JP2008071917A - Susceptor, device, and method for vapor-phase epitaxial growth - Google Patents

Susceptor, device, and method for vapor-phase epitaxial growth Download PDF

Info

Publication number
JP2008071917A
JP2008071917A JP2006248917A JP2006248917A JP2008071917A JP 2008071917 A JP2008071917 A JP 2008071917A JP 2006248917 A JP2006248917 A JP 2006248917A JP 2006248917 A JP2006248917 A JP 2006248917A JP 2008071917 A JP2008071917 A JP 2008071917A
Authority
JP
Japan
Prior art keywords
susceptor
vapor phase
substrate
phase growth
counterbore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006248917A
Other languages
Japanese (ja)
Other versions
JP4720692B2 (en
Inventor
Takahiro Arai
孝弘 新井
Toshihiro Akiyama
智弘 秋山
Chisa Yoshida
知佐 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2006248917A priority Critical patent/JP4720692B2/en
Publication of JP2008071917A publication Critical patent/JP2008071917A/en
Application granted granted Critical
Publication of JP4720692B2 publication Critical patent/JP4720692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor-phase epitaxial growth susceptor capable of improving an epitaxial layer located on the peripheral part of a substrate in the uniformity of a thickness and flatness and manufacturing an epitaxial wafer of high quality with a high yield. <P>SOLUTION: The vapor-phase epitaxial growth susceptor is provided with one or more countersinks where substrates are obliquely placed and supported by their lower ends. The vapor-phase epitaxial growth susceptor is characterized in that the countersink becomes gradually deeper from the upstream to the downstream side of a material gas which is supplied at vapor-phase epitaxial growth. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主にエピタキシャルウエーハの製造に使用される気相成長用サセプタ及びこれを備える気相成長装置及びこれを用いた気相成長方法に関し、詳しくは対象となる基板の外周部付近でのエピタキシャル層膜厚の均一性及びフラットネスの均一性改善のための気相成長用サセプタ及びこれを備える気相成長装置及び気相成長方法に関する。   The present invention relates to a susceptor for vapor phase growth mainly used for manufacturing an epitaxial wafer, a vapor phase growth apparatus including the susceptor, and a vapor phase growth method using the susceptor, and more specifically, in the vicinity of an outer peripheral portion of a target substrate. The present invention relates to a susceptor for vapor phase growth for improving uniformity of epitaxial layer thickness and flatness, a vapor phase growth apparatus including the same, and a vapor phase growth method.

気相エピタキシャル成長技術は、バイポーラトランジスタやMOSLSI等の集積回路の製造に用いられる単結晶薄膜層を気相成長させる技術であり、清浄な半導体単結晶基板上に基板の結晶方位に合せて均一な単結晶薄膜を成長させたり、ドーパント濃度差が大きい接合の急峻な不純物濃度勾配を形成することができるので、極めて重要な技術である。
気相エピタキシャル成長装置としては、縦型(パンケーキ型)、バレル型(シリンダー型)、さらに横型の3種類が一般的である。これらの成長装置の基本的な原理は共通している。
Vapor phase epitaxial growth technology is a technology for vapor phase growth of a single crystal thin film layer used in the manufacture of integrated circuits such as bipolar transistors and MOSLSIs. A uniform single crystal layer is formed on a clean semiconductor single crystal substrate in accordance with the crystal orientation of the substrate. This is an extremely important technique because a crystal thin film can be grown and a steep impurity concentration gradient of a junction having a large dopant concentration difference can be formed.
As the vapor phase epitaxial growth apparatus, three types are generally used: a vertical type (pancake type), a barrel type (cylinder type), and a horizontal type. The basic principle of these growth apparatuses is common.

図7は、気相成長装置の一例を示す断面概略模式図である。このバレル型気相成長装置においては、逆釣鐘状に固定されたベルジャ1内に、サセプタ2が吊り下げられたシールプレート8を載せることで反応室9が形成される。この反応室9内には、半導体基板(ウエーハ)を側面に載置する多角柱型のサセプタ2が鉛直方向からやや傾けられて配置され、反応室外部にはウエーハを加熱するためのランプ3が設置されている。気相成長の際には、サセプタの側面に設けられた円形の凹部であるザグリ4にウエーハを載置し、原料ガスをガス導入口5より供給し、ジェット6に設けられた噴出孔から噴出して反応室9に導入し、ガス排出口7から排出する。このとき、ウエーハはランプにより加熱されているので、ウエーハ上に噴出された原料ガスはウエーハ表面で反応し、ウエーハ表面に薄膜のエピタキシャル層(エピ層)を気相成長させることができる。   FIG. 7 is a schematic cross-sectional view showing an example of a vapor phase growth apparatus. In this barrel type vapor phase growth apparatus, a reaction chamber 9 is formed by placing a seal plate 8 on which a susceptor 2 is suspended in a bell jar 1 fixed in an inverted bell shape. In this reaction chamber 9, a polygonal column type susceptor 2 for placing a semiconductor substrate (wafer) on the side surface is disposed slightly tilted from the vertical direction, and a lamp 3 for heating the wafer is provided outside the reaction chamber. is set up. During vapor phase growth, a wafer is placed on a counterbore 4 that is a circular recess provided on the side surface of the susceptor, a raw material gas is supplied from the gas inlet 5, and is ejected from an ejection hole provided in the jet 6. Then, it is introduced into the reaction chamber 9 and discharged from the gas discharge port 7. At this time, since the wafer is heated by the lamp, the source gas ejected on the wafer reacts on the wafer surface, and a thin film epitaxial layer (epilayer) can be vapor-phase grown on the wafer surface.

