JPS62216217A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62216217A
JPS62216217A JP5803686A JP5803686A JPS62216217A JP S62216217 A JPS62216217 A JP S62216217A JP 5803686 A JP5803686 A JP 5803686A JP 5803686 A JP5803686 A JP 5803686A JP S62216217 A JPS62216217 A JP S62216217A
Authority
JP
Japan
Prior art keywords
film
silicon
single crystal
sic
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5803686A
Other languages
Japanese (ja)
Other versions
JPH0746685B2 (en
Inventor
Masahiko Toki
雅彦 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61058036A priority Critical patent/JPH0746685B2/en
Publication of JPS62216217A publication Critical patent/JPS62216217A/en
Publication of JPH0746685B2 publication Critical patent/JPH0746685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To design an element formed on a single crystal silicon without limiting the shape and the size by growing 3C-SiC on an insulator, and epitaxially growing a silicon thereon to obtain a single crystal silicon of large area. CONSTITUTION:An insulating film 12 (SiO2 film or a silicon nitride film) is formed on a silicon substrate 11, a single crystal 3C-SiC film 13 is grown thereon, the silicon is epitaxially grown on the 3C-SiC to form a single crystal silicon film 14. The 3C-SiC film which is stable in a structure extremely near a single crystal having only one orientation is formed on the insulator, and a single crystal silicon film having the same orientation as the 3C-SiC film is epitaxially grown thereon. The film 12 is again formed on the film 14, the 3C-SiC is grown, and the step of epitaxially growing the silicon is repeated. Thus, a single crystal silicon of large area is obtained, an element formed on the single crystal silicon can be designed in a mass production without limiting the shape and size.

Description

【発明の詳細な説明】 〔概要〕 シリコン・オン・インシュレータ(Silicon 0
nInsulater+ 5(II)の形成において、
絶縁物の上に3C−SiCを成長しその上にシリコンを
エピタキシャル成長する。
[Detailed description of the invention] [Summary] Silicon on insulator (Silicon 0
In the formation of nInsulator+ 5(II),
3C-SiC is grown on the insulator, and silicon is epitaxially grown on it.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に関するもので、さらに
詳しく言えば、従来のSol形成においてレーザアニー
ルを用いて再結晶化したのに代えて、シリコン基板上の
絶縁物(SiO+膜またはシリコン窒化膜(Si3N1
膜)上に単結晶3C−SiC(β−3iC)を成長し、
この3C−3iCの上にシリコンをエピタキシャル成長
する方法に関するものである。
The present invention relates to a method for manufacturing a semiconductor device, and more specifically, in place of recrystallization using laser annealing in conventional Sol formation, an insulator (SiO+ film or silicon nitride film) on a silicon substrate is used. Si3N1
Single crystal 3C-SiC (β-3iC) is grown on the
The present invention relates to a method of epitaxially growing silicon on this 3C-3iC.

〔従来の技術〕[Conventional technology]

従来の501形成方法は第4図の断面図に示される。先
ず同図(a)に示される如くシリコン基板31上に5i
02膜32を形成しその上に例えば化学気相成長(CV
D)法でポリシリコンyI33を成長し、ポリシリコン
膜33にレーザビームを照射しくレーザアニール)、ポ
リシリコンをメルト(溶融)シ、再結晶化してポリシリ
コン膜33内に単結晶シリコン領域35を作り、この単
結晶シリコン領域35に所望の素子を形成する。
A conventional method of forming 501 is shown in the cross-sectional view of FIG. First, as shown in FIG.
02 film 32 is formed, and on it, for example, chemical vapor deposition (CVV) is performed.
D) Grow polysilicon yI 33 by the method, irradiate the polysilicon film 33 with a laser beam (laser annealing), melt the polysilicon, and recrystallize it to form a single crystal silicon region 35 in the polysilicon film 33. A desired element is formed in this single crystal silicon region 35.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した方法では、ポリシリコン/単結晶シリコン/ポ
リシリコンと横に素子分離される構造が得られるが、第
4図(b)に示す構造を縦方向に形成することが、半導
体装置の集積度を高め、かつ、耐環境性の改良すなわち
放射線対策の見地から検討されている。そのためには、
第4図中)に示したポリシリコン膜33の上に再度Si
O2を堆積し、その上にポリシリコンを成長して前記し
たレーザアニールを実施し、2層、3層30.と多層構
造にすることによって、たて方向の集積度および耐環境
に優れたデバイスを作ることが可能になるからである。
In the above method, a structure in which elements are separated horizontally (polysilicon/single crystal silicon/polysilicon) can be obtained, but forming the structure shown in FIG. It is being considered from the viewpoint of increasing the environmental resistance and improving environmental resistance, that is, radiation countermeasures. for that purpose,
4) on the polysilicon film 33 shown in FIG.
O2 is deposited, polysilicon is grown thereon, and the laser annealing described above is performed to form two-layer, three-layer 30. This is because by forming a multilayer structure, it is possible to create a device with excellent vertical integration and environmental resistance.

