JPH06151339A - Apparatus and method for growth of semiconductor crystal - Google Patents

Apparatus and method for growth of semiconductor crystal

Info

Publication number
JPH06151339A
JPH06151339A JP32733792A JP32733792A JPH06151339A JP H06151339 A JPH06151339 A JP H06151339A JP 32733792 A JP32733792 A JP 32733792A JP 32733792 A JP32733792 A JP 32733792A JP H06151339 A JPH06151339 A JP H06151339A
Authority
JP
Japan
Prior art keywords
susceptor
wafer
crystal growth
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32733792A
Other languages
Japanese (ja)
Inventor
Ichiro Kume
一郎 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32733792A priority Critical patent/JPH06151339A/en
Publication of JPH06151339A publication Critical patent/JPH06151339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a susceptor shape wherein the crystallinity of an epitaxial layer and the uniformity of a film thickness are excellent when an epitaxial growth operation is performed by using an MOCVD apparatus. CONSTITUTION:A susceptor 6 is divided into a main body 61 and a component 62 for wafer arrangement use. By changing the shape of the component 62 for wafer arrangement use, the shape of the susceptor is changed, and the angle at which a reaction gas 5 strikes a wafer 3 is made variable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、化合物半導体素子の
製造に用いられるMOCVD(Metal Organic Chemicai
Vapor Deposition )装置に関し、特にウエハを支持す
るためのサセプタと呼ばれる部材の改良、及び該サセプ
タを用いた結晶成長方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to MOCVD (Metal Organic Chemicai) used for manufacturing compound semiconductor devices.
The present invention relates to a Vapor Deposition) device, and more particularly to improvement of a member called a susceptor for supporting a wafer and a crystal growth method using the susceptor.

【0002】[0002]

【従来の技術】従来III −V族化合物半導体等の薄膜成
長方法として、ガス状の化合物をシリコンウエハ等の基
板上に導き、ガス中または基板表面で分解,酸化,還元
などの化学反応を行わせ、所望の薄膜を基板上に形成す
るMOCVD法がある。図3はMOCVD法を実施する
際に用いられる従来のMOCVD装置、特にウエハを支
持するサセプタが台形形状であるバレル型炉の反応室の
概略的な構成図であり、図において、1は石英からなる
反応管、2はグラファイトシリコン等からなる台形形状
のウエハサセプタであり、反応管1内で回転可能な構成
となっている。3は結晶が成長される被処理基板、4は
サセプタ2を誘導加熱するためのRFコイル、5は原料
ガスを含むキャリアガスである。
2. Description of the Related Art Conventionally, as a method for growing a thin film of a III-V group compound semiconductor or the like, a gaseous compound is introduced onto a substrate such as a silicon wafer and a chemical reaction such as decomposition, oxidation or reduction is carried out in the gas or on the surface of the substrate. In addition, there is a MOCVD method for forming a desired thin film on a substrate. FIG. 3 is a schematic configuration diagram of a conventional MOCVD apparatus used for carrying out the MOCVD method, particularly a reaction chamber of a barrel-type furnace in which a susceptor supporting a wafer has a trapezoidal shape. 2 is a trapezoidal wafer susceptor made of graphite silicon or the like, and is configured to be rotatable inside the reaction tube 1. 3 is a substrate to be processed on which crystals are grown, 4 is an RF coil for inductively heating the susceptor 2, and 5 is a carrier gas containing a source gas.

【0003】次にMOCVD装置の動作をAlGaAs
系結晶を被処理基板上にエピタキシャル成長させる場合
を例に挙げて説明する。まず、サセプタ2の所定の位置
に被処理基板であるGaAs基板結晶3を乗せたものを
反応管1内に挿入した後、RFコイル4に高周波電流を
流し、導電体であるカーボン製のサセプタ2を誘導加熱
する。また、原料ガスを含むキャリアガス5は、原料と
なるガスとして、III 族元素の有機化合物であるトリメ
チルガリウム(TMG),トリメチルアルミニウム(T
MA)を用い、V族元素としてアルシン(AsH3 )を
用いガス導入口よりキャリアガスと共に供給することで
得られる。
Next, the operation of the MOCVD apparatus is changed to AlGaAs.
A case where a system crystal is epitaxially grown on a substrate to be processed will be described as an example. First, a susceptor 2 having a GaAs substrate crystal 3 as a substrate to be processed placed at a predetermined position is inserted into a reaction tube 1, and a high frequency current is passed through an RF coil 4 to make a carbon susceptor 2 which is a conductor. Induction heating. Further, the carrier gas 5 containing the source gas is used as a source gas such as trimethylgallium (TMG) and trimethylaluminum (T) which are organic compounds of Group III elements.
(MA) and arsine (AsH3) as a group V element and are supplied together with a carrier gas from a gas inlet.

【0004】次に、サセプタ2を誘導加熱により700
〜800°C前後に加熱した後、図示しないマスフロー
コントローラによって流量を精密に制御した原料ガスを
導入するとともに反応管1下方の排気口から排気する。
すると反応管1内に供給された原料ガスは、高温に加熱
されたGaAs基板3表面において、熱分解反応によ
り、AlGaAsとして堆積する。
Next, the susceptor 2 is heated to 700 by induction heating.
After heating to about 800 ° C., a source gas whose flow rate is precisely controlled by a mass flow controller (not shown) is introduced and exhausted from the exhaust port below the reaction tube 1.
Then, the source gas supplied into the reaction tube 1 is deposited as AlGaAs by the thermal decomposition reaction on the surface of the GaAs substrate 3 heated to a high temperature.

【0005】バレル型炉を用いたエピタキシャル成長
は、成長中にサセプタが回転することにより、横型炉に
比べて得られる結晶の膜厚、比抵抗が良好であるため、
近年、横型炉にかわって用いられるようになった。
Since the susceptor rotates during the growth in epitaxial growth using a barrel furnace, the crystal thickness and specific resistance of the obtained crystal are better than in a horizontal furnace.
In recent years, it has come to be used instead of a horizontal furnace.

【0006】[0006]

【発明が解決しようとする課題】従来の半導体結晶成長
装置及び結晶成長方法は以上のように構成されており、
エピタキシャル成長層の結晶性、均一性等は、成長時の
温度やガス流量等で決定されるが、サセプタの形状によ
っても大きく左右される。すなわち、ガス流量を変化さ
せて結晶の組成比を変化させたり、また異なる材質から
なる薄膜を成長させる場合には、被処理基板の反応ガス
の流れに対する配置角度が必ずしも最適でない場合があ
り、かかる場合においても最適な成長条件が必要とされ
る時には、従来のサセプタは一体的に構成されたもので
あることから、その形状の変更を行うために新規にサセ
プタを作製しなければならならないという問題点があっ
た。
The conventional semiconductor crystal growth apparatus and crystal growth method are configured as described above,
The crystallinity, uniformity, etc. of the epitaxial growth layer are determined by the temperature, gas flow rate, etc. during growth, but are greatly influenced by the shape of the susceptor. That is, when the gas flow rate is changed to change the composition ratio of the crystal, or when a thin film made of a different material is grown, the arrangement angle with respect to the reaction gas flow of the substrate to be processed may not always be optimal. Even when the optimum growth condition is required, the conventional susceptor is integrally configured, so that a new susceptor must be manufactured to change its shape. There was a point.

【0007】この発明は、上記のような問題点を解消す
るためになされたもので、要求される成長条件に合わせ
てサセプタそのものを新規に作製することなくサセプタ
の一部の部品を交換するだけで、最適な成長条件が得ら
れる半導体結晶成長装置を得ることを目的としており、
さらにはこの装置を用いて、より最適な成長条件で結晶
成長を行う方法を提供することを目的とする。
The present invention has been made in order to solve the above problems, and only a part of the susceptor is replaced without newly producing the susceptor itself according to the required growth conditions. The purpose is to obtain a semiconductor crystal growth apparatus that can obtain the optimum growth conditions.
Further, it is another object of the present invention to provide a method for crystal growth using this apparatus under more optimal growth conditions.

【0008】[0008]

【課題を解決するための手段】この発明による半導体結
晶成長装置は、サセプタのウエハを配置する部分を取り
外し可能なものとし、様々な形状のウエハ配置用部品を
取り付けることによりウエハの配置角度を変化させるよ
うにしたものである。
In the semiconductor crystal growth apparatus according to the present invention, the wafer arranging portion of the susceptor is removable, and the wafer arranging angle is changed by attaching various shapes of wafer arranging parts. It was made to let.

【0009】またこの発明に係る半導体結晶成長方法
は、反応ガスの流量と、サセプタの形状、すなわち反応
ガスの流れのウエハに対する角度とをパラメータとして
結晶成長を行うようにしたものである。
In the semiconductor crystal growth method according to the present invention, the crystal growth is performed with the flow rate of the reaction gas and the shape of the susceptor, that is, the angle of the flow of the reaction gas with respect to the wafer as parameters.

【0010】[0010]

【作用】この発明においては、様々な形状を有するウエ
ハ配置用部品を用意し、これらの中から所望とするもの
を選択してサセプタ本体に取り付けることにより、サセ
プタ本体を交換することなくウエハに当たる反応ガスの
角度を可変とすることができる。
According to the present invention, wafer placement components having various shapes are prepared, and a desired one is selected from these components and attached to the susceptor body, so that a reaction for hitting the wafer can be made without replacing the susceptor body. The gas angle can be variable.

【0011】また、反応ガスの流れに対するウエハの角
度と、反応ガスの流量とをパラメータとして結晶成長を
行うことにより、最適な条件で結晶成長を行うことがで
きる。
Further, by performing crystal growth using the angle of the wafer with respect to the flow of the reaction gas and the flow rate of the reaction gas as parameters, crystal growth can be performed under optimum conditions.

【0012】[0012]

【実施例】【Example】

実施例1.以下、この発明の実施例による半導体結晶成
長装置を図について説明する。図1は本発明のMOCV
D装置の反応室の概略的な構成図であり、図3と同一符
号は同一または相当部分を示し、6はウエハサセプタで
あり、サセプタ本体部61と、該サセプタ本体61の側
面に着脱自在に取り付けられ、サセプタ本体61と同様
のカーボン製のウエハ配置用部品62とから構成されて
いる。
Example 1. A semiconductor crystal growth apparatus according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the MOCV of the present invention.
FIG. 4 is a schematic configuration diagram of a reaction chamber of the apparatus D, the same reference numerals as those in FIG. 3 denote the same or corresponding parts, 6 denotes a wafer susceptor, and a susceptor main body 61 and a side surface of the susceptor main body 61 that is detachably attached The susceptor body 61 is attached and is composed of a carbon wafer placement component 62 similar to the susceptor body 61.

【0013】次に従来例と同様に、AlGaAs結晶の
エピタキシャル成長を本発明によって行う場合を例に挙
げて説明する。まず、サセプタ本体61に、所望とする
角度でGaAs基板3に反応ガス5が当たるような角度
を有するウエハ配置用部品62を取り付け、この部品3
の上にGaAs基板3を乗せる。そして、サセプタ6を
反応管1内に挿入し、RFコイル4を用いた誘導加熱に
よってサセプタ6を700〜800°C前後に加熱した
後、図示しないマスフローコントローラを通して、原料
ガス5を導入する。すると、GaAs基板3上では原料
ガス(AsH3 ,TMG,TMA)5が熱分解し、以下
に示す化学反応によってAlGaAs層がGaAs基板
3上に成長する。 2AsH3 +Ga(CH3 )3 +Al(CH3 )3 →A
lGaAs+6CH4
Next, similar to the conventional example, the case where the AlGaAs crystal is epitaxially grown according to the present invention will be described as an example. First, a wafer placement component 62 having an angle such that the reaction gas 5 hits the GaAs substrate 3 at a desired angle is attached to the susceptor body 61.
The GaAs substrate 3 is placed on top. Then, the susceptor 6 is inserted into the reaction tube 1, the susceptor 6 is heated to about 700 to 800 ° C. by induction heating using the RF coil 4, and then the source gas 5 is introduced through a mass flow controller (not shown). Then, the source gas (AsH3, TMG, TMA) 5 is thermally decomposed on the GaAs substrate 3, and the AlGaAs layer is grown on the GaAs substrate 3 by the chemical reaction shown below. 2AsH3 + Ga (CH3) 3 + Al (CH3) 3 → A
lGaAs + 6CH4

【0014】ところで、上記反応ガスの流量を変化させ
て結晶の組成比を変更しようとした場合、または上記反
応ガスの種類を変えて組成の異なる薄膜を成長させよう
とした場合、被処理基板の反応ガスに対する角度を変更
する必要が生じる場合があるが、このような時には、図
1中破線で示されるように、ウエハ配置用部品62より
も緩やかな傾斜角度が得られるような形状のウエハ配置
用部品62′をサセプタ本体61に取り付け、この上に
被処理基板3を載置することにより所定の角度で反応ガ
スを被処理基板に当てることができる。
By the way, when an attempt is made to change the composition ratio of crystals by changing the flow rate of the reaction gas, or when an attempt is made to grow a thin film having a different composition by changing the kind of the reaction gas, the substrate to be processed is changed. It may be necessary to change the angle with respect to the reaction gas. In such a case, however, as shown by the broken line in FIG. By attaching the component 62 'to the susceptor body 61 and placing the substrate 3 to be processed thereon, the reaction gas can be applied to the substrate to be processed at a predetermined angle.

【0015】このように本実施例によれば、サセプタ6
を、その本体61に、その形状が異なる複数のウエハ配
置用部品62,62′から所望とするものを着脱自在な
構成としたから、部品交換のみでウエハ3に当たる反応
ガス5の角度を可変とすることができ、要求される成長
条件に合わせて最適な状況を提供することができ、結晶
層の結晶性や膜厚の均一性を向上させることができる。
As described above, according to this embodiment, the susceptor 6 is
Since a desired one of a plurality of wafer placement components 62, 62 'having different shapes is detachably attached to the main body 61, the angle of the reaction gas 5 hitting the wafer 3 can be changed only by replacing the components. Therefore, it is possible to provide the optimum situation according to the required growth conditions, and it is possible to improve the crystallinity of the crystal layer and the uniformity of the film thickness.

【0016】実施例2.次にこの発明の実施例による半
導体結晶成長方法について説明する。上記実施例ではサ
セプタの形状を変えることによって、エピ層の結晶性や
膜厚の均一性を向上させるようにしたが、この実施例で
はガス流量とサセプタ形状(反応ガスの流れに対するウ
エハの角度)をパラメータとして、最適条件を求めるこ
とにより、さらに結晶性や膜厚の均一性を向上させるよ
うにしたものである。
Example 2. Next, a semiconductor crystal growth method according to an embodiment of the present invention will be described. Although the crystallinity of the epi layer and the uniformity of the film thickness are improved by changing the shape of the susceptor in the above embodiment, the gas flow rate and the susceptor shape (the angle of the wafer with respect to the flow of the reaction gas) are changed in this embodiment. Is used as a parameter to obtain the optimum conditions to further improve the crystallinity and the uniformity of the film thickness.

【0017】すなわち図2は、ガス流量とエピ層の膜厚
ばらつきをグラフ化した例を示し、形状の異なるサセプ
タ部品A,Bを用いることで同じガス流量であっても、
膜厚にバラツキが生じ、この図では部品Bを用いた場合
の方がバラツキが小さいことが分かる。また同一の部品
を用いても、反応ガスの流量が異なると膜厚にバラツキ
が生じ、反応ガスの流量には最適値があることが分か
る。したがって、このグラフから最もばらつきの少ない
成長条件(ガス流量、サセプタ形状)を見出すことがで
きる。
That is, FIG. 2 shows an example in which the gas flow rate and the film thickness variation of the epi layer are graphed. Even if the gas flow rate is the same by using susceptor parts A and B having different shapes,
There is a variation in the film thickness, and in this figure, it can be seen that the variation is smaller when the component B is used. Further, even if the same parts are used, it is found that the film thickness varies when the flow rate of the reaction gas is different, and the flow rate of the reaction gas has an optimum value. Therefore, the growth condition (gas flow rate, susceptor shape) with the least variation can be found from this graph.

【0018】[0018]

【発明の効果】以上のように、この発明に係る半導体結
晶成長装置によれば、サセプタ本体に取り外し可能なウ
エハ配置用部品を用い、この上にウエハを配置して結晶
成長を行うようにしたから、部品交換のみでウエハに当
たる反応ガスの角度を変えることができ、エピ成長を行
う上で常に最適な反応条件を容易に得られる効果があ
る。
As described above, according to the semiconductor crystal growth apparatus of the present invention, the detachable wafer arranging component is used in the susceptor body, and the wafer is arranged on the arranging component for crystal growth. Therefore, the angle of the reaction gas hitting the wafer can be changed only by exchanging the parts, and there is an effect that the optimum reaction conditions can always be easily obtained in performing the epi growth.

【0019】また、サセプタの形状を変更させると共
に、ガス流量を変化させ、これら2つのパラメータから
最適な条件を選択して結晶成長を行うことで、結晶性や
膜厚の均一性をより向上させることができる効果があ
る。
Further, by changing the shape of the susceptor, changing the gas flow rate, and selecting the optimum condition from these two parameters for crystal growth, the uniformity of crystallinity and film thickness is further improved. There is an effect that can be.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例によるMOCVD装置の構
成図である。
FIG. 1 is a configuration diagram of a MOCVD apparatus according to an embodiment of the present invention.

【図2】この発明の一実施例による半導体結晶成長方法
を説明するためのウエハ配置部品とガス流量との相関を
示す図である。
FIG. 2 is a diagram showing a correlation between a wafer arrangement component and a gas flow rate for explaining a semiconductor crystal growth method according to an embodiment of the present invention.

【図3】従来のMOCVD装置の構成図である。FIG. 3 is a block diagram of a conventional MOCVD apparatus.

【符号の説明】[Explanation of symbols]

1 石英反応管 2 ウエハ 3 ウエハ 4 RFコイル 5 原料ガスを含むキャリアガス 6 サセプタ 61 サセプタ本体 62 ウエハ配置用部品 62′ 形状の異なるウエハ配置用部品 1 Quartz Reaction Tube 2 Wafer 3 Wafer 4 RF Coil 5 Carrier Gas Containing Raw Material Gas 6 Susceptor 61 Susceptor Main Body 62 Wafer Arranging Parts 62 ′ Wafer Arranging Parts with Different Shapes

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ウエハを支持するサセプタと、該サセプ
タを収納し、反応ガスの熱分解反応を利用して上記ウエ
ハ上に結晶成長を行うための反応管とを備えた半導体結
晶成長装置において、 上記サセプタは、 サセプタ本体と、 該サセプタ本体と着脱自在なウエハ配置用部品とから構
成され、 形状の異なるウエハ配置用部品を用いてウエハに当たる
反応ガスの角度を変化させるようにしたことを特徴とす
る半導体結晶成長装置。
1. A semiconductor crystal growth apparatus comprising: a susceptor for supporting a wafer; and a reaction tube for accommodating the susceptor and for performing crystal growth on the wafer by utilizing a thermal decomposition reaction of a reaction gas, The susceptor is composed of a susceptor body and a wafer placement component that is detachable from the susceptor body, and the angle of the reaction gas hitting the wafer is changed by using the wafer placement component having different shapes. Semiconductor crystal growth apparatus.
【請求項2】 反応ガスの熱分解反応を利用してウエハ
上に結晶成長を行う半導体結晶成長方法において、 上記反応ガスの流量と、ウエハにあたる反応ガスの角度
とをパラメータとして、得られる結晶の膜厚のバラツキ
が最も小さくなるガス流量及び角度を選択して結晶成長
を行うことを特徴とする半導体結晶成長方法。
2. A semiconductor crystal growth method for growing a crystal on a wafer by utilizing a thermal decomposition reaction of a reaction gas, wherein the flow rate of the reaction gas and the angle of the reaction gas hitting the wafer are used as parameters to obtain a crystal to be obtained. A semiconductor crystal growth method, wherein crystal growth is performed by selecting a gas flow rate and an angle at which variations in film thickness are minimized.
JP32733792A 1992-11-11 1992-11-11 Apparatus and method for growth of semiconductor crystal Pending JPH06151339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32733792A JPH06151339A (en) 1992-11-11 1992-11-11 Apparatus and method for growth of semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32733792A JPH06151339A (en) 1992-11-11 1992-11-11 Apparatus and method for growth of semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH06151339A true JPH06151339A (en) 1994-05-31

Family

ID=18198014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32733792A Pending JPH06151339A (en) 1992-11-11 1992-11-11 Apparatus and method for growth of semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH06151339A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276125B2 (en) 2003-12-22 2007-10-02 Toshiba Ceramics Co., Ltd. Barrel type susceptor
JP2008071917A (en) * 2006-09-14 2008-03-27 Shin Etsu Handotai Co Ltd Susceptor, device, and method for vapor-phase epitaxial growth
WO2011156657A2 (en) * 2010-06-09 2011-12-15 Solexel, Inc. High productivity thin film deposition method and system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276125B2 (en) 2003-12-22 2007-10-02 Toshiba Ceramics Co., Ltd. Barrel type susceptor
JP2008071917A (en) * 2006-09-14 2008-03-27 Shin Etsu Handotai Co Ltd Susceptor, device, and method for vapor-phase epitaxial growth
WO2011156657A2 (en) * 2010-06-09 2011-12-15 Solexel, Inc. High productivity thin film deposition method and system
WO2011156657A3 (en) * 2010-06-09 2012-06-28 Solexel, Inc. High productivity thin film deposition method and system
KR101369282B1 (en) * 2010-06-09 2014-03-04 솔렉셀, 인크. High productivity thin film deposition method and system
US9870937B2 (en) 2010-06-09 2018-01-16 Ob Realty, Llc High productivity deposition reactor comprising a gas flow chamber having a tapered gas flow space

Similar Documents

Publication Publication Date Title
US6821340B2 (en) Method of manufacturing silicon carbide, silicon carbide, composite material, and semiconductor element
EP1796150B1 (en) Method for algan vapor-phase growth
JPH11508531A (en) Apparatus and method for growing an object epitaxially by CVD
JPH04193799A (en) Production of silicon carbide single crystal
JPH06151339A (en) Apparatus and method for growth of semiconductor crystal
JP2007145679A (en) Apparatus for and method of producing aluminum nitride single crystal
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JP2631286B2 (en) Gas phase growth method of gallium nitride based compound semiconductor
JP2000031064A (en) Method and device for horizontal vapor phase epitaxial growth
JPS61179527A (en) Growth method of compound semiconductor single crystal film and equipment therefor
US20210040645A1 (en) Silicon carbide single crystal manufacturing apparatus, and manufacturing method of silicon carbide single crystal
JP2010150109A (en) Nitride single crystal and method for producing the same
JP2002308698A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JPS6134932A (en) Vapor growing process
JP2004253413A (en) Compound semiconductor vapor growth device
JPS612318A (en) Semiconductor growing device
JPS63188934A (en) Vapor growth system
JPS63198322A (en) Semiconductor crystal growing apparatus
JPH0529637B2 (en)
JPH02151023A (en) Device for manufacturing semiconductor crystal
JPS63159296A (en) Vapor phase epitaxy
JPH06101435B2 (en) Vapor growth method
JPS62182196A (en) Vapor growth apparatus
JPH02297924A (en) Metal organic vapor growth method for compound semiconductor
JPH03236220A (en) Vapor growth method for semiconductor