また、横型気相成長装置の一種として枚葉式装置がある。この装置は、横型の加熱炉内に配置された水平円盤型のサセプタの上にウエーハを載置し、これを垂直軸まわりに回転させながら、炉内水平方向に原料ガスを流通させることにより、ウエーハ表面にエピタキシャル層を形成するものである。このような装置は、ウエーハの大直径化と共に多用されるようになり、直径300mmのウエーハに対応できる装置としても主流と目されている。   One type of horizontal vapor phase growth apparatus is a single wafer type apparatus. In this apparatus, a wafer is placed on a horizontal disk-type susceptor disposed in a horizontal heating furnace, and the raw material gas is circulated in the horizontal direction in the furnace while rotating it around the vertical axis. An epitaxial layer is formed on the wafer surface. Such an apparatus has been widely used as the diameter of the wafer increases, and is regarded as the mainstream as an apparatus capable of handling a wafer having a diameter of 300 mm.

これらの気相成長装置では、エピタキシャル層を成長させる基板の上面にのみ原料ガスを接触させることを目的として、基板を収容する円形の凹部がサセプタの上面に設けられる。そして、ザグリと呼ばれるこの凹部内に基板を収容してエピタキシャル層の成長を行う。図6は、このようなザグリの一例を示す断面概略図である。   In these vapor phase growth apparatuses, a circular recess for accommodating the substrate is provided on the upper surface of the susceptor for the purpose of bringing the source gas into contact only with the upper surface of the substrate on which the epitaxial layer is grown. Then, the epitaxial layer is grown by accommodating the substrate in this recess called counterbore. FIG. 6 is a schematic cross-sectional view showing an example of such counterbore.

特にバレル型気相成長装置では、サセプタ側面に形成されたザグリ4に基板を載置し、反応中基板が落下しないようにする必要があるため、ザグリの深さdは一定で基板の厚みに比べて深くなっている。ザグリ深さdが基板厚より浅いと、ザグリから落下しやすくなってしまう為である。   In particular, in the barrel type vapor phase growth apparatus, since it is necessary to place the substrate on the counterbore 4 formed on the side surface of the susceptor so that the substrate does not fall during the reaction, the counterbore depth d is constant and the substrate thickness is kept constant. It is deeper than that. This is because if the counterbore depth d is shallower than the substrate thickness, it will be easy to drop from the counterbore.

ところで、このような気相成長装置内での原料ガスの流れ方向は、エピタキシャル層の均一性に対する影響が非常に大きい。
一つ目の影響は、原料ガスの上流側から下流側に向かってエピタキシャル層の堆積速度が小さくなることである。これは、上流側で原料ガス中のSi等の原料の消費が起き、下流側に向かって原料ガスの濃度が下がる為に起きる。
By the way, the flow direction of the source gas in such a vapor phase growth apparatus has a great influence on the uniformity of the epitaxial layer.
The first effect is that the deposition rate of the epitaxial layer decreases from the upstream side to the downstream side of the source gas. This occurs because the raw material such as Si in the raw material gas is consumed on the upstream side and the concentration of the raw material gas decreases toward the downstream side.

この対策として、枚葉式装置の場合、基板自体を自転させることで、原料ガスの上流、下流の影響をなくし、エピタキシャル層の膜厚均一性の向上を図っている。
また、バレル型気相成長装置(バレル型気相反応器)では、図7に示すように、ベルジャ1の内壁面に対しサセプタ2の側面を傾斜させ、原料ガスの上流側より下流側の空間を狭くして下流側での原料ガスの線速を大きくすることで、原料ガスの濃度が下がっても、下流側でのエピタキシャル層の堆積速度が落ちにくいようにしている。
As a countermeasure, in the case of a single wafer type apparatus, by rotating the substrate itself, the upstream and downstream influences of the source gas are eliminated, and the film thickness uniformity of the epitaxial layer is improved.
Further, in the barrel type vapor phase growth apparatus (barrel type gas phase reactor), as shown in FIG. 7, the side surface of the susceptor 2 is inclined with respect to the inner wall surface of the bell jar 1 so that the space downstream from the upstream side of the source gas. Is narrowed to increase the linear velocity of the source gas on the downstream side, so that the deposition rate of the epitaxial layer on the downstream side is not easily lowered even if the concentration of the source gas is lowered.