従来の方法によると、■レーザアニールによると、スポ
ットの小なるレーザビームが照射されたところしか再結
晶化しないのでスループットが悪く、■形成される素子
の形状、寸法に制限が加えられ、■5iO2pの上のポ
リシリコンを再結晶化するとき作られる単結晶シリコン
の配向性ができ上がってみなければ判らず、■何層にも
ポリシリコンを積んでそれを再結晶化するとき、各層の
平坦度が次第に失われ、単結晶シリコン領域の大きさが
ピラミッド型に上に行くにつれて小になり、2層ないし
3層構造が限界である、などの問題がある。
According to the conventional methods, ■Laser annealing recrystallizes only the area irradiated with a small laser beam, resulting in poor throughput; ■Limitations are placed on the shape and dimensions of the formed device; ■5iO2p The orientation of the single crystal silicon created when recrystallizing the polysilicon on top of the silicon cannot be determined until it is completed. There are problems such as the size of the single-crystal silicon region becoming smaller as it goes up in the pyramid shape, and a two-layer or three-layer structure being the limit.

本発明はこのような点に鑑みてなされたもので、上記の
問題点を解決したsoi形成の方法を提供することを目
的とする。
The present invention has been made in view of these points, and an object of the present invention is to provide a method for forming an SOI that solves the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明実施例の断面図である。 FIG. 1 is a sectional view of an embodiment of the present invention.

本発明においては、シリコン基板11上に絶縁膜12 
(5r02膜またはシリコン窒化膜)を形成し、その上
に単結晶3C−3iC膜13を成長し、この3C−3i
Cの上にシリコンをエピタキシャル成長して単結晶シリ
コン膜14を形成する。
In the present invention, an insulating film 12 is provided on a silicon substrate 11.
(5r02 film or silicon nitride film), a single crystal 3C-3iC film 13 is grown on it, and this 3C-3iC film 13 is grown on top of it.
Silicon is epitaxially grown on C to form a single crystal silicon film 14.

〔作用〕[Effect]

本出願人は減圧CVO法により 3C−SiCI!l!
を形成する技術を開発したもので、本発明においてはそ
の技術を利用し、絶縁物の上に1つの配向性だけをもっ
た単結晶にきわめて近い構造的に安定した3C−SiC
膜を形成するものであり、この3C−SiC膜上にそれ
と同じ配向性をもった単結晶シリコン膜がエピタキシャ
ル成長するのである。
The applicant has developed 3C-SiCI! using the reduced pressure CVO method. l!
The present invention utilizes this technology to form 3C-SiC, which is structurally stable and very similar to a single crystal with only one orientation, on an insulator.
A single crystal silicon film having the same orientation is epitaxially grown on this 3C-SiC film.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

従来、Sr基板上へ単結晶3C−SiC(β−SiC)
を成長させる場合、大きな格子定数の差を緩和させるた
めに炭化層をあらかじめ基板上に作製するのが一般的で
あった。本出願人は、炭化層を用いないで単結晶3C−
SiCを成長させることを試みた。
Conventionally, single crystal 3C-SiC (β-SiC) was deposited on an Sr substrate.
When growing , it is common to prepare a carbonized layer on the substrate in advance in order to alleviate the large difference in lattice constant. The applicant has proposed a single crystal 3C-
An attempt was made to grow SiC.

