JPS62205620A - Method and device for vapor growth - Google Patents

Method and device for vapor growth

Info

Publication number
JPS62205620A
JPS62205620A JP4900186A JP4900186A JPS62205620A JP S62205620 A JPS62205620 A JP S62205620A JP 4900186 A JP4900186 A JP 4900186A JP 4900186 A JP4900186 A JP 4900186A JP S62205620 A JPS62205620 A JP S62205620A
Authority
JP
Japan
Prior art keywords
growth
semiconductor
wall
reaction tube
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4900186A
Other languages
Japanese (ja)
Inventor
Tatsuya Ohori
達也 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4900186A priority Critical patent/JPS62205620A/en
Publication of JPS62205620A publication Critical patent/JPS62205620A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease transient variation of semiconductor characteristics in the initial stage of growth, by depositing in advance a semiconductor consisting of the same elements as that in a semiconductor to be grown on a substrate on the inner wall of a reaction tube. CONSTITUTION:In order to grow a high-resistance GaAs layer 12, 14 and an N-type GaAs layer 16, a shield 7 is placed on the side of a gas introducing tube 3a. When a high-resistance A GaAs layer 13 and an N-type AlGaAs layer 15 are grown, the shield 7 is placed at the position of a susceptor. In this manner, a GaAs layer is deposited on the inner wall 1a of a reaction tube 1 during the growth of the high-resistance GaAs layer 12, while an AlGaAs layer is deposited on the inner wall 7a of the shield 7 during the growth of the high- resistance AlGaAs layer 13. Accordingly, a substrate 11 is covered with the inner wall 1a having the GaAs layer from the starting point of and during the growth of the high-resistance GaAs layer 14 and the N-type AlGaAs layer 16, and is covered with the inner wall 7a having the AlGaAs layer from the starting point of and during the growth of the N-type AlGaAs layer 15. In this manner, transient variation of the semiconductor characteristics in the initial stage of growth can be decreased substantially.

Description

【発明の詳細な説明】 〔概要〕 反応管内で化合物または混晶半導体を成長させる気相成
長において、 成長させる半導体と同一元素からなる半導体を反応管の
内壁に予め被着しておくことにより、成長初期における
過渡的な半導体特性の変化を減少させたものである。
[Detailed Description of the Invention] [Summary] In vapor phase growth in which a compound or mixed crystal semiconductor is grown in a reaction tube, by previously depositing a semiconductor made of the same element as the semiconductor to be grown on the inner wall of the reaction tube, This reduces transient changes in semiconductor properties during the initial stage of growth.

〔産業上の利用分野〕[Industrial application field]

本発明は、反応管内で化合物または混晶半導体を成長さ
せる気相成長方法およびその装置の改良に関す。
The present invention relates to a vapor phase growth method for growing a compound or mixed crystal semiconductor in a reaction tube, and improvements to the apparatus.

化合物または混晶半導体は、その特性を利用して種々の
半導体装置に使用されているが、その中の、HEMT 
(高電子移動度トランジスタ)、HBT(ペテロバイボ
ーラトランジスタ)、レーザ、超格子構造、などはへテ
ロ接合を利用している。
Compound or mixed crystal semiconductors are used in various semiconductor devices by taking advantage of their properties, among which HEMT
(high electron mobility transistor), HBT (peterobibolar transistor), laser, superlattice structure, etc. utilize heterojunctions.

ヘテロ接合は、結晶成長のMHにより形成される。そし
てそれを形成する半導体は、ヘテロ接合部においても所
定の特性を有することが望まれる。
A heterojunction is formed by MH of crystal growth. It is desired that the semiconductor forming the semiconductor device has predetermined characteristics even in the heterojunction.

〔従来の技術〕[Conventional technology]

第2図は従来の気相成長方法を実施する従来装置例の要
部側断面図である。
FIG. 2 is a sectional side view of a main part of an example of a conventional apparatus for carrying out a conventional vapor phase growth method.

同図に示す装置は、MOCVD (有機金属化学気相成
長)法により化合物または混晶半導体を成長させる装置
であり、1は内部で成長が行われる石英ガラス製の反応
管、2は反応g1の出し入れ口を塞ぐ蓋、3は反応管1
内に反応ガスを導入するガス導入管、4は反応管1内の
ガスを排出するガス排出管、5は半導体を成長させる基
板Sを載置して反応管1内の所定の位置に配置する炭素
(グラファイト)$9のサセプタ、6はサセプタ5配置
位置の反応管1外周に設けられた高周波コイル、である
The apparatus shown in the figure is an apparatus for growing a compound or a mixed crystal semiconductor by the MOCVD (metal-organic chemical vapor deposition) method, and 1 is a reaction tube made of quartz glass in which the growth takes place, and 2 is a reaction tube for reaction g1. Lid to close the inlet/outlet, 3 is reaction tube 1
A gas introduction tube 4 introduces a reaction gas into the reaction tube 1, a gas exhaust tube 4 discharges the gas in the reaction tube 1, and a substrate S on which a semiconductor is to be grown is placed and placed at a predetermined position in the reaction tube 1. A carbon (graphite) $9 susceptor 6 is a high frequency coil provided on the outer periphery of the reaction tube 1 at the location where the susceptor 5 is disposed.

半導体の成長は、高周波コイル6の通電によりサセプタ
5を加熱して基板Sを所定の温度に上げ、ガス導入管3
から反応ガスを導入して行う。
To grow the semiconductor, the susceptor 5 is heated by energizing the high-frequency coil 6 to raise the substrate S to a predetermined temperature, and the gas introduction tube 3 is heated.
This is done by introducing a reaction gas from the

反応ガスは、昇温された基板Sに触れて化学反応を起こ
し、基板S上に半導体を成長させる。
The reaction gas contacts the heated substrate S, causes a chemical reaction, and grows a semiconductor on the substrate S.

上記気相成長により形成した例として、例えば第3図の
側断面図に示す多層半導体がある。この多層半導体は、
HEMTの形成に使用されるものである。
An example of a semiconductor formed by the above-mentioned vapor phase growth is a multilayer semiconductor shown in a side cross-sectional view of FIG. 3, for example. This multilayer semiconductor is
It is used in the formation of HEMT.

第3図において、11はガリウム砒素(GaAs)の基
板、12は高抵抗GaAs層、13は高抵抗アルミニウ
ムガリウム砒素(八1GaAs) rfA、14は高抵
抗GaAsH115はn型へ1GaArJFf、】6は
n型GaAsJW、であり、高抵抗GaAsFB14と
n型A]GaAsB15は相互間にペテロ接合を形成し
、前者はHE M Tにおける二次元電子ガス(2DG
)形成層にまた後者は電子供給層になる。
In FIG. 3, 11 is a gallium arsenide (GaAs) substrate, 12 is a high-resistance GaAs layer, 13 is a high-resistance aluminum gallium arsenide (81GaAs) rfA, 14 is a high-resistance GaAsH115 is converted to n-type 1GaArJFf, ]6 is n type GaAsJW, high resistance GaAsFB14 and n-type A]GaAsB15 form a Peter junction between them, and the former is a two-dimensional electron gas (2DG
) formation layer, and the latter becomes an electron supply layer.

そして12〜16の各層は、基板11の上に順次成長し
て形成したものである。
Each of the layers 12 to 16 is formed by sequentially growing on the substrate 11.

それぞれの眉の成長に使用される反応ガスは、次の如く
である。
The reactive gases used for each eyebrow growth are as follows.

叩ち、高抵抗GaAs層12と14に対してTMG〔ト
リメチルガリウム、Ga(CH:+ ) 3 )とアル
シン〔ASH3)の混合気、高抵抗AIGaAsjf9
13に対してTMA()リメチルアルミニウム、Δ1(
CH3) 3 )とTMGとアルシンの混合気、n型A
lGaAs屓15に対してTMAとTMGとアルシンと
モノシラン〔5i)(a)の混合気、n型GaAs層1
6に対してTMGとアルシンとモノシランの混合気、で
ある。
For the high resistance GaAs layers 12 and 14, a mixture of TMG [trimethylgallium, Ga(CH:+) 3 ) and arsine [ASH3], high resistance AIGaAsjf9
TMA () trimethylaluminum, Δ1 (
CH3) 3), TMG and arsine mixture, n-type A
A mixture of TMA, TMG, arsine, and monosilane [5i) (a) for lGaAs layer 15, n-type GaAs layer 1
6 is a mixture of TMG, arsine, and monosilane.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

HE M Tにおいては、電子供給層のへテロ接合部に
おけるキャリア濃度が十分に高いことが重要である。
In HEMT, it is important that the carrier concentration at the heterojunction of the electron supply layer is sufficiently high.

しかるに上記方法により形成された第3図図示の多層半
導体においては、第4図の問題点説明図に示す如く、n
型AlGaAs1t315の成長初期において過渡的に
キャリア濃度の低下しているのが観察される。これはH
EMTにとって特性を低下させる原因となる。
However, in the multilayer semiconductor shown in FIG. 3 formed by the above method, as shown in the problem explanatory diagram of FIG.
It is observed that the carrier concentration decreases transiently in the initial stage of growth of type AlGaAs1t315. This is H
This causes deterioration of the characteristics of EMT.

一般に先に述べた気相成長方法では、反応管1のサセプ
タ5近傍がサセプタ5の熱の伝播により加熱される。こ
のため基板S上に半導体を成長させる際に、反応管1の
内壁1aにも同一元素からなる半導体が被着する。
Generally, in the vapor phase growth method described above, the vicinity of the susceptor 5 of the reaction tube 1 is heated by the propagation of heat from the susceptor 5. Therefore, when growing a semiconductor on the substrate S, the semiconductor made of the same element is also deposited on the inner wall 1a of the reaction tube 1.

従って、上記n型^lGaAs層15の成長について見
るならば、内壁1aの被着物は、成長開始時点ではその
前の高抵抗G a A sf?t 14成長によるGa
Asであり、成長が進むに従ってA lGaAsとなる
Therefore, if we look at the growth of the n-type ^lGaAs layer 15, the deposit on the inner wall 1a at the start of growth is the same as the previous high-resistance G a A sf? Ga by t14 growth
As it grows, it becomes AlGaAs.

本願発明者の経験によれば、上記キャリア濃度の低下の
如き成長初期における過渡的な半導体特性の変化は、サ
セプタ5を覆う内壁1aの被着物が152していると考
えられる。
According to the experience of the inventor of the present application, it is thought that the transient change in semiconductor characteristics at the early stage of growth, such as the decrease in carrier concentration, is caused by the deposits on the inner wall 1a covering the susceptor 5.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、反応管内で化合物または混晶半導体を成
長させるに際して、該半導体と同一元素からなる半導体
を該反応管の内壁に予め被着してお(本発明の気相成長
方法によって解決され、また、上記反応管が多重構造を
形成する複数の内壁を具え、その内側の内壁が反応管の
軸方向に移動可能に構成されている本発明の気相成長装
置を使用することによって解決される。
The above problem can be solved by depositing a semiconductor made of the same element as the semiconductor on the inner wall of the reaction tube in advance when growing a compound or mixed crystal semiconductor in the reaction tube. Further, the problem is solved by using the vapor phase growth apparatus of the present invention, in which the reaction tube has a plurality of inner walls forming a multilayer structure, and the inner wall is configured to be movable in the axial direction of the reaction tube. Ru.

・〔作用〕 本方法によれば、サセプタを覆う反応管内壁の被着物は
、成長開始時点においても成長半導体と同一元素からな
る半導体になっている。
- [Operation] According to this method, the deposit on the inner wall of the reaction tube that covers the susceptor is a semiconductor made of the same element as the growing semiconductor even at the start of growth.

このため、先に述べた成長初期における過渡的な半導体
特性の変化が減少する。
Therefore, the transient change in semiconductor characteristics at the early stage of growth described above is reduced.

そして、ヘテロ接合を有する多層半導体を形成する場合
には、上記気相成長装置が具える上記複数の内壁のそれ
ぞれに、成長させる半導体の各々に対応した半導体を被
着しておき、上記内側内壁の選択的移動操作により、サ
セプタを覆う内壁の被着物を成長開始時点においても成
長半導体と同一元素からなる半導体にすることが出来る
When forming a multilayer semiconductor having a heterojunction, a semiconductor corresponding to each of the semiconductors to be grown is deposited on each of the plurality of inner walls of the vapor phase growth apparatus, and By selectively moving the susceptor, the deposit on the inner wall covering the susceptor can be made into a semiconductor made of the same element as the growing semiconductor even at the start of growth.

〔実施例〕〔Example〕

第1図は本発明方法を実施する本発明による気相成長装
置実施例の要部(!す断面図(a) (b)である。全
図を通じ同一符号は同一対象物を示す。
FIG. 1 is a cross-sectional view (a) and (b) of a main part of an embodiment of a vapor phase growth apparatus according to the present invention for carrying out the method of the present invention. The same reference numerals indicate the same objects throughout the figures.

第1図に示す装置は、第2図図示従来例装置の反応管1
内に第二の内壁7aを形成する移動可能な遮蔽体7を設
け、従来のガス導入管3をサセプタ5の方向に長くした
ガス導入管3aに変えたものである。
The apparatus shown in Fig. 1 is similar to the reaction tube 1 of the conventional apparatus shown in Fig. 2.
A movable shield 7 forming a second inner wall 7a is provided inside, and the conventional gas introduction pipe 3 is replaced with a gas introduction pipe 3a that is elongated in the direction of the susceptor 5.

遮蔽体7は、石英ガラス製で長さがサセプタ5より若干
長く断面形状が逆門形をなし、その移動方向は反応管1
の軸方向で、サセプタ5の位置にある際には反応管1の
内壁1aから遮蔽するようにサセプタ5を覆う。
The shielding body 7 is made of quartz glass, has a length slightly longer than the susceptor 5, and has an inverted gate-shaped cross section, and its moving direction is similar to that of the reaction tube 1.
When the susceptor 5 is located in the axial direction, the susceptor 5 is covered so as to be shielded from the inner wall 1a of the reaction tube 1.

また遮蔽体7がガス導入管3a側に位置する際には、ガ
ス導入管3aの先端は遮蔽体7より図上右側に若干臼て
いる。
Further, when the shield 7 is located on the side of the gas introduction pipe 3a, the tip of the gas introduction pipe 3a is positioned slightly to the right of the shield 7 in the figure.

遮蔽体7の移動は移動用シャフト8により操作され、シ
ャフト8の設置により従来の蓋2は蓋2a↓こ変わって
いる。
The movement of the shield 7 is operated by a moving shaft 8, and the installation of the shaft 8 changes the conventional lid 2 to a lid 2a↓.

この装置を用いて第3図図示の多I′5半導体を形成す
る際の方法は、遮蔽体7の移動操作の追加を除き従来方
法による先に述べた方法と変わらない。
The method for forming the multi-I'5 semiconductor shown in FIG. 3 using this apparatus is the same as the conventional method described above, except for the addition of the operation of moving the shield 7.

即ち、高抵抗GaAs層12および14とn型GaAs
J’516を成長する際には、遮蔽体7をガス導入管3
a側に位置させ、高抵抗へlGaAs1’513とn型
AlGaAs層15を成長する際には、遮蔽体7をサセ
プタの位置に位置させる。
That is, the high resistance GaAs layers 12 and 14 and the n-type GaAs
When growing J'516, the shield 7 is connected to the gas introduction pipe 3.
When growing lGaAs1' 513 and n-type AlGaAs layer 15 to a high resistance state on the a side, the shielding body 7 is located at the susceptor position.

さすれば、高抵抗GaAs#12の成長の際に反応管1
の内壁1aにGaAsが被着し、高抵抗^]GaAs1
’513の成長の際に遮蔽体7の内壁7aにAlGaA
sが被着する。
Then, during the growth of high resistance GaAs #12, the reaction tube 1
GaAs is deposited on the inner wall 1a of , resulting in high resistance ^] GaAs1
'513, AlGaA was applied to the inner wall 7a of the shielding body 7 during the growth of
s is deposited.

従って基板11は、高抵抗GaAs114とn型GaA
s1i16の成長の際に成長開始時点からGaAsを被
着した内壁1aにフわれ、n型へ1GaAsj5’f1
5の成長の際に成長開始時点からAlGaAsを被着し
た内壁7aに覆われる。
Therefore, the substrate 11 consists of high resistance GaAs 114 and n-type GaA
During the growth of s1i16, the inner wall 1a coated with GaAs is exposed from the start of the growth, and 1GaAsj5'f1 becomes n-type.
During the growth of No. 5, it is covered with an inner wall 7a coated with AlGaAs from the start of growth.

このことから、例えばHEMTで電子供拾石になるn型
AlGaAs1’515に着目すると、第4図で述べた
ような成長初期における過渡的なキャリア濃度の低下は
大幅に減少する。本願発明者の確認によると、その低下
は従来方法の場合の1/10以下になっている。
From this, for example, when focusing on n-type AlGaAs1'515, which becomes an electron pick-up in HEMT, the transient decrease in carrier concentration at the early stage of growth as described in FIG. 4 is significantly reduced. According to confirmation by the inventor of the present application, the decrease is less than 1/10 of that in the conventional method.

なお上記実施例では成長する半導体がGaAsとAlG
aAsの2ftFnであるが、2種すnを越える場合に
はそれに見合わせて遮蔽体の数を増やせば良い。
In the above example, the semiconductors to be grown are GaAs and AlG.
2ftFn of aAs, but if it exceeds 2ftFn, the number of shielding bodies may be increased accordingly.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の構成によれば、反応管内で
化合物または混晶半導体を成長させる気相成長において
、成長初期における過渡的な半導体特性の変化を減少さ
せることが出来て、形成する半導体装置における該変化
に起因する特性低下の防止を可能にさせる効果がある。
As explained above, according to the configuration of the present invention, in vapor phase growth for growing a compound or mixed crystal semiconductor in a reaction tube, it is possible to reduce transient changes in semiconductor properties in the early stage of growth, and to This has the effect of making it possible to prevent characteristic deterioration caused by such changes in the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する本発明装置実施例の要部
側断面図(al (bl、 第2図(よ従来方法を実施する従来装置例の要部側断面
図、 第3図は気相成痰により形成した多層半導体例の側断面
図、 第4図は従来方法における問題点説明図、である。 図において、 工は反応管、     !aは1の内壁、2.2aは蓋
、      3.3aはガス導入管、4はガス排出管
、    5はサセプタ、6は高周波コイル、   7
は遮蔽体、7aは7の内壁、     8は移動用シャ
フト、S、11は基板、     12.14は高抵抗
GaAsff1.13は高抵抗へ]GaAsJW、 1
5はn型へlGaAs層、16はn型GaAsN、 である。
Fig. 1 is a side sectional view of the main part of an embodiment of the apparatus of the present invention for carrying out the method of the invention; Fig. 4 is a side cross-sectional view of an example of a multilayer semiconductor formed using vapor-phase sputum, and Fig. 4 is an explanatory diagram of problems in the conventional method. , 3.3a is a gas introduction pipe, 4 is a gas discharge pipe, 5 is a susceptor, 6 is a high frequency coil, 7
is a shield, 7a is an inner wall of 7, 8 is a moving shaft, S, 11 is a substrate, 12.14 is a high resistance GaAsff1.13 is a high resistance] GaAsJW, 1
5 is an n-type lGaAs layer, and 16 is an n-type GaAsN layer.

Claims (1)

【特許請求の範囲】 1)反応管内で化合物または混晶半導体を成長させるに
際して、該半導体と同一元素からなる半導体を該反応管
の内壁に予め被着しておくことを特徴とする気相成長方
法。 2)内部で化合物または混晶半導体を成長させる反応管
が多重構造を形成する複数の内壁を具え、その内側の内
壁が該反応管の軸方向に移動可能に構成されていること
を特徴とする気相成長装置。
[Claims] 1) Vapor phase growth characterized in that when growing a compound or mixed crystal semiconductor in a reaction tube, a semiconductor made of the same element as the semiconductor is previously deposited on the inner wall of the reaction tube. Method. 2) A reaction tube in which a compound or a mixed crystal semiconductor is grown has a plurality of inner walls forming a multilayer structure, and the inner wall is configured to be movable in the axial direction of the reaction tube. Vapor phase growth equipment.
JP4900186A 1986-03-06 1986-03-06 Method and device for vapor growth Pending JPS62205620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4900186A JPS62205620A (en) 1986-03-06 1986-03-06 Method and device for vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4900186A JPS62205620A (en) 1986-03-06 1986-03-06 Method and device for vapor growth

Publications (1)

Publication Number Publication Date
JPS62205620A true JPS62205620A (en) 1987-09-10

Family

ID=12818948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4900186A Pending JPS62205620A (en) 1986-03-06 1986-03-06 Method and device for vapor growth

Country Status (1)

Country Link
JP (1) JPS62205620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803581A (en) * 2009-06-15 2012-11-28 艾克斯特朗欧洲公司 Method for equipping an epitaxy reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803581A (en) * 2009-06-15 2012-11-28 艾克斯特朗欧洲公司 Method for equipping an epitaxy reactor
JP2012530368A (en) * 2009-06-15 2012-11-29 アイクストロン、エスイー Method for configuring an epitaxy reactor

Similar Documents

Publication Publication Date Title
JPS6065798A (en) Growing of gallium nitride single crystal
JPS62205620A (en) Method and device for vapor growth
JPH1174202A (en) Vapor growth device of gallium nitride iii-v compound semiconductor and gallium nitride iii-v compound semiconductor device and its manufacture
JPH0547666A (en) Vapor growth apparatus
JPH0574724A (en) Method for growth of atomic layer of aluminum compound
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JPS58151397A (en) Production of vapor phase epitaxial crystal
JPH01313927A (en) Compound-semiconductor crystal growth method
JPH03112128A (en) Vapor growth device for compound semiconductor
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
JPH06151339A (en) Apparatus and method for growth of semiconductor crystal
JP2567228B2 (en) Epitaxial growth method for semiconductor crystals
JPH01290222A (en) Semiconductor vapor growth method
JPH02203517A (en) Selective vapor-phase epitaxy of iii-v compound semiconductor
JPS612318A (en) Semiconductor growing device
JPH0587015B2 (en)
JPH01224295A (en) Gas source molecular beam crystal growing apparatus
JPS62182196A (en) Vapor growth apparatus
JPS6289323A (en) Organo metallic chemical vapor deposition
JPH02273917A (en) Method of growing crystal of carbon doped iii-v compound semiconductor
JPH0573251B2 (en)
JPH02291112A (en) Vapor growth apparatus for compound semiconductor
JPS63114117A (en) Apparatus for manufacturing semiconductor
JPS63221611A (en) Method and apparatus for metal organic chemical vapor deposition
JPH01109715A (en) Vapor phase epitaxy method