JPS60149169A - Field effect type semiconductor device - Google Patents

Field effect type semiconductor device

Info

Publication number
JPS60149169A
JPS60149169A JP427284A JP427284A JPS60149169A JP S60149169 A JPS60149169 A JP S60149169A JP 427284 A JP427284 A JP 427284A JP 427284 A JP427284 A JP 427284A JP S60149169 A JPS60149169 A JP S60149169A
Authority
JP
Japan
Prior art keywords
layer
electrode
quantum well
layers
electron gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP427284A
Other languages
Japanese (ja)
Other versions
JPH06105717B2 (en
Inventor
Shunichi Muto
俊一 武藤
Tomohiro Hamaguchi
浜口 智尋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59004272A priority Critical patent/JPH06105717B2/en
Publication of JPS60149169A publication Critical patent/JPS60149169A/en
Publication of JPH06105717B2 publication Critical patent/JPH06105717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • H01L29/7785Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material with more than one donor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors

Abstract

PURPOSE:To enable superhigh-speed action at a low temperature by utilizing that the eletron concentration in two bi-dimensional electron gas layers generated between two hetero junctions in a quantum well is given and taken by an electric field. CONSTITUTION:A source electrode 11 and a drain electrode 12 are formed on n<++> GaAs layers 10 and are in substantially ohmic contact with either one of the bi-dimensional electron gas layers 7A or 7B generated in the quantum well in the neighborhood of the double hetero junction constituting the quantum well. A gate electrode 13 is formed after the surface of an n type AlGaAs layer 9 is exposed by selective removal of the GaAs layer 10 on the part scheduled for gate electrode formation. A back gate bias electrode 14 is formed on an exposed non-doped Al0.3 Ga0.7As layer 6. Then, the electron temperatures of channel layers 7A and 7B are controlled by impressing a bias voltage on the hetero junction in a vertical direction by utilizing the electrodes 13 and 14. Therefore, the electron temperature varies rapidly thereby.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、超高速動作が可能であるフローティング・チ
ャネル・トランジスタ(FCT)と呼ばれる電界効果型
半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a field effect semiconductor device called a floating channel transistor (FCT) which is capable of ultra high speed operation.

従来技術と問題点 従来、ヘテロ接合を有する電界効果型トランジスタとし
て高電子移動度トランジスタ(highelectro
n mobility transistor:HF、
M’l’)が知られている。
Prior Art and Problems Conventionally, high electron mobility transistors have been used as field effect transistors having a heterojunction.
n mobility transistor:HF,
M'l') is known.

然しながら、HEMTでは、ノン・ドープGaAs層中
に生成されるチャネルへの電子がn型A11GaAs層
中の深い不純物(Si)単位から供給されるものである
為、それに依りスイッチング・スピードが成る程度制限
されることは回避できない。
However, in HEMT, electrons to the channel generated in the non-doped GaAs layer are supplied from deep impurity (Si) units in the n-type A11GaAs layer, which limits the switching speed. It cannot be avoided.

また、二つのへテロ接合を有し、それに依り生成された
量子井戸(quantum we l l :QW)内
に於けるノン・ドープGaAs層に依る電位障壁を介し
て行われるペテロ接合間の2次元電子ガス層のやりとり
を利用した速度変調型トランジスタ(HoSakaki
 JJAP Vol。
In addition, it has two heterojunctions, and a two-dimensional connection between the petrojunctions is formed through a potential barrier created by a non-doped GaAs layer in a quantum well (QW) generated by the two heterojunctions. Speed modulation transistor using exchange of electron gas layer (HoSakaki
JJAP Vol.

21 磁6 (1982) LaB5−L383参照)
も提案されているが、その場合、ソース及びドレインの
コンタクトを二つのへテロ接合近傍に生成される二つの
2次元電子ガス層に対して採っている為、2次元電子ガ
ス層のやりとりと電子濃度のやりとりが対応しない旨の
欠点がある。
21 Magneto 6 (1982) LaB5-L383)
has also been proposed, but in that case, the source and drain contacts are made to the two two-dimensional electron gas layers generated near the two heterojunctions, so the exchange of the two-dimensional electron gas layers and the electron The disadvantage is that the exchange of concentrations does not correspond.