二つ目の影響は、基板の外周部(エッジ)近傍での膜厚変化である。図8に示すように、上流側においては、原料ガスはサセプタ2上を通過し、ザグリ4の縁部を経由して基板10の外周部に供給される。一方、下流側では基板10の上を通過し、そのまま基板10の外周部に供給され、その後ザグリ4の縁部へぬけるといった流れになる。前述のように、バレル型気相成長装置では基板がサセプタから落下しないように、ザグリ深さが比較的深くなっている。そのため、上流側での原料ガスの流れの場合、サセプタ上面と基板との間に出来た隙間がよどみ域となってガスが滞留し、エピタキシャル層の堆積が滞ってしまう。その結果、基板の外周部付近でエピタキシャル層の厚み(エピ膜厚)が薄くなってしまう。一方、下流側ではこのような滞留は起きない為、エピタキシャル層の薄膜化は起きない。結果として、上流側の基板外周部ではエピ膜厚が薄く、下流側では上流側に比べてエピ膜厚が厚くなる、といった基板外周部の円周方向での膜厚不均一が発生してしまう。   The second effect is a change in film thickness in the vicinity of the outer peripheral portion (edge) of the substrate. As shown in FIG. 8, on the upstream side, the source gas passes over the susceptor 2 and is supplied to the outer peripheral portion of the substrate 10 via the edge portion of the counterbore 4. On the other hand, on the downstream side, it passes over the substrate 10, is supplied as it is to the outer peripheral portion of the substrate 10, and then flows to the edge of the counterbore 4. As described above, in the barrel type vapor phase growth apparatus, the counterbore depth is relatively deep so that the substrate does not fall from the susceptor. Therefore, in the case of the source gas flow on the upstream side, the gap formed between the upper surface of the susceptor and the substrate becomes a stagnation region, the gas stays, and the deposition of the epitaxial layer is delayed. As a result, the thickness (epi film thickness) of the epitaxial layer becomes thin near the outer periphery of the substrate. On the other hand, since such stagnation does not occur on the downstream side, the epitaxial layer is not thinned. As a result, the film thickness non-uniformity in the circumferential direction of the substrate outer peripheral portion occurs such that the epi film thickness is thin at the upstream substrate outer periphery and the epi film thickness is thicker at the downstream compared to the upstream side. .

枚葉式装置の場合、前述の基板の自転により、この二つ目の影響についても原料ガスの上流、下流の影響をなくし、エピタキシャル層の膜厚均一性の向上を図っている。
しかし、バレル型気相成長装置の場合は、一つ目の影響のような比較的広範囲にわたるエピ層堆積速度の変化については、サセプタとベルジャ内壁の距離を最適化することで抑えることが出来るが、二つ目の影響のような基板外周部付近といった局所的な堆積速度変化についてはこの方法では改善することができなかった。
従来、この問題を解決するために、いくつかの方法が提案されてきたが(例えば、特許文献1参照)、十分ではなく、未だ改良の余地があった。
In the case of a single wafer type apparatus, the substrate rotation described above eliminates the upstream and downstream influences of the source gas for the second influence, thereby improving the film thickness uniformity of the epitaxial layer.
However, in the case of a barrel-type vapor phase growth apparatus, changes in the epilayer deposition rate over a relatively wide range such as the first effect can be suppressed by optimizing the distance between the susceptor and the inner wall of the bell jar. However, this method could not improve the local deposition rate change in the vicinity of the outer periphery of the substrate as in the second effect.
Conventionally, several methods have been proposed to solve this problem (see, for example, Patent Document 1), but this is not sufficient and there is still room for improvement.

特開2003−12397号公報Japanese Patent Laid-Open No. 2003-12397

本発明は、このような問題に鑑みてなされたもので、基板外周部でのエピタキシャル層の膜厚の均一性、及びフラットネスの均一性を向上し、高品質のエピタキシャルウエーハを歩留り良く生産できる気相成長用サセプタ及び気相成長装置及び気相成長方法を提供することを目的とする。   The present invention has been made in view of such problems, and can improve the uniformity of the thickness of the epitaxial layer and the uniformity of the flatness at the outer peripheral portion of the substrate, and can produce a high-quality epitaxial wafer with a high yield. It is an object of the present invention to provide a vapor phase susceptor, a vapor phase growth apparatus, and a vapor phase growth method.

上記目的を達成するため、本発明は、基板を傾斜させて載置して下端にて支持する1つ以上のザグリを形成した気相成長用サセプタであって、該サセプタのザグリは、気相成長時に供給する原料ガスの上流側から下流側の方向に向かって深さが増すものであることを特徴とする気相成長用サセプタを提供する(請求項1)。   In order to achieve the above object, the present invention provides a vapor phase growth susceptor in which one or more counterbore is formed by placing a substrate on an inclined surface and supporting it at the lower end. A vapor phase growth susceptor characterized in that the depth increases in the direction from the upstream side to the downstream side of the raw material gas supplied during the growth (claim 1).

このように、本発明の気相成長用サセプタに形成するザグリは、気相成長時に供給する原料ガスの上流側から下流側の方向に向かって深さが増すものである。気相成長時に、このような本発明の気相成長用サセプタを用いることで、基板外周部でのエピタキシャル層の膜厚の均一性、及びフラットネスの均一性を向上し、高品質のエピタキシャルウエーハを歩留り良く生産できる。   Thus, the counterbore formed in the susceptor for vapor phase growth of the present invention has a depth that increases from the upstream side to the downstream side of the source gas supplied during the vapor phase growth. By using such a vapor phase growth susceptor of the present invention during vapor phase growth, the uniformity of the thickness of the epitaxial layer and the uniformity of the flatness at the outer periphery of the substrate are improved, and a high quality epitaxial wafer is obtained. Can be produced with good yield.

