JPS62216251A - High thermal conductive substrate - Google Patents
High thermal conductive substrateInfo
- Publication number
- JPS62216251A JPS62216251A JP61058612A JP5861286A JPS62216251A JP S62216251 A JPS62216251 A JP S62216251A JP 61058612 A JP61058612 A JP 61058612A JP 5861286 A JP5861286 A JP 5861286A JP S62216251 A JPS62216251 A JP S62216251A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- substrate
- semiconductor
- soldering
- conductive substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 31
- 238000005498 polishing Methods 0.000 claims abstract description 9
- 230000003746 surface roughness Effects 0.000 claims abstract description 5
- 239000010949 copper Substances 0.000 abstract description 24
- 239000004065 semiconductor Substances 0.000 abstract description 21
- 238000005476 soldering Methods 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 6
- 229910000679 solder Inorganic materials 0.000 abstract description 4
- 238000009499 grossing Methods 0.000 abstract description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 229910052737 gold Inorganic materials 0.000 abstract description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 239000006185 dispersion Substances 0.000 abstract 2
- 239000012298 atmosphere Substances 0.000 abstract 1
- 239000012299 nitrogen atmosphere Substances 0.000 abstract 1
- 238000005245 sintering Methods 0.000 abstract 1
- 238000007747 plating Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は半導体装用基板として有用な高熱伝導性基板に
関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a highly thermally conductive substrate useful as a semiconductor mounting substrate.
(従来の技術)
半導体からの発熱を放熱するため半導体を実装する基板
に高熱伝導性基板が使用されている。従来高熱伝導性基
板としてはBeO基板が一般的であったが、高価である
ことや毒性のためAβN基板にCu板を接合したものを
使用することが検討されている。(Prior Art) A highly thermally conductive substrate is used as a substrate on which a semiconductor is mounted to radiate heat generated from the semiconductor. Conventionally, a BeO substrate has been commonly used as a highly thermally conductive substrate, but due to its high cost and toxicity, the use of a Cu plate bonded to an AβN substrate is being considered.
AλN基板にCu板を接合するには次の方法が採られて
いる。すなわちAβN基板に酸素を適量含有するCu板
を接触配置し、不活性雰囲気中でCuの融点(1083
℃)以下、CU −O共晶温度(10f35℃)以上の
温度範囲、例えば1070℃に加熱して行なっている。The following method is used to bond a Cu plate to an AλN substrate. That is, a Cu plate containing an appropriate amount of oxygen is placed in contact with an AβN substrate, and the melting point of Cu (1083
(°C) or lower, heating is carried out at a temperature range above the CU-O eutectic temperature (10f35°C), for example, 1070°C.
このようにCuの融点に近い、高い温度に加熱するため
Cu粒子の成長をきたし、またCu中の酸素濃度の高い
粒界は、CU −O共晶として接合に寄与するためCU
粒子間に凹凸を生じさせ、従ってAβN基板に接合した
Cu板の表面は平面度が20μm以上、表面粗さが10
μm以上となり、それはめつき後も、変わらない。この
ように表面の粗い基板では半導体チップ、特に1龍以下
の小形のものをマウントする際半田付けにむらが生じ、
熱抵抗にばらつきが生じて信頼性を低下させるという問
題があった。In this way, heating to a high temperature close to the melting point of Cu causes the growth of Cu particles, and grain boundaries with a high oxygen concentration in Cu contribute to bonding as CU-O eutectic.
By creating irregularities between particles, the surface of the Cu plate bonded to the AβN substrate has a flatness of 20 μm or more and a surface roughness of 10 μm.
μm or more, which remains unchanged even after plating. When mounting a semiconductor chip, especially one smaller than 1 dragon, on a board with such a rough surface, uneven soldering may occur.
There was a problem in that the thermal resistance varied, reducing reliability.
本発明はこのような問題を解消するためなされたもので
、半田付けのむらをなくして熱抵抗のばらつきを少なく
し、半導体装性能を向上させた高熱伝導性基板を提供す
ることを目的とする。The present invention has been made to solve these problems, and it is an object of the present invention to provide a highly thermally conductive substrate that eliminates uneven soldering, reduces variations in thermal resistance, and improves semiconductor device performance.