発明の目的 本発明は、QWに於ける二つのへテロ接合間に生成され
る二つの2次元電子ガス層に於ける電子濃度が電場に依
ってやりとりされることを利用して、低温で超高速動作
するFCTと呼ばれる電界効果型半導体装置を提供する
Purpose of the Invention The present invention utilizes the fact that the electron concentrations in two two-dimensional electron gas layers generated between two heterojunctions in a QW are exchanged by an electric field. A field effect semiconductor device called FCT that operates at high speed is provided.

発明の構成 本発明の電界効果型半導体装置では、量子井戸を構成す
る2重へテロ接合と、該2重へテロ接合近傍の前記量子
井戸内に生成されるチャネルである2次元電子ガス層の
何れか一方に実質的にオーミック・コンタクトするソー
ス電極及びドレイン電極と、該ソース電極及びドレイン
電極の間に形成され前記へテロ接合に交叉する方向に電
場を加えて前記チャネルの電子濃度を制御するゲート電
極とを備えた構成を採っている。
Structure of the Invention The field effect semiconductor device of the present invention includes a double heterojunction that constitutes a quantum well, and a two-dimensional electron gas layer that is a channel generated in the quantum well near the double heterojunction. A source electrode and a drain electrode that are in substantially ohmic contact with one of them, and an electric field formed between the source electrode and the drain electrode in a direction crossing the heterojunction to control the electron concentration in the channel. The structure includes a gate electrode.

このようにすると、前記二つのへテロ接合間に生成され
る二つの2次元電子ガス層に於ける電子濃度のやりとり
は、前記ゲート電極に依って前記ヘテロ接合に交叉する
方向に印加される電場で容易に制御することができ、従
って、チャネルとなる2次元電子ガス層に於ける電子濃
度、即ち、電流値を高速で制御することができるもので
ある。
In this way, the exchange of electron concentrations in the two two-dimensional electron gas layers generated between the two heterojunctions is controlled by the electric field applied in the direction crossing the heterojunction by the gate electrode. Therefore, the electron concentration in the two-dimensional electron gas layer serving as the channel, that is, the current value, can be controlled at high speed.

発明の実施例 第1図は本発明一実施例の要部切断側面図である。Examples of the invention FIG. 1 is a cutaway side view of essential parts of an embodiment of the present invention.

図に於いて、lは半絶縁性GaAs1板、2はノン・ド
ープGaAsバッファ層、3は不純物濃度が例えば6 
X 10 I9(cm−’)であって厚さが例えば10
00 (人〕であるn++型GaAsバック・ゲート層
、4は厚さが例えばl 000 ’(人〕であるノン・
ドープA 126,3 G a o、I A s層、5
は不純物濃度が例えば2 x I O” (cm−”)
であって厚さが例えば100〔人〕であるn型A6Ga
As層、6は厚さが例えば60 〔人〕であるノン・ド
ープA 140,3G a □、7A s層、7は厚さ
が例えば500〔人〕であるノン・ドープGaAs層、
7A及び7Bは2次元電子ガス層、8は厚さが例えば6
゜〔人〕であるノン・ドープA It6.3G a O
,7A s層、9は不純物濃度が例えば2×1OIll
(CIll−3〕であって厚さが例えば500〔人〕で
あるn型AAGaAs層、IOは不純物濃度が例えば6
X10”(cm −3)であって厚さが例えば300〔
人〕であるn++型GaAs層、11ばソース電極、1
2はドレイン電極、13はゲート電極、14ばバック・
ゲート・バイアス用電極、14Aは合金化層をそれぞれ
示している。
In the figure, l is a semi-insulating GaAs 1 plate, 2 is a non-doped GaAs buffer layer, and 3 is an impurity concentration of, for example, 6.
X 10 I9 (cm-') and the thickness is, for example, 10
The n++ type GaAs back gate layer has a thickness of, for example, l 000' (person).
Doped A 126,3 Ga o, I As layer, 5
For example, if the impurity concentration is 2 x I O” (cm-”)
n-type A6Ga with a thickness of, for example, 100 [people]
6 is a non-doped A 140,3G a □, 7A s layer having a thickness of, for example, 60 [people], 7 is a non-doped GaAs layer having a thickness of, for example, 500 [people];
7A and 7B are two-dimensional electron gas layers, and 8 is a layer with a thickness of, for example, 6.
゜ [person] Non-dope A It6.3G a O
, 7A s layer, 9 has an impurity concentration of, for example, 2×1OIll.
(CIll-3) with a thickness of, for example, 500 [people], IO has an impurity concentration of, for example, 6
X10” (cm −3) and the thickness is, for example, 300 [
n++ type GaAs layer 11, source electrode 1
2 is a drain electrode, 13 is a gate electrode, and 14 is a back electrode.
Gate bias electrodes, 14A each indicate an alloyed layer.