また、本発明は、少なくとも、前記本発明の気相成長用サセプタと、該サセプタを収容する反応室と、基板を加熱するための熱源と、反応室内に原料ガスを導入するためのガス導入口と、反応室から原料ガスを排出するためのガス排出口を具備するものであることを特徴とする気相成長装置を提供する(請求項2)。   Further, the present invention provides at least the susceptor for vapor phase growth according to the present invention, a reaction chamber for housing the susceptor, a heat source for heating the substrate, and a gas inlet for introducing a source gas into the reaction chamber. And a gas phase growth apparatus comprising a gas discharge port for discharging the source gas from the reaction chamber (claim 2).

このように本発明の気相成長用サセプタを具備する気相成長装置を用いることで、基板外周部でのエピタキシャル層の膜厚の均一性、及びフラットネスの均一性を向上し、高品質のエピタキシャルウエーハを歩留り良く生産できる。   As described above, by using the vapor phase growth apparatus including the vapor phase growth susceptor of the present invention, the uniformity of the thickness of the epitaxial layer and the uniformity of the flatness at the outer peripheral portion of the substrate are improved, and the high quality is achieved. Epitaxial wafers can be produced with good yield.

また、本発明は、基板上にエピタキシャル層を気相成長させる方法であって、少なくとも、基板を、前記本発明のサセプタに載置し、該載置した基板を加熱しつつ原料ガスを供給することで、基板にエピタキシャル層を気相成長させることを特徴とする気相成長方法を提供する(請求項3)。   The present invention is also a method for vapor-phase epitaxial layer growth on a substrate, wherein at least the substrate is placed on the susceptor of the present invention, and a source gas is supplied while heating the placed substrate. Thus, a vapor phase growth method characterized in that an epitaxial layer is vapor grown on a substrate is provided.

このように基板を前記本発明のサセプタに載置して、基板にエピタキシャル層を気相成長させるようにすれば、基板外周部でのエピタキシャル層の膜厚の均一性、及びフラットネスの均一性を向上し、高品質のエピタキシャルウエーハを歩留り良く生産できる。   If the substrate is thus placed on the susceptor of the present invention and the epitaxial layer is vapor-phase grown on the substrate, the uniformity of the thickness of the epitaxial layer and the uniformity of the flatness at the outer periphery of the substrate. And can produce high-quality epitaxial wafers with good yield.

以上説明したように、気相成長時に、本発明の気相成長用サセプタを用いることで、基板外周部でのエピタキシャル層の膜厚の均一性、及びフラットネスの均一性を向上し、高品質のエピタキシャルウエーハを歩留り良く生産できる。   As described above, by using the susceptor for vapor phase growth of the present invention at the time of vapor phase growth, the uniformity of the thickness of the epitaxial layer and the uniformity of flatness at the outer peripheral portion of the substrate are improved, and high quality is achieved. Epitaxial wafers can be produced with good yield.

以下、本発明について詳述する。
前述のように、バレル型気相成長装置の場合、ザグリの原料ガス上流側では、サセプタ上面と基板との間に出来た隙間(段差部)がよどみ域となってガスが滞留し、エピタキシャル層の堆積が滞ってしまい、その結果、原料ガス上流側の基板外周部付近ではエピタキシャル層の厚みが、他の部分と比べて薄くなってしまうという問題があった。
Hereinafter, the present invention will be described in detail.
As described above, in the case of the barrel type vapor phase growth apparatus, on the upstream side of the counterbore source gas, a gap (stepped portion) formed between the upper surface of the susceptor and the substrate becomes a stagnation region and the gas stays, and the epitaxial layer As a result, there is a problem that the thickness of the epitaxial layer becomes thinner in the vicinity of the outer peripheral portion of the substrate on the upstream side of the source gas as compared with other portions.

そこで、本発明者らは、この基板外周部での膜厚不均一の発生を効果的に防止すべく、鋭意検討を行ったところ、原料ガス上流側では、ザグリの深さを浅くし、基板外周部付近での原料ガスのよどみ域をなくすことでエピ膜堆積速度の低下、すなわちエピ膜厚の薄膜化を抑えることができることを見出した。一方、原料ガス下流側では、気相成長時に基板が落下しないようにある程度ザグリの深さを深くしておく必要がある。そこで、本発明者らは、これら両者を合わせ、図6の従来のザグリ4のように、原料ガス上流側と下流側のザグリの深さdを同じにするのではなく、原料ガス上流側のザグリの深さを原料ガス下流側に比較して浅くすることで、基板円周方向に沿った外周部での膜厚不均一の発生を効果的に防止でき、かつ、基板の落下などのトラブルも抑えることができることに想到し、本発明を完成させた。   Therefore, the present inventors have intensively studied in order to effectively prevent the occurrence of non-uniform film thickness at the outer peripheral portion of the substrate. On the upstream side of the source gas, the depth of the counterbore is reduced, and the substrate It has been found that by eliminating the stagnation region of the source gas in the vicinity of the outer peripheral portion, it is possible to suppress the reduction of the epi film deposition rate, that is, the reduction of the epi film thickness. On the other hand, on the downstream side of the source gas, it is necessary to deepen the counterbore to some extent so that the substrate does not fall during vapor phase growth. Therefore, the present inventors combine these two, and do not make the depth d of the counterbore upstream and downstream of the source gas the same as in the conventional counterbore 4 in FIG. By making the depth of the counterbore shallow compared to the downstream side of the source gas, it is possible to effectively prevent the occurrence of non-uniform film thickness at the outer periphery along the circumferential direction of the substrate, and troubles such as falling of the substrate. As a result, the present invention has been completed.