[発明の構成]
(問題点を解決するための手段)
本発明はAβN基板に接合したCu板の表面を平面度が
10μm以下、表面粗さが10μm以下に研磨して平滑
化するこにとより半導体の半田付けのむらをなくし、熱
抵抗のばらつきを低減して信頼性を向上させるものであ
る。[Structure of the Invention] (Means for Solving the Problems) The present invention involves polishing and smoothing the surface of a Cu plate bonded to an AβN substrate to a flatness of 10 μm or less and a surface roughness of 10 μm or less. This eliminates uneven soldering of semiconductors, reduces variations in thermal resistance, and improves reliability.
研磨の方法としてはバレル、タンプリング、ラップなど
の機械的研削やエツチングなどの化学的研削が上げられ
るが、特にバレル研磨による場合には、Cu板の角や稜
が平滑化されて面取り構造を呈することになり半田付け
の接合強度が向上し、また半導体を実装して組立てる際
の欠けの防止や接合検査を容易にするという利点がある
。Polishing methods include mechanical grinding such as barrel, tampling, and lapping, and chemical grinding such as etching, but especially when barrel polishing is used, the corners and ridges of the Cu plate are smoothed and exhibits a chamfered structure. This has the advantage of improving the soldering joint strength, preventing chipping when mounting and assembling semiconductors, and facilitating joint inspection.
(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.
シート成形法により成形し、常圧焼結法によって焼成し
た熱伝導率150W/mK以上、表面粗さ2〜5μ重の
Af!、N基板(大きさ50mmX50mmX 0.3
5mm)の両面に厚さ0.1〜0.2闘のタフピッチ電
解銅からなるCU板を接触配置し、窒素中で1070°
Cに加熱して両者を接合した。第3図(a)およびその
拡大断面図である第3図(b)に示すようにAβN基板
1に接合したCu板2の表面は平面度が10〜50μm
と粗いものであった。これをバレル研磨したところ第1
図(a)およびその拡大断面図である第1図(b)に示
すようにCu表面は平面度が10μm以下にまで平滑化
された。このように平滑化されたCu板にNiめっきと
AUめっきを順に施し、その後2mmX 2mmや0.
7mmX O,7mmのチップ状に切断した。なおこの
ようにチップ状に切断した後NiめっきやAUめっきを
施してもよい。またバレル研磨する前にチップ状に切断
し、そしてチップ状に切断したものをバレル研磨しても
よい。このようにバレル研磨した場合作業性が極めて良
好で、第2図に示すようにCU板の角や稜が丸くなって
半導体組立て中の欠けがなくなり、半田付けの状態を容
易に検査することができる。Af! molded by sheet molding method and fired by pressureless sintering method with thermal conductivity of 150 W/mK or more and surface roughness of 2 to 5 microns! , N substrate (size 50mm x 50mm x 0.3
A CU plate made of tough pitch electrolytic copper with a thickness of 0.1 to 0.2 mm was placed in contact with both sides of the 5 mm), and heated at 1070° in nitrogen.
The two were joined by heating to C. As shown in FIG. 3(a) and its enlarged sectional view, FIG. 3(b), the surface of the Cu plate 2 bonded to the AβN substrate 1 has a flatness of 10 to 50 μm.
It was rough. After barrel polishing this, the first
As shown in FIG. 1(a) and its enlarged cross-sectional view in FIG. 1(b), the Cu surface was smoothed to a flatness of 10 μm or less. Ni plating and AU plating are sequentially applied to the smoothed Cu plate, and then 2 mm x 2 mm and 0.
It was cut into 7mm×O, 7mm chips. Note that after cutting into chips as described above, Ni plating or AU plating may be applied. Alternatively, the material may be cut into chips before barrel polishing, and the cut chips may be barrel polished. When barrel polished in this way, workability is extremely good, and as shown in Figure 2, the corners and edges of the CU board are rounded, eliminating chipping during semiconductor assembly, and making it easy to inspect the soldering condition. can.
このようにしてNiめつきとAuめつきを施したAβN
基板−CD板に半導体チップを半田付けするとともにワ
イヤをボンディングしたが、半田濡れ性、ワイヤボンデ
ィング性はともに良好であり、半田の接合強度も従来よ
り1.5倍大きく、むらも少なかった。次に所定の方法
により気密封止して半導体装置を製造した。このように
して製造した半導体装置は熱抵抗のばらつきが±1%と
小さく、パワーサイクルテストは10倍であった。AβN plated with Ni and Au in this way
Semiconductor chips were soldered to the substrate-CD board and wires were bonded thereto, and both solder wettability and wire bonding properties were good, and the solder bonding strength was 1.5 times greater than that of the conventional method, with less unevenness. Next, a semiconductor device was manufactured by hermetically sealing it by a predetermined method. The semiconductor device manufactured in this way had a small variation in thermal resistance of ±1%, and the power cycle test was 10 times as large.
一方、従来のAβN基板に接合したCD板の表面が粗い
ものく平面度が10μ重以上)を使用した場合は熱抵抗
が±10%であり、またパワーサイクルテストは1倍で
あった。On the other hand, when using a conventional CD plate bonded to an AβN substrate with a rough surface (flatness of 10 μm or more), the thermal resistance was ±10%, and the power cycle test was 1 times as high.
[発明の効果]
以上説明したように本発明の高熱伝導性基板は、Aj!
、N基板に接合したCD板の表面が平滑なので半田濡れ
性が良好になり、従って半導体装用基板として使用する
場合の半導体の半田付けのむらがなく、熱抵抗のばらつ
きが少なくなる。またワイヤボンディング性も良好で半
導体装性能が著しく向上し、信頼性の高い半導体装置を
得ることができる。[Effects of the Invention] As explained above, the highly thermally conductive substrate of the present invention has Aj!
Since the surface of the CD plate bonded to the N substrate is smooth, the solder wettability is good, and therefore, when used as a semiconductor mounting board, there is no uneven soldering of the semiconductor, and variations in thermal resistance are reduced. Further, the wire bondability is good, the performance of the semiconductor device is significantly improved, and a highly reliable semiconductor device can be obtained.
本発明の高熱伝導性基板はオーバーレイトランジスタ、
レーザダイオード等の小サイズの半導体装用基板、半導
体用ヒートシンクとして有用である。The highly thermally conductive substrate of the present invention includes an overlay transistor,
It is useful as a substrate for small-sized semiconductors such as laser diodes, and as a heat sink for semiconductors.
【図面の簡単な説明】
第1図(a)は本発明の高熱伝導性基板の一実施例を示
す断面図、第1図(b)は第1図(a)のCu板の拡大
断面図、第2図は本発明の高熱伝導性基板の別の実施例
を示す断面図、第3図(a)は従来の高熱伝導性基板を
示す断面図、第3図(b)は第3図(a)のCu板の拡
大断面図である。
1・・・・・・・・・AJ2N基板
2・・・・・・・・・C1板
第3図[Brief Description of the Drawings] Figure 1(a) is a cross-sectional view showing an embodiment of the highly thermally conductive substrate of the present invention, and Figure 1(b) is an enlarged cross-sectional view of the Cu plate shown in Figure 1(a). , FIG. 2 is a sectional view showing another embodiment of the highly thermally conductive substrate of the present invention, FIG. 3(a) is a sectional view showing a conventional highly thermally conductive substrate, and FIG. 3(b) is FIG. It is an enlarged sectional view of the Cu board of (a). 1...AJ2N board 2...C1 board Figure 3
Claims (3)
接合し、そのCu表面を表面粗さと平面度がともに10
μm以下となるように研磨してなることを特徴とする高
熱伝導性基板。(1) A Cu plate is directly bonded to at least one surface of an AlN substrate, and the surface roughness and flatness of the Cu plate are both 10.
A highly thermally conductive substrate characterized by being polished to a thickness of μm or less.
1項記載の高熱伝導性基板。(2) The highly thermally conductive substrate according to claim 1, wherein the corners and edges of the Cu plate are chamfered.