図から判るように、本実施例はAlGaAs/GaAs
系多層へテロ構造をなしている。
As can be seen from the figure, this example uses AlGaAs/GaAs
The system has a multi-layered heterostructure.

各半導体層はMBE (molecular beam
 epitaxy)法を適用して容易に形成することが
できる。
Each semiconductor layer is formed by MBE (molecular beam)
It can be easily formed by applying the epitaxy method.

ソース電極11及びドレイン電極12は、Snをドープ
したn++型GaAs層10上にAuを蒸着することに
依って形成され、合金化の熱処理を必要とすることなく
オーミック・コンタクトが得られる。
The source electrode 11 and the drain electrode 12 are formed by depositing Au on the Sn-doped n++ type GaAs layer 10, and an ohmic contact can be obtained without requiring any heat treatment for alloying.

ゲート電極13は、ゲート電極形成予定部分上(7) 
n ”+型GaAs層10を選択的にエツチングして除
去することに依りn型AIGaAsJif9(7)表面
を露出させてからAJを蒸着して形成される。
The gate electrode 13 is placed on the portion where the gate electrode is to be formed (7)
It is formed by selectively etching and removing the n''+ type GaAs layer 10 to expose the surface of the n type AIGaAs Jif9(7), and then depositing AJ.

バンク・ゲート・バイアス用電極14は選択的エツチン
グ法にて露出させたノン・ドープA # o、3Ga(
1,7As層6上にAu−Ge/Auを蒸着することに
依って形成され、合金化の熱処理を行うことに依り、合
金化層14Aを形成する。
The bank gate bias electrode 14 is made of non-doped A#o, 3Ga (
The alloyed layer 14A is formed by depositing Au-Ge/Au on the 1,7As layer 6, and by performing alloying heat treatment.

前記各電極を形成するには、最初にバンク・ゲート・バ
イアス用電極14及びその合金化、次ぎに、ソース電極
11及びトレイン電極12の形成、最後にゲート電極1
3の形成の順序で行う。
To form each of the electrodes, first, the bank, gate, and bias electrodes 14 and their alloying are formed, then the source electrodes 11 and the train electrodes 12 are formed, and finally the gate electrodes 1
Perform in the order of formation in step 3.

第2図は第1図に示した実施例の無バイアス状態に於け
るゲート電極13直下のエネルギ・ハンド・ダイヤグラ
ムであり、第1図に関して説明した部分と同部分は同記
号で指示しである。
FIG. 2 is an energy hand diagram directly below the gate electrode 13 in the non-biased state of the embodiment shown in FIG. 1, and the same parts as those explained in connection with FIG. .

図に於いて、%EFはフェルミ・レベル、Gはゲート電
極側、BGはバック・ゲート・バイアス用電極側をそれ
ぞれ示している。
In the figure, %EF indicates the Fermi level, G indicates the gate electrode side, and BG indicates the back gate bias electrode side.

第3面は第2図に見られる量子井戸内に於ける電子の波
動関数の様子を理論計算した結果を表す線図であり、縦
軸にエネルギ(e V)を、横軸に距離〔人〕をそれぞ
れ採っである。
The third page is a diagram showing the results of theoretical calculations of the wave function of electrons in the quantum well shown in Figure 2, with the vertical axis representing energy (e V) and the horizontal axis representing distance [person]. ] are taken respectively.