以下では、本発明の実施の形態について、添付した図面に基づいて具体的に説明するが、本発明はこれに限定されるものではない。
図1は、本発明による気相成長用サセプタの一例を示す説明図であり、図2は、該サセプタのザグリ部分を拡大した断面概略図である。
図1のサセプタ2は、5角柱型であり、各側面に3つずつ、ザグリ4が形成されている。そして、気相成長時には、原料ガスが、サセプタ2の側面に沿って、上流から下流に向って流れる。また、サセプタ2のザグリ4は、基板を傾斜させて載置して下端にて支持するものであり、図2に示すように、気相成長時に供給する原料ガスの上流側から下流側の方向に向かって深さが漸増するものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited thereto.
FIG. 1 is an explanatory view showing an example of a susceptor for vapor phase growth according to the present invention, and FIG. 2 is an enlarged schematic sectional view of a counterbore portion of the susceptor.
The susceptor 2 shown in FIG. 1 is a pentagonal column type, and three counterbores 4 are formed on each side surface. At the time of vapor phase growth, the source gas flows from the upstream toward the downstream along the side surface of the susceptor 2. Further, the counterbore 4 of the susceptor 2 is placed with the substrate inclined and supported at the lower end, and as shown in FIG. 2, the direction from the upstream side to the downstream side of the source gas supplied during vapor phase growth is shown. The depth gradually increases toward the.

このように、原料ガス上流側ではサセプタのザグリの深さd1を浅くし、基板外周部付近での原料ガスのよどみ域をなくすことでエピ膜堆積速度の低下、すなわちエピ膜厚の薄膜化を抑えることが可能となる。よって、このようなザグリを形成した気相成長用サセプタを用いることで、従来よりエピ膜厚均一性の高いエピタキシャルウエーハを生産性良く提供することができる。一方、原料ガス下流側では、原料ガス上流側よりザグリの深さd2を深くすることで気相成長時の基板の落下を防止できるので、落下によるウエーハ破損などのトラブルや歩留りの低下を防止でき、さらには、基板仕込時の仕込みやすさも確保されるため、気相成長を生産性良く行うこともできる。
サセプタ全体の形状は例えば5角柱型のような多角柱型であるが特に限定されず、形成されるザグリは1つ又はそれ以上とできる。ザグリの直径、深さ等は載置するウエーハのサイズに合わせて適宜選択することができる。
また、d2/d1が、1.2〜3.0の範囲になるように、ザグリを形成するのが好ましい。d2/d1が、この範囲であれば、気相成長中にウエーハが落下することもなく、エピ膜厚均一性の高いエピタキシャルウエーハをより確実に製造することができる。
Thus, the depth d1 of the counterbore of the susceptor is made shallower on the upstream side of the source gas, and the stagnation region of the source gas near the outer periphery of the substrate is eliminated, thereby reducing the epi film deposition rate, that is, reducing the epi film thickness. It becomes possible to suppress. Therefore, by using the susceptor for vapor phase growth in which such counterbore is formed, it is possible to provide an epitaxial wafer with higher epitaxial film thickness uniformity than in the past with high productivity. On the other hand, on the downstream side of the raw material gas, the depth d2 of the counterbore is deeper than that on the upstream side of the raw material gas, so that the substrate can be prevented from dropping during vapor phase growth. Furthermore, since the ease of preparation at the time of substrate preparation is ensured, vapor phase growth can also be performed with high productivity.
The overall shape of the susceptor is, for example, a polygonal column type such as a pentagonal column type, but is not particularly limited, and one or more counterbore can be formed. The diameter and depth of the counterbore can be appropriately selected according to the size of the wafer to be placed.
Moreover, it is preferable to form the counterbore so that d2 / d1 is in the range of 1.2 to 3.0. If d2 / d1 is within this range, the wafer does not fall during vapor phase growth, and an epitaxial wafer with high epitaxial film thickness uniformity can be more reliably manufactured.

本発明のサセプタを設置することが可能な気相成長装置は、図7のようなサセプタのザグリ以外は従来と同様なものを適用できる。このバレル型気相成長装置においては、逆釣鐘状に固定されたベルジャ1内に、気相成長用サセプタ2が吊り下げられたシールプレート8を載せることで、サセプタ2を収容する反応室9が形成される。反応室9の外側に基板を加熱するための熱源としてランプ3が設置されている。さらに、この気相成長装置は、反応室内に原料ガスを導入するためのガス導入口5と、反応室から原料ガスを排出するためのガス排出口7を具備する。   As the vapor phase growth apparatus in which the susceptor of the present invention can be installed, the same apparatus as the conventional one can be applied except for the counterbore of the susceptor as shown in FIG. In this barrel type vapor phase growth apparatus, a reaction chamber 9 for accommodating the susceptor 2 is provided by placing a seal plate 8 on which a susceptor 2 for vapor phase growth is suspended in a bell jar 1 fixed in an inverted bell shape. It is formed. A lamp 3 is installed outside the reaction chamber 9 as a heat source for heating the substrate. The vapor phase growth apparatus further includes a gas inlet 5 for introducing a source gas into the reaction chamber and a gas outlet 7 for discharging the source gas from the reaction chamber.