St基板ウェハーには、P形、4インチ(100)正基
板と、(111)4°−offの2種類の基板を用いた
。成長には誘導加熱型リアクターを用い、基板はSiC
コートのグラファイトサセプター上に置いた。成長は、
5ilo! 3− C3Hy −H2系を選び、基板温
度; 1000℃、成長圧力i 200 Paで行った
Two types of substrates were used as the St substrate wafer: a P type, 4 inch (100) positive substrate and a (111) 4°-off substrate. An induction heating reactor is used for growth, and the substrate is SiC.
The coat was placed on a graphite susceptor. The growth is
5ilo! 3-C3Hy-H2 system was selected, and the growth was performed at a substrate temperature of 1000°C and a growth pressure of i200 Pa.

両基板上に成長させたSiC膜の赤外吸収スペクトルに
は、波数800cm−1のところに急峻で大きなピーク
が観測された。このことからSt −C結合が形成され
ていることがわかった。X線回折の解析では、(111
)4°−off基板上では、3C−SiC(111)の
ピークのみ観測されたのに対し、(100)正基板上で
は、(100)ピークの他に、(111)のピークも観
測された。また、(111)4°−off基板上の成長
層(3C−3iC膜)の居射電子線回折像にストリーク
状のスポットが観測された。このことから成長させたS
iCIllが、表面にわずかに凹凸のある単結晶膜であ
ることが確認された。
A steep and large peak was observed at a wave number of 800 cm −1 in the infrared absorption spectra of the SiC films grown on both substrates. This revealed that St--C bonds were formed. In the analysis of X-ray diffraction, (111
) On the 4°-off substrate, only the 3C-SiC (111) peak was observed, whereas on the (100) positive substrate, in addition to the (100) peak, the (111) peak was also observed. . In addition, streak-like spots were observed in the radiation electron diffraction image of the growth layer (3C-3iC film) on the (111) 4°-off substrate. S that grew from this
It was confirmed that iCIll was a single crystal film with a slightly uneven surface.

また、成長させたSfCy4には、熱膨張係数等の違い
による剥離はみられなかった。これらの結果により、上
記の成長条件下では、単結晶3C−3iCは(111)
4°−off基板上には成長したことがわかった。
Furthermore, no peeling due to differences in thermal expansion coefficients, etc., was observed in the grown SfCy4. According to these results, under the above growth conditions, single crystal 3C-3iC has (111)
It was found that growth occurred on the 4°-off substrate.

再び、第1図を参照すると、半導体基板例えばシリコン
基板11上に通常の技術で(5402膜+窒化シリコン
膜) 12 (5i02119!1000人、窒化シリ
コン(Si3N鴫)膜4000人)を形成する。
Referring again to FIG. 1, (5402 film + silicon nitride film) 12 (5i02119!1000 layers, silicon nitride (Si3N) film 4000 layers) is formed on a semiconductor substrate, for example, a silicon substrate 11, by a conventional technique.

次イテ、前記した減圧CVD法で、1000℃、200
Pa(7)雰囲気’?l’ 5jHCe3+ O2+ 
C3Ht系のガスを用いて、3C−SiC膜13を作っ
たところ、反射電子線回折法(RHEED )によって
一つの配向性をもち、はとんど単結晶といいうる3C−
3iC膜13を作ることができた。
Next, by the low pressure CVD method described above,
Pa(7) Atmosphere'? l' 5jHCe3+ O2+
When a 3C-SiC film 13 was made using a C3Ht-based gas, it was determined by reflection electron diffraction (RHEED) that it had one orientation and was almost a single crystal.
A 3iC film 13 could be produced.