図に於いて、1ζ五 12はi番目の励起状態の波動関
数ζ1の絶対値の2乗、従って、この状態にある電子の
電子密度分布を表し、ELはその状態に於けるエネルギ
準位を示している。
In the figure, 1ζ5 12 represents the square of the absolute value of the wave function ζ1 of the i-th excited state, and therefore represents the electron density distribution of electrons in this state, and EL represents the energy level in that state. It shows.

i番目の励起状態にある電子の濃度(シート・キャリヤ
濃度)niは、低温に於いて、大略、ni = (Ey
 E= )xi)。
The concentration of electrons in the i-th excited state (sheet carrier concentration) ni is approximately ni = (Ey
E=)xi).

h” m″ :電子の有効質量 hニブランクの常数 で与えられる。h" m″: Effective mass of electron h blank constant is given by

従って、第3図の場合、電子は主としてi=Q。Therefore, in the case of FIG. 3, the electrons are mainly i=Q.

1 (0は基底状態を表す)に存在し、電子密度は二つ
のへテロ界面に局在している。
1 (0 represents the ground state), and the electron density is localized at the two heterointerfaces.

第4図は第2図に示した実施例に見られるゲート電極1
3及びバック・ゲート・バイアス用電極14を利用して
ヘテロ接合に垂直な方向にバイアス電圧(0,4(V)
)を印加した場合の波動関数の様子を示す線図であり、
第3図に関して説明した部分と同部分は同記号で指示し
である。
FIG. 4 shows the gate electrode 1 seen in the embodiment shown in FIG.
3 and the back gate bias electrode 14 to apply a bias voltage (0,4 (V)
) is a diagram showing the state of the wave function when applying
The same parts as those explained in connection with FIG. 3 are indicated by the same symbols.

図から明らかなように、電子は主に表面側(図の左側)
のへテロ界面(チャネル界面)に局在した新たな基底状
態に移動し、基板側(図の右側)のへテロ界面(フロー
ティング・チャネル界面)゛には電子が存在しない。
As is clear from the figure, electrons are mainly on the surface side (left side of the figure)
The electrons move to a new ground state localized at the hetero interface (channel interface) of the substrate, and there are no electrons at the hetero interface (floating channel interface) on the substrate side (right side of the figure).

第5図はバイアス電圧を変化させた場合のi=0.1.
2の各レベルに於ける電子濃度の分布を表す線図であり
、縦軸に電子の比率〔%〕を、横軸に外部からの印加電
圧をそれぞれ採っている。
FIG. 5 shows i=0.1 when changing the bias voltage.
FIG. 2 is a diagram showing the distribution of electron concentration at each level of FIG.

この図に於いて、Noは第3図に見られるζ。In this figure, No is ζ seen in Figure 3.

に、N1は同じくζ1に、N3は同じくζ3にそれぞれ
対応している。
In addition, N1 similarly corresponds to ζ1, and N3 similarly corresponds to ζ3.

第6図は前記データからめられる本発明の電界効果型半
導体装置(FCT)の特性を表す線図であり、縦軸にド
レイン電流■4を、横軸にドレイン電圧Vaをそれぞれ
採っである。
FIG. 6 is a diagram showing the characteristics of the field effect semiconductor device (FCT) of the present invention determined from the above data, in which the vertical axis represents the drain current 4, and the horizontal axis represents the drain voltage Va.

この図に於けるゲート電圧vgは、第3図に於ける左右
の縦軸の間、即ち、距離にして−100〔人〕から60
0 〔人〕の間に加わる電圧と考えて良い。
The gate voltage vg in this figure is between the left and right vertical axes in Figure 3, that is, the distance from -100 [person] to 60
0 You can think of it as a voltage applied between [people].

前記実施例に於ける動作速度の見積りは、前記速度変調
型トランジスタと同様にして行うことができる。
The operating speed in the embodiment can be estimated in the same manner as in the case of the speed modulation transistor.

即ち、量子井戸内のへテロ界面に垂直方向の電子の速度
Vを、 V=2X10? (cm/s) とすると、量子井戸の層厚をdとして、d=500 (
人) −5X 10−’、 (cm)を用いて、電子の
へテロ界面間の移動時間τLrは、τt、= =2.5
x 10−” [秒]■ 一〇、25 (ps) となり、極めて高速の動作が可能である。
That is, the electron velocity V in the direction perpendicular to the heterointerface in the quantum well is V=2X10? (cm/s), the layer thickness of the quantum well is d, and d=500 (
-5X 10-', (cm), the electron transfer time τLr between the heterointerfaces is τt, = =2.5
x 10-'' [seconds] ■ 10.25 (ps), and extremely high-speed operation is possible.

