29144286 A JP 29144286A JP 29144286 A JP29144286 A JP 29144286A JP S63145750 A JPS63145750 A JP S63145750A
Authority
JP
Japan
Prior art keywords
less
alloy steel
low alloy
strength
embrittlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29144286A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoshioka
洋明 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29144286A priority Critical patent/JPS63145750A/en
Publication of JPS63145750A publication Critical patent/JPS63145750A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a low alloy steel for a turborotor having increased ductility and toughness, and excellent antitemper brittleness without lowering the strength at elevated temp., by specifying the comps. consisting of C, Si, Mn, Ni, Cr, Mo, V and Fe. CONSTITUTION:The low alloy steel for the turborotor consists of, by weight, 0.10-0.35% C, <=0.05% Si, <=0.30% Mn, <=0.60% Ni, 0.5-3.0% Cr, 0.3-1.5% Mo, 0.1-0.3% V, and further at need, <=0.005% P, <=0.008% As, <=0.010% Sn, the balance Fe with inevitable impurities. Said steel has the excellent ductility, toughness and antitemper brittleness without lowering the strength, particularly creep break strength.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、蒸気タービン高圧あるいは中正に用いられ
ろタービンロータ用低合金鋼に係り、特に耐焼戻脆化性
を向上したタービンロータ用低合金鋼に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a low alloy steel for a turbine rotor used in a steam turbine high pressure or intermediate shaft, and particularly relates to a low alloy steel for a turbine rotor with improved tempering embrittlement resistance. This invention relates to low alloy steel for turbine rotors.

(従来の技術) これまで蒸気タービン低圧用ロータに多く用いられてい
るNiCrMoV鋼は、含有しているNiによって焼戻
脆化感受性が高く、このためこのNiCrMoV鋼で構
成されたロータは、その使用温度を脆化温度域(通常3
50〜550℃といわれている)から外すため蒸気温度
が350℃以下となる部位で使用されたり、あるいは脆
化の要因になる不純物元素量を低減して製造されたりし
ている。
(Prior art) NiCrMoV steel, which has been widely used for steam turbine low-pressure rotors, has high susceptibility to temper embrittlement due to the Ni it contains. temperature within the embrittlement temperature range (usually 3
They are used in areas where the steam temperature is below 350°C, or they are manufactured with a reduced amount of impurity elements that cause embrittlement.

(発明が解決しようとする問題点) これに対し、高中圧用ロータに多く用いられているCr
MoV tr4は、その使用温度域が350〜560℃
と脆化温度域と全く一致するにも拘らず、焼戻脆化は発
生しないと考えられ、何ら対策は施されていなかった。
(Problem to be solved by the invention) On the other hand, Cr, which is often used in high and medium pressure rotors,
The operating temperature range of MoV tr4 is 350-560℃
Despite the fact that the embrittlement temperature range was exactly the same as the embrittlement temperature range, it was thought that temper embrittlement would not occur, and no countermeasures were taken.

しかしながら、近年行われたこの種ロータ材の破壊検査
によれば、 CrMoV 鋼からなる低合金鋼で構成さ
れた高中正用ロータにも著しい焼戻脆化が生じていたケ
ースが報告されている。
However, according to destructive inspections of this type of rotor material conducted in recent years, cases have been reported in which significant temper embrittlement has occurred even in rotors for high, medium, and high-grade rotors made of low-alloy steel such as CrMoV steel.

この発明はタービンロータに必要な強度、とりわけ高温
強度を低下させることなく延性・靭性を勇キ 増し、さらに高焼戻脆性に優れたタービンロータ用低合
金鋼を提供することを目的としている。
The object of the present invention is to provide a low-alloy steel for a turbine rotor that has significantly increased ductility and toughness without reducing the strength required for the turbine rotor, particularly high-temperature strength, and also has excellent temper brittleness.

【発明の構成〕[Structure of the invention]

(問題点を解決するための手段および作用)本発明は2
重量比で、 C0.10〜0.35%、 Si0.05
%以下、 Mn 0.30%以下、 Nl 0.60%
以下、 cr0.5−3.0%、 No 0.3〜1.
5%、V0.1〜0.3%、残部Feおよび付随的不純
物よりなるタービンロータ用低合金鋼および、このうち
Mn 0.50%以下としかつ付随的不純物p 0.o
os%以下、 As 0.008%以下、 sb0.0
015%以下、 Sn 0.010%以下としたタービ
ンロータ用低合金鋼である。
(Means and effects for solving the problems) The present invention has two features:
Weight ratio: C0.10-0.35%, Si0.05
% or less, Mn 0.30% or less, Nl 0.60%
Below, cr0.5-3.0%, No. 0.3-1.
5%, V0.1-0.3%, balance Fe and incidental impurities, of which Mn is 0.50% or less and incidental impurities p0. o
os% or less, As 0.008% or less, sb0.0
This is a low alloy steel for turbine rotors with a Sn content of 0.015% or less and a Sn content of 0.010% or less.