次いで、SiL+  (または5ix)b; ) + 
O2系のガスを用い800℃〜900℃の温度で減圧C
VD法でシリコンのエピタキシャル成長を行ったところ
、表面がほとんど鏡面の単結晶シリコン膜14が作られ
た。その結果、単結晶シリコン膜14の上に再度絶縁膜
12を形成し、3C−3iCを成長し、シリコンをエピ
タキシャル成長する工程を繰り返し行うことが可能にな
った。
Then SiL+ (or 5ix)b; ) +
Reduced pressure C using O2-based gas at a temperature of 800°C to 900°C
When silicon was epitaxially grown using the VD method, a single-crystal silicon film 14 whose surface was almost mirror-finished was formed. As a result, it has become possible to repeat the steps of forming the insulating film 12 again on the single crystal silicon film 14, growing 3C-3iC, and epitaxially growing silicon.

3C−3iC膜13の成長には第2図に示す装置を用い
、同図において、21は石英二重管、22は8 KHz
の誘導加熱用のコイル、23は黒鉛サセプタ、24はマ
ス・フロー・コントローラ(NFC) 、25は気化コ
ントローラである。かかる装置を用い、(5i)lci
! 3+ O2+CyH++)系のガスを二重構造管2
1の内管に供給し、サセプタ23を加熱してシリコン基
板11の温度を上げ、3C−SiCを基板11上に成長
した。
The 3C-3iC film 13 was grown using the apparatus shown in Figure 2, in which 21 is a quartz double tube, 22 is 8 KHz
23 is a graphite susceptor, 24 is a mass flow controller (NFC), and 25 is a vaporization controller. Using such an apparatus, (5i)lci
! 3+ O2+CyH++) system gas into double structure tube 2
1, the susceptor 23 was heated to raise the temperature of the silicon substrate 11, and 3C-SiC was grown on the substrate 11.

p型シリコン基板上に上記の方法でn−SiCを形成し
、n−3iC/ p−3tヘテロジヤンクシツンの電流
電圧特性を調査した結果は第3図の線図に示され、この
結果から前記した3C−StCは150■までの高出力
トランジスタに利用可能であることが判明した。
N-SiC was formed on a p-type silicon substrate by the above method, and the current-voltage characteristics of the n-3iC/p-3t heterogeneous silicon were investigated. The results are shown in the diagram of FIG. It has been found that the 3C-StC can be used for high power transistors up to 150μ.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、■大面積の単結
晶シリコンが得られ、 ■単結晶シリコンに形成される素子を形状、寸法を制限
することなく設計でき、 ■配向性が制御でき、 ■量産化が可能であり、 ■何層でも積層することができる、 効果がある。
As described above, according to the present invention, 1) large-area single-crystal silicon can be obtained, 2) elements formed in single-crystal silicon can be designed without restrictions on shape and dimensions, and 2) orientation can be controlled. , ■ Mass production is possible, and ■ Any number of layers can be stacked, which is effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例断面図、 第2図は3C−SiC膜成長装置の断面図、第3図はn
−SiC/ p−S!ヘテロジャンクションの電流電圧
特性を示す線図、 第4図(alと(ト))は従来例断面図である。 第1図と第2図において、 11はシリコン基板、 12は(SiO2膜+5izNり膜)、13は3G−1
icl!jl。 14は単結晶シリコン膜、 21は石英二重管、 22はコイル、 23はサセプタ、 24はマス・フロー・コントローラ、 25は気化コントローラである。 代理人  弁理士  久木元   彰 復代理人 弁理士  大 菅 義 之 本発明実施例断面図 第1図
Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 is a sectional view of a 3C-SiC film growth apparatus, and Fig. 3 is a sectional view of an embodiment of the present invention.
-SiC/p-S! A diagram showing current-voltage characteristics of a heterojunction, FIG. 4 (al) and (g) are cross-sectional views of a conventional example. In Figures 1 and 2, 11 is a silicon substrate, 12 is (SiO2 film + 5izN film), and 13 is 3G-1.
icl! jl. 14 is a single crystal silicon film, 21 is a quartz double tube, 22 is a coil, 23 is a susceptor, 24 is a mass flow controller, and 25 is a vaporization controller. Agent: Patent Attorney: Hajime Kuki Agent: Yoshiyoshi Osuga, Patent Attorney: Cross-sectional view of an embodiment of the present invention Figure 1