第7図は本発明に於ける他の実施例を表す要部切断側面
図である。
FIG. 7 is a main part cutaway side view showing another embodiment of the present invention.

図に於いて、21は半絶縁性GaAs基板、22はn+
+型GaAs層、23はn型AllGaAs層、24は
GaAs層、24A及び24Bは2次元電子ガス層、2
5はn型AAGaAs層、26はn型GaAs層、27
はソース電極、27Aは合金化層、28はドレイン電極
、28Aは合金化層、29はゲート電極、30はバック
・ゲート・バイアス用電極、31は表面空乏層をそれぞ
れ示している。
In the figure, 21 is a semi-insulating GaAs substrate, 22 is an n+
+ type GaAs layer, 23 is n type AllGaAs layer, 24 is GaAs layer, 24A and 24B are two-dimensional electron gas layers, 2
5 is an n-type AAGaAs layer, 26 is an n-type GaAs layer, 27
27A is a source electrode, 27A is an alloyed layer, 28 is a drain electrode, 28A is an alloyed layer, 29 is a gate electrode, 30 is a back gate bias electrode, and 31 is a surface depletion layer.

この実施例では、ソース電極27及びドレイン電極28
に合金化の熱処理を加え、合金化層27A及び28Aを
形成し、それを基板側のへテロ界面に生成される2次元
電子ガス層24Bにコンタクトさせるようにしている。
In this embodiment, the source electrode 27 and the drain electrode 28
Alloying layers 27A and 28A are formed by applying heat treatment for alloying, and are brought into contact with the two-dimensional electron gas layer 24B generated at the heterointerface on the substrate side.

この場合、合金化層27A及び28Bは表面側の2次元
電子ガス層24Aにもコンタクトしているので、表面空
乏層31を生成することに依り、合金化層27A及び2
813とチャネルとして動作可能である2次元電子ガス
層24.Aの部分とを遮断している。
In this case, since the alloyed layers 27A and 28B are also in contact with the two-dimensional electron gas layer 24A on the surface side, by generating the surface depletion layer 31, the alloyed layers 27A and 28B are
813 and a two-dimensional electron gas layer 24 that can operate as a channel. It is cut off from part A.

従って、第1図に見られる従来例とは異なり、表面側の
2次元電子ガス層24Aがフローテイング・チャネルで
あり、基板側の2次元電子ガス層24Bが実際のチャネ
ルとして動作することになる。
Therefore, unlike the conventional example shown in FIG. 1, the two-dimensional electron gas layer 24A on the surface side is a floating channel, and the two-dimensional electron gas layer 24B on the substrate side operates as an actual channel. .

本実施例では、チャネルが導通している状態、即ち、2
次元電子ガス層が存在する範囲で動作させるのであれば
、バック・ゲート・バイアスなしでも量子井戸にバイア
ス電圧を印加することが可能である為、バック・ゲート
・バイアス層であるn++型GaAs層22及びバック
・ゲート・バイアス用電極30がなくても良い。
In this embodiment, the channel is in a conductive state, that is, 2
If the operation is performed in a range where a dimensional electron gas layer exists, it is possible to apply a bias voltage to the quantum well without a back gate bias. Also, the back gate bias electrode 30 may not be provided.

前記各実施例では、量子井戸へ電子を供給して2次元電
子ガス層を生成させるには、量子井戸の両側に存在する
n型AlGaAs層から電子を供給するようにしている
が、その電子の供給は量子井戸内のGaAs層をn型不
純物、例えば、Stをドープし、そこから電子を供給す
るようにしても良い。その場合、チャネルとなる2次元
電子ガス層の高移動度特性を活かす為には、チャネル側
のGaAs層をノン・ドープとし、フローティング・チ
ャネル側のGaAs層をn型とする変調ドープを適用す
ることが好ましい。
In each of the above embodiments, in order to supply electrons to the quantum well to generate a two-dimensional electron gas layer, electrons are supplied from the n-type AlGaAs layers existing on both sides of the quantum well. For the supply, the GaAs layer in the quantum well may be doped with an n-type impurity, for example, St, and electrons may be supplied from there. In that case, in order to take advantage of the high mobility characteristics of the two-dimensional electron gas layer that becomes the channel, modulation doping is applied in which the GaAs layer on the channel side is non-doped and the GaAs layer on the floating channel side is n-type. It is preferable.

第8図はそのような実施例の要部切断側面図であって、
電圧が印加された状態を表している。
FIG. 8 is a cutaway side view of essential parts of such an embodiment,
It shows the state where voltage is applied.

図に於いて、31ばノン・ドープAl1GaAs層、3
2はノン・ドープGaAs層、32Aはノン・ドープG
aAs層32に不純物としてStを例えば2X I Q
 ” (am−”)程度の濃度になるよう導入して形成
したn型GaAs層、33はノン・ドープAnGaAs
層、34は2次元電子ガス層をそれぞれ示している。尚
、この場合のノン・ドープGaAs層32及びn型G 
a A s層32Aの厚さは、それぞれ250 〔人〕
である。
In the figure, 31 is a non-doped Al1GaAs layer;
2 is a non-doped GaAs layer, 32A is a non-doped G layer
For example, if St is added as an impurity to the aAs layer 32, 2X IQ
The n-type GaAs layer 33 is a non-doped AnGaAs layer introduced to have a concentration of approximately
Layer 34 indicates a two-dimensional electron gas layer, respectively. In this case, the non-doped GaAs layer 32 and the n-type G
The thickness of each a A s layer 32A is 250 [people]
It is.

発明の効果 本発明の電界効果型半導体装置は、量子井戸を構成する
2重へテロ接合と、該2重へテロ接合近傍の前記量子井
戸内に生成されるチャネルである2次元電子ガス層の何
れか一方に実質的にオーミック・コンタクトするソース
電極及びドレイン電極と、該ソース電極及びドレイン電
極の間に形成され前記へテロ接合に交叉する方1h畏こ
電場を加えて前記チャネルの電子濃度を制御するゲート
電極とを備えた構成を採っているので、前記ソース電極
及びドレイン電極とオーミック・コンタクトしている2
次元電子ガス層からなるチャネルに於ける電子の濃度、
従って、伝導度は前記ゲート電極に印加されるゲート電
圧で極めて急速に変化し、該ゲート電圧を変調した場合
のソース・ドレイン間に於ける電流値変調の応答速度は
ピコセカンド(ps)のオーダにすることができ、従来
のHEMTに比較すると遥かに高速であり、また、速度
変調型トランジスタに比較するとより大きな伝導度の変
調を得ることができる。
Effects of the Invention The field-effect semiconductor device of the present invention includes a double heterojunction that constitutes a quantum well, and a two-dimensional electron gas layer that is a channel generated within the quantum well in the vicinity of the double heterojunction. The electron concentration in the channel is increased by applying an electric field for 1 hour to the source electrode and the drain electrode that are in substantial ohmic contact with one of them, and to the one formed between the source electrode and the drain electrode that intersects the heterojunction. Since the configuration includes a gate electrode for controlling, the two electrodes are in ohmic contact with the source electrode and the drain electrode.
The concentration of electrons in a channel consisting of a dimensional electron gas layer,
Therefore, the conductivity changes extremely rapidly depending on the gate voltage applied to the gate electrode, and the response speed of current value modulation between the source and drain when the gate voltage is modulated is on the order of picoseconds (ps). It is much faster than conventional HEMTs, and can provide greater conductivity modulation than velocity modulated transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の要部切断側面図、第2図は第
1図に見られる実施例が無バイアス状態である場合のエ
ネルギ・バンド・ダイヤグラム、第3図は第1図に見ら
れる実施例に於ける量子井戸内の波動関数の様子を表す
線図、第4図はバイア゛ アス電圧を印加した場合の第
3図と同様な線図、第5図はバイアス電圧を変化させた
場合の電子濃度の分布を示す線図、第6図は電圧・電流
特性を示す線図、第7図は本発明に於ける他の実施例の
要部切断側面図、第8図は本発明に於ける更に他の実施
例の要部切断側面図を表している。 図に於いて、lは半絶縁性GaAs基板、2はノン・ド
ープGaAsバッファ層、3は不純物濃度が例えば5 
X jQ I9(cm−3)であって厚さが例えば10
00 (人〕であるn++型GaAsバック・ゲート層
、4は厚さが例えば1000 (人〕であるノン・ドー
プA E g、3G a (1,7A s層、5は不純
物濃度が例えば2 X I OIll(cm−3)であ
って厚さが例えば100〔人〕であるn型AlGaAs
層、6ば厚さが例えば60 〔人〕であるノン・1′−
プA II O,3G a O,y A s層、7は厚
さが例えば500〔人〕であるノン・ドープGaAs層
、7A及び7Bは2次元電子ガス層、8ば厚さが例えば
60〔人〕であるノン・ドープ゛A 1! 0.3G 
a O,?A S層、9は不純物濃度が例えば2 X 
10 ” (cm−”)であって厚さが例えば500 
〔人〕であるn型AlGaAs層、10は不純物濃度が
例えば6X10”〔CII+−3〕であって厚さが例え
ば300〔人〕であるn+十梨型GaAs層11はソー
ス電極、12はドレイン電極、13はゲート電極、14
はバック・ゲート・バイアス用電極、14Aは合金化層
をそれぞれ示している。 特許出願人 富士通株式会社 代理人弁理士 相 谷 昭 司 代理人弁理士 渡 邊 弘 − (八〇) 、”c/I(−kT (八〇)、六/(零丁 第6図 第7図
Fig. 1 is a cutaway side view of essential parts of an embodiment of the present invention, Fig. 2 is an energy band diagram when the embodiment shown in Fig. 1 is in a non-biased state, and Fig. 3 is the same as Fig. 1. A diagram showing the state of the wave function in the quantum well in the example shown. Figure 4 is a diagram similar to Figure 3 when a bias voltage is applied. Figure 5 is a diagram showing the state of the wave function in the quantum well in the example shown. FIG. 6 is a diagram showing the voltage/current characteristics, FIG. 7 is a cutaway side view of main parts of another embodiment of the present invention, and FIG. 8 is a diagram showing the distribution of electron concentration when FIG. 7 is a cross-sectional side view of a main part of still another embodiment of the present invention. In the figure, l is a semi-insulating GaAs substrate, 2 is a non-doped GaAs buffer layer, and 3 is an impurity concentration of, for example, 5.
X jQ I9 (cm-3) and the thickness is, for example, 10
00 (person) n++ type GaAs back gate layer, 4 is a non-doped A E g, 3G a (1,7A s layer) whose thickness is, for example, 1000 (person), 5 is an impurity concentration of, for example, 2 n-type AlGaAs with a thickness of, for example, 100 [cm-3]
A non-1'-layer whose thickness is, for example, 60 [people].
7 is a non-doped GaAs layer with a thickness of, for example, 500 [layers], 7A and 7B are two-dimensional electron gas layers, and 8 is a layer with a thickness of, for example, 60 [layers]. Non-dope A1! 0.3G
a O,? The A S layer 9 has an impurity concentration of, for example, 2X
10” (cm-”) and the thickness is e.g.
The n-type AlGaAs layer 10 has an impurity concentration of, for example, 6×10" [CII+-3] and the thickness is, for example, 300 [people]. The n+ type GaAs layer 11 is a source electrode, and 12 is a drain. electrode, 13 is a gate electrode, 14
14A indicates a back gate bias electrode, and 14A indicates an alloy layer. Patent Applicant Fujitsu Ltd. Representative Patent Attorney Shoji Aitani Representative Patent Attorney Hiroshi Watanabe - (80), "c/I(-kT (80), 6/(Zero-cho Figure 6 Figure 7)

Claims (1)

【特許請求の範囲】[Claims] 量子井戸を構成する2重へテロ接合と、該2重へテロ接
合近傍の前記量子井戸内に生成されるチャネルである2
次元電子ガス層の何れか一方に実質的にオーミック・コ
ンタクトするソース電極及びドレイン電極と、該ソース
電極及びドレイン電極の間に形成され前記へテロ接合に
交叉する方向に電場を加えて前記チャネルの電子濃度を
制御するゲート電極とを備えてなることを特徴とする電
界効果型半導体装置。
2, which is a double heterojunction constituting a quantum well and a channel generated within the quantum well near the double heterojunction;
A source electrode and a drain electrode are in substantially ohmic contact with either one of the dimensional electron gas layers, and an electric field is applied in a direction crossing the heterojunction formed between the source electrode and the drain electrode to form the channel. A field effect semiconductor device comprising a gate electrode for controlling electron concentration.
JP59004272A 1984-01-14 1984-01-14 Field effect semiconductor device Expired - Lifetime JPH06105717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59004272A JPH06105717B2 (en) 1984-01-14 1984-01-14 Field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59004272A JPH06105717B2 (en) 1984-01-14 1984-01-14 Field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS60149169A true JPS60149169A (en) 1985-08-06
JPH06105717B2 JPH06105717B2 (en) 1994-12-21

Family

ID=11579903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59004272A Expired - Lifetime JPH06105717B2 (en) 1984-01-14 1984-01-14 Field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPH06105717B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291974A (en) * 1986-06-12 1987-12-18 Matsushita Electric Ind Co Ltd Semiconductor device
US4821093A (en) * 1986-08-18 1989-04-11 The United States Of America As Represented By The Secretary Of The Army Dual channel high electron mobility field effect transistor
WO1989007341A2 (en) * 1988-01-27 1989-08-10 Massachusetts Institute Of Technology High mobility transistor with opposed gates
WO1994018705A1 (en) * 1993-02-08 1994-08-18 Marcus Besson Semiconductor element, in particular field-effect transistor with an embedded gate
US5449929A (en) * 1992-12-21 1995-09-12 Mitsubishi Denki Kabushiki Kaisha IPG transistor semiconductor integrated circuit device
US5701017A (en) * 1994-11-15 1997-12-23 Kabushiki Kaisha Toshiba Semiconductor device and method for its manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178572A (en) * 1982-04-14 1983-10-19 Hiroyuki Sakaki Mobility modulation type field effect transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178572A (en) * 1982-04-14 1983-10-19 Hiroyuki Sakaki Mobility modulation type field effect transistor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291974A (en) * 1986-06-12 1987-12-18 Matsushita Electric Ind Co Ltd Semiconductor device
US4821093A (en) * 1986-08-18 1989-04-11 The United States Of America As Represented By The Secretary Of The Army Dual channel high electron mobility field effect transistor
WO1989007341A2 (en) * 1988-01-27 1989-08-10 Massachusetts Institute Of Technology High mobility transistor with opposed gates
WO1989007341A3 (en) * 1988-01-27 1989-11-02 Massachusetts Inst Technology High mobility transistor with opposed gates
US5449929A (en) * 1992-12-21 1995-09-12 Mitsubishi Denki Kabushiki Kaisha IPG transistor semiconductor integrated circuit device
WO1994018705A1 (en) * 1993-02-08 1994-08-18 Marcus Besson Semiconductor element, in particular field-effect transistor with an embedded gate
US5701017A (en) * 1994-11-15 1997-12-23 Kabushiki Kaisha Toshiba Semiconductor device and method for its manufacture

Also Published As

Publication number Publication date
JPH06105717B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US4821090A (en) Compound semiconductor integrated circuit device
US4583105A (en) Double heterojunction FET with ohmic semiconductor gate and controllable low threshold voltage
JPS63107174A (en) Hetero structure integrated circuit construction whose base is low power planar type complementary gaas
US4673959A (en) Heterojunction FET with doubly-doped channel
KR920003799B1 (en) Semiconductor device
US3263095A (en) Heterojunction surface channel transistors
JPS60149169A (en) Field effect type semiconductor device
JP2804041B2 (en) Field-effect transistor
JPH0261151B2 (en)
JPS61147577A (en) Complementary semiconductor device
JPH07142706A (en) Heterojunction semiconductor device and its manufacture
JPS61158183A (en) Electrical field effect type semiconductor device
JPS59181069A (en) Semiconductor device
JPH03241840A (en) Semiconductor device and manufacture thereof
KR910006698B1 (en) Semiconductor device
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JPS6012773A (en) Manufacture of semiconductor element
JPS61174775A (en) Semiconductor device
JPH0261149B2 (en)
JPH0311108B2 (en)
JPH0810701B2 (en) Method for manufacturing junction field effect transistor
JPS59149063A (en) Semiconductor device
JPS6235677A (en) Inversion type high electron mobility transistor device
JPS61248569A (en) Hetrojunction field effect transistor
JP2876749B2 (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term