かかる本発明は、従来用いられているCrMoV低合金
鋼の化学組成を、焼戻脆化量を低減しつつ同時に強度、
特にクリープ破断強度を低下させないように検討した結
果なされたもので、不純物元素であるP、^S、 Sb
、 Snの含有量を低下させる以上にMn、Siを低減
しており、この構成によって所期の目的を達成するほか
、特に低応力長時間側のクリープ破断強度を改善してい
る。
The present invention improves the chemical composition of conventionally used CrMoV low alloy steel by reducing the amount of temper embrittlement and at the same time increasing the strength and
This was done as a result of consideration to avoid reducing the creep rupture strength, and the impurity elements P, ^S, and Sb
, Mn and Si are reduced more than the Sn content is reduced, and this structure not only achieves the intended purpose but also improves the creep rupture strength, especially on the low-stress, long-time side.

次に本発明のタービンロータ用低合金鋼の組成成分限定
理由につき述べる。
Next, the reasons for limiting the composition of the low alloy steel for turbine rotors of the present invention will be described.

まずC,Cr、 N0. Vに関しては9本発明鋼、に
おいても従来の″″0種低合金鋼と一様の効果を期待し
て組成範囲を限定している。璋魂瘤看埠萌肴噂ゆ嘲−−
〒4中、一方9本発明鋼の特徴とするMn、 Si、j
First, C, Cr, N0. Regarding V, the composition range of the 9th invention steel is also limited in hopes of achieving the same effect as the conventional "0 class low alloy steel". Rumors and mockery of Mengyeki
〒4 out of 9, on the other hand 9 Mn, Si,
.

特にMnに関しては従来その脱硫作用および残存するフ
リーなSを抑制することを目的に0.7%前後添加され
ていた。しかし炉外精錬を適用することにより、Sを0
.002%前後まで低減させることが可能となり、また
一方、従来NiCrMoV鋼を米国で考案されたステッ
プクール法にて脆化させその脆化竜をJ−factor
 : (P +5n)(Si+Mn) X 10’で整
理した場合良好な相関関係が見られているが、これを用
いて第1表に示したCrMoV !Iを評価すると、第
1図に示す通りNiCrMoV mと同様に良好な正の
相関関係が見られs P * As、Sbt Snを通
常の含有量に抑えた場合、Si、Sの含有量が極めて低
い材料のときにMnを0.30%以下とすると良好な耐
焼戻脆性を示すことがわかった。
In particular, Mn has conventionally been added in an amount of around 0.7% for the purpose of suppressing its desulfurization effect and remaining free S. However, by applying out-of-furnace refining, S can be reduced to 0.
.. On the other hand, conventional NiCrMoV steel is embrittled using the step cool method devised in the United States, and the embrittlement is reduced by J-factor.
: (P + 5n) (Si + Mn) A good correlation is observed when organized by 10', and using this, the CrMoV! shown in Table 1 is calculated. When evaluating I, as shown in Figure 1, a good positive correlation was observed as with NiCrMoV m.s P * When As, Sbt and Sn are suppressed to normal contents, the contents of Si and S are extremely low. It has been found that when the material has a low Mn content of 0.30% or less, good resistance to tempering and brittleness is exhibited.

ところで、 Mnは焼入性を向上させるため、特にター
ビンロータの如き大型構造材では中心部まで均質な強度
を得るのに重要な元素であると考えられていたが、 M
nを0.30%以下・とじて1.4鵬程の大・型ロータ
を模擬して実験を行った結果、中心部まで従来と同様の
強度が得られ焼入性という観点からは低Mriでも何ら
問題のないことが判明した。この□・中心部における硬
さおよび粒度のMn含有量に対する変化の様子を第2図
に示しである。
By the way, Mn was thought to be an important element to improve hardenability, especially in large structural materials such as turbine rotors, to obtain uniform strength all the way to the center.
As a result of an experiment simulating a large rotor of about 1.4 mm by keeping n at 0.30% or less, the same strength as the conventional rotor was obtained up to the center, and from the perspective of hardenability, it was low MRI. However, it turned out that there was no problem. FIG. 2 shows how the hardness and particle size in the □ center area change with respect to the Mn content.

また低Mnとした場合、第2表の各実施例に示すように
同一強度で整理した場合の上部棚衝撃値が大幅に改善さ
れ、また常温強度が若干低下するにも拘らず低応力側に
おけるクリープ破断強度が向上することが確認された。
In addition, when low Mn is used, the upper shelf impact value is significantly improved when arranged at the same strength as shown in each example in Table 2, and even though the room temperature strength is slightly reduced, the impact value on the low stress side is It was confirmed that creep rupture strength was improved.

次にSiは従来脱酸のために添加されていたが。Next, Si was conventionally added for deoxidation.

真空鋳込、真空カーボン脱酸を適用することによりその
必要性がなくなり、また非金属介在物を形成して靭性・
延性を損うことがら極力含有量を低減するのが望ましい
。しかしながら現状の精錬技術を以ってしては不可避的
に*−ttが残存することから、 0.OS%以下とす
る。
Applying vacuum casting and vacuum carbon deoxidation eliminates the need for this, and also forms non-metallic inclusions that improve toughness and
It is desirable to reduce the content as much as possible without impairing ductility. However, with the current refining technology, *-tt inevitably remains, so 0. OS% or less.

SもSLと同様であり、特にクリープ延性を損う作用が
ある。炉外精練により可能な精練レベルに微して0.0
04%以下とした。
S is also similar to SL, and has the effect of particularly impairing creep ductility. 0.0 less than the scouring level possible with outside furnace scouring
04% or less.

Niについては、 Mnと同様に脆化を促進する作用が
あるため低減するのが望ましいとも考えられるが、 0
.6Q%以下とした場合tMrt址を0.5%以下とす
る。とNlによる脆化はほとんど見られない、また焼入
性を確保するためにCとのバランスである程度の含有量
が必要であるため0.60%以下とする。
Regarding Ni, it is considered desirable to reduce it because it has the effect of promoting embrittlement like Mn, but 0
.. When it is set to 6Q% or less, tMrt is set to 0.5% or less. Almost no embrittlement is observed due to C and Nl, and a certain amount of C content is required in balance with C to ensure hardenability, so the content is set to 0.60% or less.

最後にP 、 Sn、 Sb、^Sは脆化に直接寄与す
る元素であるから可能な限り低減するのが望ましい。
Finally, since P, Sn, Sb, and ^S are elements that directly contribute to embrittlement, it is desirable to reduce them as much as possible.

但しPを除く他の元素は精練によって除去することがで
きない。発明者らが行った実験によれば。
However, other elements except P cannot be removed by scouring. According to experiments conducted by the inventors.

Mnが0.30%以下の場合これらの元素が通常の程度
含有されていても脆化は認められず、またMn歌が0.
30〜0.50%の場合にはP 0.005%以下、 
As 0.008%以下、 sb 0.oots%以下
、 Sn 0.010%以下のとき脆化が見られないこ
とが判明している。
When the Mn content is 0.30% or less, no embrittlement is observed even if these elements are contained in normal amounts, and the Mn content is 0.30% or less.
In the case of 30 to 0.50%, P 0.005% or less,
As 0.008% or less, sb 0. It has been found that no embrittlement is observed when the Sn content is 0.010% or less.

(実 施 例) 本発明は以下に述べる実施例および比較例についての実
験結果から一層容易に理解される。
(Examples) The present invention will be more easily understood from the experimental results of Examples and Comparative Examples described below.

第1表に示す組成のCrMoV鋼をそれぞれAr雰囲気
中で誘導加熱炉にて溶製し、これを1100℃に加熱し
て鍛造した後、960℃で5時間保持して120℃/H
で冷却、その後670°Cで10時間保持して空冷を行
い、それぞれ比較例1〜3.実施例1〜4の各供試片を
作製した。
Each of the CrMoV steels having the compositions shown in Table 1 was melted in an induction heating furnace in an Ar atmosphere, heated to 1100°C for forged, held at 960°C for 5 hours, and then heated to 120°C/H.
After cooling at 670°C for 10 hours and air cooling, Comparative Examples 1 to 3. Each test piece of Examples 1 to 4 was produced.

こうして得られた供試片の機械的特性を第2表に示す。The mechanical properties of the test pieces thus obtained are shown in Table 2.

なお第2表において焼戻脆性はΔF’ A TTで示さ
れており、この値は上記熱処理後におけるF A TT
値と前記ステップクール法による処理後のFATT値の
差で、このFATT値の上昇がらステップクール法の施
工によってどの程度脆化したかを知ることができる。
In Table 2, tempering embrittlement is indicated by ΔF' A TT, and this value is F A TT after the above heat treatment.
From the difference between the FATT value and the FATT value after treatment by the step cool method, it can be determined how much embrittlement has occurred due to the increase in the FATT value due to the step cool method.