本発明の気相成長装置に設置されるサセプタ2は、前記本発明のサセプタであり、例えば図2に示すザグリを一つ以上形成したサセプタを用いることができる。本発明に従うサセプタを備える気相成長装置を用いることで、基板外周部でのエピ膜厚均一性に優れたエピタキシャルウエーハを歩留り良く製造することができる。   The susceptor 2 installed in the vapor phase growth apparatus of the present invention is the susceptor of the present invention. For example, a susceptor in which one or more counterbore shown in FIG. 2 is formed can be used. By using a vapor phase growth apparatus including a susceptor according to the present invention, an epitaxial wafer excellent in epitaxial film thickness uniformity at the outer peripheral portion of the substrate can be manufactured with a high yield.

次に、基板表面に薄膜を気相成長させる本発明の気相成長方法について、図7のような装置に、本発明のサセプタを具備する気相成長装置を用いる場合を例に挙げて説明する。
まず、基板を、サセプタ2に載置する。そして、載置した基板をランプ3で加熱しつつ、原料ガスをガス導入口5より供給し、ジェット6と呼ばれるガス噴出孔から噴出して反応室に導入し、ガス排出口7から排出する。このとき、基板は、ランプ3により加熱されているので、噴出された原料ガスは基板表面で反応し、基板表面に薄膜のエピタキシャル層を気相成長させることができる。
Next, the vapor phase growth method of the present invention for vapor-depositing a thin film on the surface of the substrate will be described by taking as an example the case where the vapor phase growth apparatus having the susceptor of the present invention is used in the apparatus as shown in FIG. .
First, the substrate is placed on the susceptor 2. Then, while heating the mounted substrate with the lamp 3, the source gas is supplied from the gas introduction port 5, ejected from a gas ejection hole called a jet 6, introduced into the reaction chamber, and discharged from the gas exhaust port 7. At this time, since the substrate is heated by the lamp 3, the ejected raw material gas reacts on the substrate surface, and a thin film epitaxial layer can be vapor-phase grown on the substrate surface.

このとき、上流側ではザグリ深さを浅くし、基板外周部付近での原料ガスのよどみ域をなくすことでその部分でのエピ膜堆積速度の低下、すなわちエピ膜厚の薄膜化を抑えることが可能となり、従来よりエピ膜厚均一性の高いエピタキシャルウエーハを歩留り良く提供できる。一方、下流側では、上流よりザグリ深さを深くすることでエピ反応時の基板の落下を防止できるので、落下による基板破損などの歩留り低下を防止でき、さらには基板仕込時の仕込みやすさも確保されるため、気相成長を生産性高く行うことができる。   At this time, the counterbore depth is made shallower on the upstream side, and the stagnation region of the source gas in the vicinity of the outer periphery of the substrate is eliminated, thereby suppressing the reduction in the epi film deposition rate in that part, that is, the reduction in the epi film thickness. Therefore, an epitaxial wafer having a higher uniformity of epitaxial film thickness can be provided with a higher yield. On the other hand, on the downstream side, the counterbore can be prevented from dropping during the epi-reaction by increasing the counterbore depth from the upstream, so it is possible to prevent yield loss such as substrate breakage due to dropping, and also to ensure ease of loading during board loading. Therefore, vapor phase growth can be performed with high productivity.

なお、本発明の気相成長用サセプタに載置してエピタキシャル層を気相成長させる基板としては、例えばシリコンウエーハを挙げることができるが、化合物半導体等の他の半導体ウエーハ等でもよく、特に限定はされない。
また、気相成長させるエピタキシャル層(薄膜)としては、例えばシリコン薄膜を挙げることができるが、原料ガスを適宜選択することによりSi−Ge等の他の半導体薄膜を気相成長させても良く、特に限定されない。
In addition, examples of the substrate on which the epitaxial layer is vapor-grown by being placed on the susceptor for vapor-phase growth of the present invention include a silicon wafer, but other semiconductor wafers such as a compound semiconductor may be used, and the substrate is particularly limited. Not done.
Moreover, as an epitaxial layer (thin film) to be vapor-phase grown, for example, a silicon thin film can be exemplified, but other semiconductor thin films such as Si-Ge may be vapor-grown by appropriately selecting a source gas, There is no particular limitation.

以下、本発明を、実施例及び比較例を示してさらに詳細に説明するが、本発明がこれに限定されないことは言うまでもない。
(実施例1、比較例1〜3)
図7に示すバレル型の気相成長装置を用いた。
先ず、シリコンウエーハを、気相成長用サセプタに載置、すなわち、気相成長用サセプタのザグリに収容した。そして、載置したシリコンウエーハを加熱しつつ原料ガスを供給することで、直径200mm、厚さ525μmのシリコンウエーハにエピタキシャル層(シリコン薄膜)を気相成長させた。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further in detail, it cannot be overemphasized that this invention is not limited to this.
(Example 1, Comparative Examples 1-3)
A barrel type vapor phase growth apparatus shown in FIG. 7 was used.
First, the silicon wafer was placed on a vapor phase growth susceptor, that is, housed in a counterbore of the vapor phase growth susceptor. Then, an epitaxial layer (silicon thin film) was vapor-phase grown on a silicon wafer having a diameter of 200 mm and a thickness of 525 μm by supplying a raw material gas while heating the mounted silicon wafer.

このとき、気相成長用サセプタとして、次の4種類のサセプタを用いた。
(1) 原料ガスの上流側から下流側の方向に向って深さが漸増するように形成されたザグリを備え、ザグリの深さは、原料ガス上流側が0.8mm、原料ガス下流側が1.2mmであるもの(実施例1)。
(2) 原料ガスの上流側から下流側の方向に向って深さが一定になるように形成されたザグリを備え、ザグリの深さは、原料ガス上流側も、原料ガス下流側も1.5mmであるもの(比較例1)。
(3) 原料ガスの上流側から下流側の方向に向って深さが一定になるように形成されたザグリを備え、ザグリの深さは、原料ガス上流側も、原料ガス下流側も1.0mmであるもの(比較例2)。
(4) 原料ガスの上流側から下流側の方向に向って深さが一定になるように形成されたザグリを備え、ザグリの深さは、原料ガス上流側も、原料ガス下流側も0.8mmであるもの(比較例3)。
At this time, the following four types of susceptors were used as susceptors for vapor phase growth.
(1) A counterbore formed so that the depth gradually increases from the upstream side to the downstream side of the raw material gas. The counterbore depth is 0.8 mm on the upstream side of the raw material gas and 1.2 mm on the downstream side of the raw material gas. Some (Example 1).
(2) A counterbore formed so as to have a constant depth from the upstream side to the downstream side of the raw material gas, and the depth of the counterbore is 1.5 mm both on the upstream side of the raw material gas and on the downstream side of the raw material gas. (Comparative Example 1).
(3) A counterbore formed so as to have a constant depth from the upstream side to the downstream side of the raw material gas, and the depth of the counterbore is 1.0 mm on both the upstream side and downstream side of the raw material gas. (Comparative Example 2).
(4) A counterbore formed so as to have a constant depth from the upstream side to the downstream side of the raw material gas, and the depth of the counterbore is 0.8 mm on both the upstream side and downstream side of the raw material gas. (Comparative Example 3).

また、反応ガス(原料ガス)としてSiHClを用い、成長速度を1.5μm/min、反応温度を1050℃、成長膜厚を50μmとした。 Further, SiHCl 3 was used as a reaction gas (raw material gas), the growth rate was 1.5 μm / min, the reaction temperature was 1050 ° C., and the growth film thickness was 50 μm.

そして、上記各実施例、比較例において、それぞれ30枚のウエーハにエピタキシャル成長を行った。
尚、このようにエピタキシャル層を気相成長させた後のウエーハについてフラットネス測定を行い、図3に示した各セルでのフラットネス(LTV)の平均をそれぞれ上流側外周フラットネス、下流側外周フラットネスとした。気相成長前のシリコンウエーハのフラットネスは極めて良好なので、気相成長後のフラットネスはエピタキシャル層の膜厚のバラツキによるものであると考え、前記上流側外周フラットネス、下流側外周フラットネスよりウエーハ外周部の膜厚均一性の評価を行った。
In each of the above examples and comparative examples, epitaxial growth was performed on 30 wafers.
In addition, flatness measurement is performed on the wafer after the vapor phase growth of the epitaxial layer in this way, and the average flatness (LTV) in each cell shown in FIG. Flatness was assumed. Since the flatness of the silicon wafer before the vapor phase growth is very good, the flatness after the vapor phase growth is considered to be due to the variation in the thickness of the epitaxial layer. The film thickness uniformity of the outer periphery of the wafer was evaluated.

図5は、比較例1〜3の気相成長用サセプタを用いた時の上流側、下流側の外周フラットネスについて、ザグリ深さとの関係を示すグラフである。上流側、下流側ともにザグリ深さが浅くなるにつれて外周フラットネス値は小さくなりエピ膜厚均一性が良好になっていることを示している。また、いずれのザグリ深さにおいても、上流側のほうが外周フラットネス値は大きく、上流側と下流側との膜厚均一性が等しくないこともわかる。これは、前述のように上流側ではザグリ側壁とウエーハ外周部付近で原料ガスのよどみ域ができてしまいエピ膜の堆積が阻害される為である。このように、原料ガスの上流側と下流側でザグリ深さが同じである従来の気相成長用サセプタを使った気相成長装置では、上流側と下流側での外周フラットネス値の違い、すなわちエピ膜厚の均一性の悪化が起きていた。   FIG. 5 is a graph showing the relationship between the upstream flatness and the downstream peripheral flatness when using the vapor phase growth susceptors of Comparative Examples 1 to 3, and the counterbore depth. As the counterbore depth becomes shallower on both the upstream side and the downstream side, the outer peripheral flatness value decreases, indicating that the epitaxial film thickness uniformity is improved. It can also be seen that at any counterbore depth, the outer peripheral flatness value is larger on the upstream side, and the film thickness uniformity is not equal between the upstream side and the downstream side. This is because, as described above, on the upstream side, a stagnation region of the source gas is formed in the vicinity of the counterbore side wall and the outer periphery of the wafer, and the deposition of the epi film is inhibited. Thus, in the vapor phase growth apparatus using the conventional vapor phase growth susceptor having the same counterbore depth on the upstream side and downstream side of the source gas, the difference in the outer peripheral flatness value between the upstream side and the downstream side, That is, the uniformity of the epi film thickness was deteriorated.