第1項記載の高熱伝導性基板。(3) The highly thermally conductive substrate according to claim 1, wherein the polishing is performed by barrel polishing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61058612A JPS62216251A (en) | 1986-03-17 | 1986-03-17 | High thermal conductive substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61058612A JPS62216251A (en) | 1986-03-17 | 1986-03-17 | High thermal conductive substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62216251A true JPS62216251A (en) | 1987-09-22 |
Family
ID=13089361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61058612A Pending JPS62216251A (en) | 1986-03-17 | 1986-03-17 | High thermal conductive substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62216251A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01272183A (en) * | 1988-04-25 | 1989-10-31 | Toshiba Corp | Ceramics circuit board |
JPH0379504U (en) * | 1989-12-07 | 1991-08-14 | ||
JP2005116875A (en) * | 2003-10-09 | 2005-04-28 | Denso Corp | Semiconductor device |
KR100726241B1 (en) * | 2005-05-02 | 2007-06-11 | 삼성전기주식회사 | Conductive board, motor, vibration motor and metal terminal for electrical contact having gold-copper layer |
CN110582166A (en) * | 2019-09-04 | 2019-12-17 | 广州陶积电电子科技有限公司 | ceramic plate processing method combining DBC and DPC and ceramic substrate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6010696A (en) * | 1983-06-30 | 1985-01-19 | 日本碍子株式会社 | Method of producing thin film ceramic circuit board |
JPS617647A (en) * | 1984-06-21 | 1986-01-14 | Toshiba Corp | Circuit substrate |
-
1986
- 1986-03-17 JP JP61058612A patent/JPS62216251A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6010696A (en) * | 1983-06-30 | 1985-01-19 | 日本碍子株式会社 | Method of producing thin film ceramic circuit board |
JPS617647A (en) * | 1984-06-21 | 1986-01-14 | Toshiba Corp | Circuit substrate |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01272183A (en) * | 1988-04-25 | 1989-10-31 | Toshiba Corp | Ceramics circuit board |
JPH0379504U (en) * | 1989-12-07 | 1991-08-14 | ||
JP2005116875A (en) * | 2003-10-09 | 2005-04-28 | Denso Corp | Semiconductor device |
KR100726241B1 (en) * | 2005-05-02 | 2007-06-11 | 삼성전기주식회사 | Conductive board, motor, vibration motor and metal terminal for electrical contact having gold-copper layer |
CN110582166A (en) * | 2019-09-04 | 2019-12-17 | 广州陶积电电子科技有限公司 | ceramic plate processing method combining DBC and DPC and ceramic substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4969738B2 (en) | Ceramic circuit board and semiconductor module using the same | |
US6844621B2 (en) | Semiconductor device and method of relaxing thermal stress | |
KR101194429B1 (en) | Semiconductor device and method for producing the same | |
JPH07202063A (en) | Ceramic circuit board | |
JPH04162756A (en) | Semiconductor module | |
JP6896734B2 (en) | Circuit boards and semiconductor modules | |
JP4124040B2 (en) | Semiconductor device | |
JPS62216251A (en) | High thermal conductive substrate | |
JPH0590444A (en) | Ceramic circuit board | |
JP6874645B2 (en) | Manufacturing method of semiconductor devices | |
JPH08274423A (en) | Ceramic circuit board | |
KR0183010B1 (en) | Semiconductor device having particular solder interconnection arrangement | |
JPH1117081A (en) | Semiconductor module for power | |
JP2017168635A (en) | Substrate for power module and manufacturing method of power module | |
JP2000086368A (en) | Nitride ceramic substrate | |
JPH0864876A (en) | Thermomodule | |
KR102671539B1 (en) | Electronic component modules, and silicon nitride circuit boards | |
JP2001135902A (en) | Ceramic circuit board | |
JP7192100B2 (en) | Silicon nitride circuit board and electronic component module | |
JP2008085360A (en) | Semiconductor device | |
JP3148941B2 (en) | Ceramic circuit board | |
JPH08125076A (en) | Semiconductor package | |
JPH056949A (en) | Heat sink | |
JPH0255271A (en) | Bond structure consisting of aluminum nitride substrate and metallic plate | |
JP2003318203A (en) | Die bonding method |