Claims (1)

【特許請求の範囲】 半導体基板(11)上に絶縁膜(12)を形成する工程
、 絶縁膜(12)上にSiHCl_3+H_2+C_3H
_5系のガスを用いる減圧化学気相成長法により3C−
SiC膜(13)を成長する工程、および 3C−SiC膜(13)上にSiH_4(またはSi_
2H_6もしくはSi_3H_8(トリシラン)+H_
2)系のガスを用いる減圧化学気相成長法によりシリコ
ンをエピタキシャル成長する工程を含むことを特徴とす
る半導体装置の製造方法。
[Claims] Step of forming an insulating film (12) on a semiconductor substrate (11), SiHCl_3+H_2+C_3H on the insulating film (12)
_3C- by low pressure chemical vapor deposition using 5-based gas
Step of growing SiC film (13) and growing SiH_4 (or Si_4) on 3C-SiC film (13)
2H_6 or Si_3H_8 (trisilane) +H_
2) A method for manufacturing a semiconductor device, comprising the step of epitaxially growing silicon by a low pressure chemical vapor deposition method using a system gas.
JP61058036A 1986-03-18 1986-03-18 Method for manufacturing semiconductor device Expired - Fee Related JPH0746685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61058036A JPH0746685B2 (en) 1986-03-18 1986-03-18 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61058036A JPH0746685B2 (en) 1986-03-18 1986-03-18 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS62216217A true JPS62216217A (en) 1987-09-22
JPH0746685B2 JPH0746685B2 (en) 1995-05-17

Family

ID=13072705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61058036A Expired - Fee Related JPH0746685B2 (en) 1986-03-18 1986-03-18 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0746685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009585A1 (en) * 1997-08-13 1999-02-25 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate and semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041471A (en) * 1971-11-04 1975-04-15
JPS533075A (en) * 1976-06-29 1978-01-12 Mitsubishi Electric Corp Production of mos structure field effect semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041471A (en) * 1971-11-04 1975-04-15
JPS533075A (en) * 1976-06-29 1978-01-12 Mitsubishi Electric Corp Production of mos structure field effect semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009585A1 (en) * 1997-08-13 1999-02-25 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate and semiconductor device

Also Published As

Publication number Publication date
JPH0746685B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
JP3322440B2 (en) Method for producing thin-film polycrystalline silicon
JPS58130517A (en) Manufacture of single crystal thin film
TW511129B (en) Manufacturing method for semiconductor device
JP2015503215A (en) Silicon carbide epitaxial growth method
JPS60210831A (en) Manufacture of compound semiconductor crystal substrate
EP0154373B1 (en) Methods for producing single crystals in insulators
JPH02191320A (en) Crystal product and its manufacture
JPS62216217A (en) Manufacture of semiconductor device
JPS59138332A (en) Manufacture of semiconductor device
JPH01315127A (en) Formation of gallium arsenide layer
JPH04298020A (en) Manufacture of silicon thin film crystal
JP2007261900A (en) Method for manufacturing single crystal silicon carbide substrate
JPS603148A (en) Substrate for single crystal silicon semiconductor device and manufacture thereof
GB2514268A (en) Silicon carbide epitaxy
JP3157280B2 (en) Method for manufacturing semiconductor device
JPS6233422A (en) Epitaxial growth method of silicon carbide
JP2704403B2 (en) Semiconductor thin film manufacturing method
JP2592984B2 (en) Manufacturing method of silicon thin film
JPS62174969A (en) Manufacture of semiconductor device
JPH01123410A (en) Compound semiconductor substrate and manufacture thereof
JPH0435019A (en) Thin film transistor
JPH0529214A (en) Manufacture of semiconductor substrate
JP3112796B2 (en) Chemical vapor deposition method
JPS61290709A (en) Manufacture of semiconductor device
JPS62214613A (en) Formation of sio buffer layer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees