JPS62216361A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62216361A
JPS62216361A JP5823986A JP5823986A JPS62216361A JP S62216361 A JPS62216361 A JP S62216361A JP 5823986 A JP5823986 A JP 5823986A JP 5823986 A JP5823986 A JP 5823986A JP S62216361 A JPS62216361 A JP S62216361A
Authority
JP
Japan
Prior art keywords
barrier
carrier
height
hetero
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5823986A
Other languages
Japanese (ja)
Other versions
JPH07105488B2 (en
Inventor
Toshio Fujii
俊夫 藤井
Shunichi Muto
俊一 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5823986A priority Critical patent/JPH07105488B2/en
Publication of JPS62216361A publication Critical patent/JPS62216361A/en
Publication of JPH07105488B2 publication Critical patent/JPH07105488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7606Transistor-like structures, e.g. hot electron transistor [HET]; metal base transistor [MBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To increase a current gain by regulating the effective height of a barrier on which carrier moving in a hetero junction surface perpendicular direction overrides by selectively doping at barrier side. CONSTITUTION:In an element using a hetero junction and utilizing a carrier circular transfer phenomenon perpendicular to the hetero junction surface, selective doping is performed at part of the junction at the side of a barrier layer to regulate the effective barrier on which the carrier overrides by generating the bent of a band. Since the selective doping is achieved at part of the hetero barrier layer and the height of the effective barrier on which the carrier tends to override is varied by utilizing the bent of the band generated from the result of the movements of electrons due to the difference of electron affinity, irregular lattice alignment is avoided, and lattice constant ratio DELTAA/A<=10<-3> can be, for example obtained. It can be applied to the hetero junction device of various compounds such as HET in which InGaAs, InAlAs are laminated on an InP substrate, or HET in which GaAs, InGaP are laminated on a GaAs substrate.

Description

【発明の詳細な説明】 〔概 要〕 ヘテロ接合面垂直方向に移動するキャリヤが越す障壁の
実効高さを、障壁側に選択ドーピングを施こすことによ
って、調整し、半導体装置の特性向」−に寄与する。
[Detailed Description of the Invention] [Summary] The effective height of the barrier over which carriers moving in the direction perpendicular to the heterojunction surface is adjusted by selectively doping the barrier side, thereby improving the characteristics of semiconductor devices. Contribute to

〔産業上の利用分野〕[Industrial application field]

本発明はへテロ接合面に対し垂直方向の輸送現象を利用
する半導体装置に係り、特にヘテロ障壁の高さをヘテロ
接合半導体の組成調整に3Jらず、調整できる化合物半
導体装置に関する。
The present invention relates to a semiconductor device that utilizes a transport phenomenon perpendicular to a heterojunction surface, and particularly to a compound semiconductor device in which the height of a heterobarrier can be adjusted without adjusting the composition of a heterojunction semiconductor.

〔従来の技術〕[Conventional technology]

ヘテロ接合構造を有する半導体装置としてはAlGaA
s/GaGaAs1lEが著名であるが、IIEMTと
は輸送方向が異なりへテロ接合面に対し垂直方向の輸送
方向を有するホットエレクトロントランジスタ(IIE
T)、なども近年注目されている。11[Tでは、一般
に半絶縁性バリヤとして^lGaAsを用い、エミッタ
、ベースおよびコレクタとしてn14QGaAsが用い
られる。IIBTでは、エミッタ・ベース間のバリヤ(
^]GaAs)およびベース(GaAs)をエレクトロ
ンがピコ秒程度の高速で横切る。
As a semiconductor device having a heterojunction structure, AlGaA
s/GaGaAs11E is well-known, but the transport direction is different from that of IIEMT, and hot electron transistor (IIE
T), etc. have also received attention in recent years. 11[T generally uses ^lGaAs as the semi-insulating barrier and n14QGaAs as the emitter, base and collector. In IIBT, the emitter-base barrier (
^]GaAs) and the base (GaAs) at a high speed of about picoseconds.

1181においてバリヤの高さが低ずぎるとリーク電流
が多くなり、逆に高すぎるとエレクトロンがバリヤを乗
り越えられなくなるのでGaAlAsの組成調整により
所望のバリヤの高さが与えられている。
In 1181, if the height of the barrier is too low, leakage current will increase, and if it is too high, electrons will not be able to overcome the barrier, so a desired barrier height is provided by adjusting the composition of GaAlAs.

HETのエミッタに注入されたエレクトロンのうちコレ
クタに達したエレクトロンとコレクターに達せずベース
電流に収集されたエレクトロンの割合をN?R増幅率と
称する。電流増幅率を高めるうえでひとつの問題は、ベ
ース領域における伝導帯のL (エル)又はX(エック
ス)点におけるエネルギレベルが低いと、ベースに注入
されたエレクトロンが伝導帯で散乱されベース電流とな
り、このため電流増幅率が少なくなるという所にある。
Among the electrons injected into the HET emitter, the ratio of electrons that reached the collector to those that did not reach the collector and were collected in the base current is N? It is called R amplification factor. One problem in increasing the current amplification factor is that if the energy level at the L or X point of the conduction band in the base region is low, electrons injected into the base will be scattered in the conduction band and become a base current. , therefore, the current amplification factor decreases.

第2図は、ベース領域におけるエレクトロンの散乱の概
念図であり、図中E、B、Cはそれぞれエミッタ、ベー
ス、コレクタであり、Brはバリヤ、EcはベースBに
おける1、点又はX点の伝導帯を示す。第2図に図解し
た如きエレクトロンの散乱を抑制する一つの方法として
、エミッタとベース間の障壁高さを変える方法がある。
FIG. 2 is a conceptual diagram of electron scattering in the base region. In the figure, E, B, and C are the emitter, base, and collector, respectively, Br is the barrier, and Ec is the point 1 or point X in the base B. Indicates conduction band. One method for suppressing electron scattering as illustrated in FIG. 2 is to vary the barrier height between the emitter and the base.

従来から障壁高さを変える方法としては母体結晶の組成
を変える方法がある。
A conventional method for changing the barrier height is to change the composition of the host crystal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがGaAs −AlGaAsのような格子の整合
性がより系では上記の方法を採ることができるが、In
GaAs/InP、 InAl^s/TnGaAsのよ
うな系では母体結晶の組成を変化させた場合格子不整が
著しくヘテロ接合界面付近の結晶性を低下させる欠点が
ある。本発明は、ヘテロ障壁層の母体結晶の111成は
変化させずにヘテロ界面における実効的な障壁高さを変
化させる手段を捉供することによって、ヘテロ接合半導
体装置の特性を適切に設計することを目的とする。実効
的な障壁高さを変化させることによりエミッタからベー
スへのキャリヤのn人あるいはベースからコレクタのキ
ャリヤの注入を所望に制御することをも発明の目的とす
る。
However, the above method can be used for systems with better lattice matching, such as GaAs-AlGaAs, but in
Systems such as GaAs/InP and InAl^s/TnGaAs have the disadvantage that when the composition of the host crystal is changed, the lattice misalignment is significant and the crystallinity near the heterojunction interface is degraded. The present invention makes it possible to appropriately design the characteristics of a heterojunction semiconductor device by providing a means for changing the effective barrier height at the hetero interface without changing the 111 structure of the host crystal of the hetero barrier layer. purpose. It is also an object of the invention to control the desired injection of carriers from the emitter to the base or from the base to the collector by varying the effective barrier height.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ヘテロ接合を用い1つへテロ接合面に対し垂
直方向のキャリヤの輸送現象を利用する素子において、
ヘテロ接合の障壁層側の一部に選択ドーピングを施すこ
とによってバンドの曲りを生しさせキャリヤが越すべき
実効的な障壁の高さを調整できることを特徴とする。
The present invention provides an element that utilizes a carrier transport phenomenon in a direction perpendicular to one heterojunction surface using a heterojunction.
It is characterized in that selective doping is applied to a part of the barrier layer side of the heterojunction to cause band bending and to adjust the effective height of the barrier over which carriers should pass.

〔作 用〕[For production]

本発明によれば、ヘテロ障壁層の一部に選択ドーピング
をほどこし、電子親和力の差によって起こる電子の移動
の結果性じるハンドの曲がりを利用しキャリヤが越えよ
うとする実効的な障壁の高さを変化させるので、格子不
整合を回避し、例えば格子定数比率ΔA/A≦10−3
を確保することができる。本発明は、InP基板上にI
nGaAs、 InAlAsを積層するtlET、 G
aAs基板上にGaAs、1nGaPを積層するIIE
Tなど格子不整合が問題になる各種化合物のへテロ接合
デバイスに適用される。
According to the present invention, selective doping is applied to a part of the hetero barrier layer, and the effective barrier that carriers try to cross is increased by utilizing the bending of the hand caused by the movement of electrons caused by the difference in electron affinity. By changing the lattice constant ratio ΔA/A≦10-3, for example, lattice mismatch can be avoided.
can be ensured. The present invention provides I
tlET stacking nGaAs and InAlAs, G
IIE for stacking GaAs and 1nGaP on an aAs substrate
It is applied to heterojunction devices of various compounds such as T where lattice mismatch is a problem.

〔実施例〕〔Example〕

以下、InGaAs/ InGaAs HETの実施例
を説明する。
Examples of InGaAs/InGaAs HETs will be described below.

InP(Pe) %板を用い、基板温度470℃、成長
速度0.5μm / hの条件下でMBE法により第1
図に層構造を示すHETを製造した。第1図のIIET
のエネルギバンド図を第3図に示す。図中、3〜9はそ
れぞれ第1図の層の番号に該当する。第1図において各
層は次のとおりである。l −1nP(Fe)基板、2
はコレクタコンタクトとして用いられる2500人厚の
0 ’  −1no、 s+Gao、 aq層、34.
+1 ルクタであって、500人厚0n −In6.5
3Gao、 47^S層(コレクタ層、キャリヤ濃度1
×1O18/C1n″)、4,5はベース、コレクタ間
のバリヤであって、4はノーンドープlno、 5Jl
o、 <aAs層(厚さ1500人)、5はIno、 
5ZAII1. asAs層(厚さ100人、キャリヤ
濃度、l X I OI′/c7) 、6 、7はベー
スであって、6は200人厚0ノーンドープIno、 
53Gao、 aqAs層、7は200人厚0ノno、
 53Ga0.4’l^S層(キャリヤ濃度、I X 
10 ”/c+II) 、8はハ’)ヤテtr)−)”
’(,300人厚0ノンドープIn6.5JIo、 4
8^S層、9はエミッタであって、1000人厚の人厚
o、 5sGao17八S層、10は3000人厚のI
no、 5sGao、 4?A3層(エミッタコンタク
ト)である。ベースとコレクタの間のバリヤのエレクト
ロン注入側(5)をドープすることによってハンドの曲
りを生ぜしめた。また、バリヤ4゜5のうちコレクタ側
(4)はノンドープとしているためコレクタ3から見た
障壁の高さは高い。よってコレクタ3に一旦注入された
エレクトロンがバリヤ4,5をとび越してベースにエレ
クトロンがベースに流れることはなくなる。
Using an InP(Pe)% plate, the first step was performed using the MBE method under conditions of a substrate temperature of 470°C and a growth rate of 0.5 μm/h.
A HET whose layered structure is shown in the figure was manufactured. IIET in Figure 1
The energy band diagram of is shown in Fig. 3. In the figure, 3 to 9 correspond to the layer numbers in FIG. 1, respectively. In FIG. 1, each layer is as follows. l −1nP(Fe) substrate, 2
is a 2500-layer thick 0'-1no, s+Gao, aq layer used as a collector contact, 34.
+1 Lucta, 500 people thickness 0n -In6.5
3Gao, 47^S layer (collector layer, carrier concentration 1
×1O18/C1n''), 4 and 5 are barriers between the base and collector, 4 is undoped lno, 5Jl
o, <aAs layer (thickness 1500 layers), 5 is Ino,
5ZAII1. asAs layer (thickness 100, carrier concentration, lXIOI'/c7), 6 and 7 are bases, 6 is 200 layers thick, 0 undoped Ino,
53 Gao, aqAs layer, 7 is 200 people thick 0 no,
53Ga0.4'l^S layer (carrier concentration, I
10 "/c+II), 8 is ha') Yatetr)-)"
'(, 300 people thickness 0 non-doped In6.5 JIo, 4
8^S layer, 9 is the emitter, 1000 people thick O, 5sGao178S layer, 10 is 3000 people thick I
no, 5sGao, 4? This is the A3 layer (emitter contact). Hand bending was created by doping the electron injection side (5) of the barrier between base and collector. Further, since the collector side (4) of the barrier 4.5 is non-doped, the height of the barrier seen from the collector 3 is high. Therefore, the electrons once injected into the collector 3 will no longer jump over the barriers 4 and 5 and flow to the base.

さらに、ベース6.7のエレクトロン注入側(7)にも
ドーピングした。
Furthermore, the electron injection side (7) of the base 6.7 was also doped.

上記11ETをベース接地、Veb=0.6 V、Vc
b−1■の条件で電流増幅率を測定したところ4であっ
た。一方、比較のために、第1図の5をノンドープln
o、 s□A1゜、48^Sに変えたHUTの電流増幅
率を測定したところlであった。
Ground the base of the above 11ET, Veb=0.6 V, Vc
When the current amplification factor was measured under the conditions of b-1■, it was 4. On the other hand, for comparison, 5 in Fig. 1 is undoped ln
o, s□A1°, and the current amplification factor of the HUT changed to 48^S was measured and was l.

〔発明の効果〕〔Effect of the invention〕

本発明によればエミッタより注入されたキャリヤが越す
べきコレクター障壁の高さを低くできるので電流利得を
大きくできる効果がある。またコレクター領域から見た
障壁の高さは変わらない利点も有する。
According to the present invention, the height of the collector barrier that carriers injected from the emitter must overcome can be lowered, resulting in the effect of increasing the current gain. It also has the advantage that the height of the barrier as seen from the collector area does not change.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるIIETの層構造を示
す図面、 第2図はへテロ接合垂直方向にキャリヤを注入する半導
体装置における散乱の説明図、第3図は第1図のH1!
Tのエネルギパン1゛図である。 3・・・コレクター、   4.5・・・バリヤ、6.
7・・・ベース、      8・・・バリヤ、9・・
・エミッタ。
FIG. 1 is a diagram showing the layer structure of an IIET according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of scattering in a semiconductor device in which carriers are injected vertically to a heterojunction, and FIG. 3 is an illustration of H1 in FIG. !
It is an energy pan diagram of T. 3...Collector, 4.5...Barrier, 6.
7...Base, 8...Barrier, 9...
・Emitter.

Claims (1)

【特許請求の範囲】[Claims] 1、ヘテロ接合を用い且つヘテロ接合面に対し垂直方向
のキャリヤの輸送現象を利用する素子において、ヘテロ
接合の障壁層側の一部に選択ドーピングを施すことによ
てバンドの曲りを生じさせキャリヤが越すべき実効的な
障壁の高さを調整できることを特徴とする半導体装置。
1. In a device that uses a heterojunction and utilizes the transport phenomenon of carriers in the direction perpendicular to the heterojunction surface, selective doping is applied to a part of the barrier layer side of the heterojunction to cause band bending and transport the carriers. A semiconductor device characterized in that the height of an effective barrier to be overcome can be adjusted.
JP5823986A 1986-03-18 1986-03-18 Semiconductor device Expired - Lifetime JPH07105488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5823986A JPH07105488B2 (en) 1986-03-18 1986-03-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5823986A JPH07105488B2 (en) 1986-03-18 1986-03-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS62216361A true JPS62216361A (en) 1987-09-22
JPH07105488B2 JPH07105488B2 (en) 1995-11-13

Family

ID=13078550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5823986A Expired - Lifetime JPH07105488B2 (en) 1986-03-18 1986-03-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH07105488B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999697A (en) * 1988-09-14 1991-03-12 At&T Bell Laboratories Sequential-quenching resonant-tunneling transistor
JPH0380543A (en) * 1989-08-24 1991-04-05 Fujitsu Ltd Semiconductor device
US5012318A (en) * 1988-09-05 1991-04-30 Nec Corporation Hybrid semiconductor device implemented by combination of heterojunction bipolar transistor and field effect transistor
US5111265A (en) * 1988-12-06 1992-05-05 Nec Corporation Collector-top type transistor causing no deterioration in current gain
US5138408A (en) * 1988-04-15 1992-08-11 Nec Corporation Resonant tunneling hot carrier transistor
JP2006297273A (en) * 2005-04-20 2006-11-02 Nippon Steel Corp Catalyst for f-t synthesis reaction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138408A (en) * 1988-04-15 1992-08-11 Nec Corporation Resonant tunneling hot carrier transistor
US5012318A (en) * 1988-09-05 1991-04-30 Nec Corporation Hybrid semiconductor device implemented by combination of heterojunction bipolar transistor and field effect transistor
US4999697A (en) * 1988-09-14 1991-03-12 At&T Bell Laboratories Sequential-quenching resonant-tunneling transistor
US5111265A (en) * 1988-12-06 1992-05-05 Nec Corporation Collector-top type transistor causing no deterioration in current gain
JPH0380543A (en) * 1989-08-24 1991-04-05 Fujitsu Ltd Semiconductor device
JP2006297273A (en) * 2005-04-20 2006-11-02 Nippon Steel Corp Catalyst for f-t synthesis reaction

Also Published As

Publication number Publication date
JPH07105488B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JPS5943097B2 (en) semiconductor device
US6670653B1 (en) InP collector InGaAsSb base DHBT device and method of forming same
JPH0669222A (en) Hetero-junction bipolar transistor and its production
JPS62216361A (en) Semiconductor device
JPS6010775A (en) Hetero-junction type bipolar semiconductor device
JPS60144979A (en) Semiconductor device
JPH0261151B2 (en)
JPS6359272B2 (en)
JP2964637B2 (en) Field effect transistor
JPH0543178B2 (en)
JPS6242451A (en) Heterojunction bipolar semiconductor device
JPS60149169A (en) Field effect type semiconductor device
JP3246401B2 (en) Heterojunction bipolar transistor
JP2621854B2 (en) High mobility transistor
JPH0574800A (en) Silicon hetero-junction bipolar transistor
JPH0338835A (en) Semiconductor crystal
JPS6012773A (en) Manufacture of semiconductor element
JP4158683B2 (en) Epitaxial wafer for heterojunction bipolar transistor
JPH0656853B2 (en) Heterojunction bipolar transistor
JP3423812B2 (en) HEMT device and manufacturing method thereof
JP2770583B2 (en) Method of manufacturing collector-top heterojunction bipolar transistor
JPH012360A (en) heterojunction bipolar transistor
JPH01149465A (en) Heterojunction bipolar transistor
JPS62128562A (en) Semiconductor device
JPH01183155A (en) Hetero junction bipolar transistor