(以下余白) ステップクールυミは第3図に示す一連の熱処理で。(Margin below) Step cool υmi is achieved through a series of heat treatments shown in Figure 3.

各温度で所定の時間保持した後炉冷し、最後に315℃
まで炉冷して水冷焼入れするものである。
After being held at each temperature for a specified time, it is cooled in the furnace and finally heated to 315℃.
It is furnace-cooled to a temperature of 100% and then water-cooled and quenched.

なお、このΔFATTについては第1図にCrMoV鋼
の場合として、全ての比較例および実施例をプロットし
である。
Regarding this ΔFATT, all comparative examples and examples are plotted in FIG. 1 in the case of CrMoV steel.

第2表の数値から明らかなように1本発明に係る実施例
1〜4は比較例に較べて引張強さが若干低いものの伸び
絞りに優れ、さらにFATT、、ヒ部Ja?tl@値で
表わされる衝撃靭性が著しく優れている。また、特にス
テップクール法施]―後のΔFATTは、実施例1〜4
の方が比較例に対し格段に優れており1本発明低合金鋼
は耐焼戻脆化性に優れていることが理解される。クリー
プ破断強度についても、実施例1〜4は比較例のものと
ほぼ同等以上で、何ら問題がないという結果が21>ら
れた。
As is clear from the values in Table 2, Examples 1 to 4 according to the present invention have slightly lower tensile strength than the comparative examples, but are excellent in elongation reduction, and furthermore, FATT, Hi part Ja? The impact toughness expressed by the tl@ value is extremely excellent. In addition, in particular, ΔFATT after step cool method was determined in Examples 1 to 4.
It is understood that the low alloy steel of the present invention has excellent resistance to temper embrittlement. Regarding the creep rupture strength, Examples 1 to 4 were approximately equal to or higher than those of the comparative example, and it was found that there were no problems.

〔発明の効果〕〔Effect of the invention〕

本発明は低Mn含有量であることを特徴とするものであ
るから9本発明によれば1強度を低下させることなく耐
焼戻脆化性を向上したタービンロータ用低合金鋼を得る
ことができる。
Since the present invention is characterized by a low Mn content, 9 According to the present invention, it is possible to obtain a low alloy steel for a turbine rotor that has improved resistance to temper embrittlement without reducing strength. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はJ−4actorとΔFATTの相関関係を示
す線図、第2図はロータ中心部におけるMn含有量はビ
ッカース硬さの関係を示す線図、第3図はステップスク
ール法の概要を示す模式図である。 代理人 弁理士 則 近 憲 佑 同  三俣弘文 、ツー二fo−ctor ((Mn+5j)X  (P
+5A)x /Q’)第1図 Q    0./    0.2   0.3   0
.4    0.5μ M/I 第2図
Figure 1 is a diagram showing the correlation between J-4actor and ΔFATT, Figure 2 is a diagram showing the relationship between Mn content in the center of the rotor and Vickers hardness, and Figure 3 is an outline of the step school method. It is a schematic diagram. Agent Patent Attorney Yudo Nori Chika Hirofumi Mitsumata, Tsuji fo-ctor ((Mn+5j)X (P
+5A) x /Q') Figure 1 Q 0. / 0.2 0.3 0
.. 4 0.5μ M/I Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)重量比で、C0.10〜0.35%、Si0.0
5%以下、Mn0.30%以下、Ni0.60%以下、
Cr0.5〜3.0%、Mo0.3〜1.5%、V0.
1〜0.3%、残部Feおよび付随的不純物よりなるタ
ービンロータ用低合金鋼
(1) Weight ratio: C0.10-0.35%, Si0.0
5% or less, Mn 0.30% or less, Ni 0.60% or less,
Cr0.5-3.0%, Mo0.3-1.5%, V0.
Low alloy steel for turbine rotors consisting of 1 to 0.3%, balance Fe and incidental impurities
(2)重量比で、C0.10〜0.35%、Si0.0
5%以下、Mn0.50%以下、Ni0.60%以下、
Cr0.5〜3.0%、Mo0.3〜1.5%、V0.
1〜0.3%、P0.005%以下、As0.008%
以下、Sb0.0015%以下、Sn0.010%以下
、残部Feおよび付随的不純物よりなるタービンロータ
用低合金鋼
(2) Weight ratio: C0.10-0.35%, Si0.0
5% or less, Mn 0.50% or less, Ni 0.60% or less,
Cr0.5-3.0%, Mo0.3-1.5%, V0.
1 to 0.3%, P 0.005% or less, As 0.008%
Low alloy steel for turbine rotor consisting of Sb 0.0015% or less, Sn 0.010% or less, balance Fe and incidental impurities.
JP29144286A 1986-12-09 1986-12-09 Low alloy steel for turborotor Pending JPS63145750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29144286A JPS63145750A (en) 1986-12-09 1986-12-09 Low alloy steel for turborotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29144286A JPS63145750A (en) 1986-12-09 1986-12-09 Low alloy steel for turborotor

Publications (1)

Publication Number Publication Date
JPS63145750A true JPS63145750A (en) 1988-06-17

Family

ID=17768920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29144286A Pending JPS63145750A (en) 1986-12-09 1986-12-09 Low alloy steel for turborotor

Country Status (1)

Country Link
JP (1) JPS63145750A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091010A1 (en) * 1999-10-04 2001-04-11 Mitsubishi Heavy Industries, Ltd. Low-alloy heat-resistant steel, process for producing the same, and turbine rotor
EP1123984A2 (en) * 2000-02-08 2001-08-16 Mitsubishi Heavy Industries, Ltd. High and low pressure integrated type turbine rotor and process for producing the same
JP2008093668A (en) * 2006-10-06 2008-04-24 Hitachi Ltd Welded rotor of steam turbine
JP2008137042A (en) * 2006-12-04 2008-06-19 Hitachi Ltd Turbine rotor
EP2302089A1 (en) * 2009-09-24 2011-03-30 General Electric Company Steam turbine rotor and alloy therefor
US9206704B2 (en) 2013-07-11 2015-12-08 General Electric Company Cast CrMoV steel alloys and the method of formation and use in turbines thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091010A1 (en) * 1999-10-04 2001-04-11 Mitsubishi Heavy Industries, Ltd. Low-alloy heat-resistant steel, process for producing the same, and turbine rotor
EP1275745A1 (en) * 1999-10-04 2003-01-15 Mitsubishi Heavy Industries, Ltd. Low-alloy heat-resistant steel, process for producing the same, and turbine rotor
EP1123984A2 (en) * 2000-02-08 2001-08-16 Mitsubishi Heavy Industries, Ltd. High and low pressure integrated type turbine rotor and process for producing the same
EP1123984A3 (en) * 2000-02-08 2008-12-03 Mitsubishi Heavy Industries, Ltd. High and low pressure integrated type turbine rotor and process for producing the same
JP2008093668A (en) * 2006-10-06 2008-04-24 Hitachi Ltd Welded rotor of steam turbine
JP2008137042A (en) * 2006-12-04 2008-06-19 Hitachi Ltd Turbine rotor
EP2302089A1 (en) * 2009-09-24 2011-03-30 General Electric Company Steam turbine rotor and alloy therefor
US8523519B2 (en) 2009-09-24 2013-09-03 General Energy Company Steam turbine rotor and alloy therefor
US9206704B2 (en) 2013-07-11 2015-12-08 General Electric Company Cast CrMoV steel alloys and the method of formation and use in turbines thereof

Similar Documents

Publication Publication Date Title
US3154412A (en) Heat-resistant high-strength stainless steel
US2562854A (en) Method of improving the high-temperature strength of austenitic steels
USRE28523E (en) High strength alloy steel compositions and process of producing high strength steel including hot-cold working
US3291655A (en) Alloys
US2747989A (en) Ferritic alloys
US3767390A (en) Martensitic stainless steel for high temperature applications
US2797993A (en) Stainless steel
US3342590A (en) Precipitation hardenable stainless steel
US3347663A (en) Precipitation hardenable stainless steel
JPS63145750A (en) Low alloy steel for turborotor
JPH04147948A (en) Rotary shaft for high temperature steam turbine
US4049430A (en) Precipitation hardenable stainless steel
JPH11209851A (en) Gas turbine disk material
JPS616256A (en) 12% cr heat resisting steel
JP2001073092A (en) 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE
US2986463A (en) High strength heat resistant alloy steel
US3453152A (en) High-strength alloy steel compositions and process of producing high strength steel including hot-cold working
JPH05113106A (en) High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel
JPH01230723A (en) Manufacture of turbine rotor
US4049432A (en) High strength ferritic alloy-D53
JPS6323261B2 (en)
JPH0219425A (en) Manufacture of turbine rotor
JPH02145749A (en) Turbine rotor
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
EP3255171A1 (en) Maraging steel