一方、実施例1の気相成長用サセプタ(ザグリ深さ:上流側0.8mm、下流側1.2mm)を用いてエピタキシャル層を気相成長させた場合には、図4に示すとおり、原料ガスの上流側と原料ガスの下流側で同じ外周フラットネスレベルとなり、エピ膜厚の均一性が大幅に改善されているのがわかる。
尚、図4には、比較のため、比較例1の気相成長用サセプタ(ザグリ深さ:上流側、下流側共に1.5mm)を用いた場合の外周フラットネスレベルも併記した。
On the other hand, when the epitaxial layer is vapor-phase grown using the susceptor for vapor-phase growth of Example 1 (depth of counterbore: upstream 0.8 mm, downstream 1.2 mm), as shown in FIG. It can be seen that the outer peripheral flatness level is the same on the upstream side and the downstream side of the source gas, and the uniformity of the epi film thickness is greatly improved.
For comparison, FIG. 4 also shows the outer peripheral flatness level when the vapor phase growth susceptor of Comparative Example 1 (depth of counterbore: 1.5 mm on both upstream and downstream sides) is used.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であ
り、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様
な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

本発明に従う気相成長用サセプタを示す説明図である。It is explanatory drawing which shows the susceptor for vapor phase growth according to this invention. 本発明に従う気相成長用サセプタのザグリの断面概略説明図である。It is a cross-sectional schematic explanatory drawing of the counterbore of the susceptor for vapor phase growth according to this invention. フラットネス測定における上流側の外周フラットネスセルサイトと下流側の外周フラットネスセルサイトを示す図である。It is a figure which shows the outer periphery flatness cell site of an upstream in flatness measurement, and the outer periphery flatness cell site of a downstream. 実施例1及び比較例1において、上流側外周フラットネスと下流側外周フラットネスの比較を示す図である。In Example 1 and Comparative Example 1, it is a figure which shows the comparison of an upstream outer periphery flatness and a downstream outer periphery flatness. ザグリ深さと外周フラットネスの関係を示す図である(比較例1〜3)。It is a figure which shows the relationship between counterbore depth and outer periphery flatness (Comparative Examples 1-3). 従来の気相成長用サセプタのザグリの断面概略説明図である。It is a cross-sectional schematic explanatory drawing of the counterbore of the conventional vapor phase growth susceptor. 気相成長装置の一例を示す断面概略説明図である。It is a cross-sectional schematic explanatory drawing which shows an example of a vapor phase growth apparatus. 基板外周部付近での原料ガスの流れを示す模式図である。It is a schematic diagram which shows the flow of the source gas in the board | substrate outer peripheral part vicinity.

符号の説明Explanation of symbols

1…ベルジャ、 2…サセプタ、 3…ランプ、 4…ザグリ、 5…ガス導入口、
6…ジェット、 7…ガス排出口、 8…シールプレート、 9…反応室、
10…基板。
1 ... Berja, 2 ... Susceptor, 3 ... Lamp, 4 ... Counterbore, 5 ... Gas inlet,
6 ... jet, 7 ... gas outlet, 8 ... seal plate, 9 ... reaction chamber,
10: Substrate.

Claims (3)

基板を傾斜させて載置して下端にて支持する1つ以上のザグリを形成した気相成長用サセプタであって、該サセプタのザグリは、気相成長時に供給する原料ガスの上流側から下流側の方向に向かって深さが増すものであることを特徴とする気相成長用サセプタ。   1. A susceptor for vapor phase growth in which one or more counterbore is formed by tilting a substrate and supported at a lower end, the counterbore of the susceptor being downstream from an upstream side of a source gas supplied during vapor phase growth A susceptor for vapor phase growth characterized in that the depth increases toward the side. 少なくとも、請求項1に記載の気相成長用サセプタと、該サセプタを収容する反応室と、基板を加熱するための熱源と、反応室内に原料ガスを導入するためのガス導入口と、反応室から原料ガスを排出するためのガス排出口を具備するものであることを特徴とする気相成長装置。   The susceptor for vapor phase growth according to claim 1, a reaction chamber containing the susceptor, a heat source for heating the substrate, a gas inlet for introducing a source gas into the reaction chamber, and a reaction chamber A vapor phase growth apparatus comprising a gas discharge port for discharging a source gas from a gas. 基板上にエピタキシャル層を気相成長させる方法であって、少なくとも、基板を、請求項1に記載のサセプタに載置し、該載置した基板を加熱しつつ原料ガスを供給することで、基板にエピタキシャル層を気相成長させることを特徴とする気相成長方法。   A method for vapor phase growth of an epitaxial layer on a substrate, wherein at least the substrate is placed on the susceptor according to claim 1, and a source gas is supplied while heating the placed substrate. Vapor phase epitaxy of the epitaxial layer.
JP2006248917A 2006-09-14 2006-09-14 Vapor growth susceptor, vapor growth apparatus and vapor growth method Active JP4720692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248917A JP4720692B2 (en) 2006-09-14 2006-09-14 Vapor growth susceptor, vapor growth apparatus and vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248917A JP4720692B2 (en) 2006-09-14 2006-09-14 Vapor growth susceptor, vapor growth apparatus and vapor growth method

Publications (2)

Publication Number Publication Date
JP2008071917A true JP2008071917A (en) 2008-03-27
JP4720692B2 JP4720692B2 (en) 2011-07-13

Family

ID=39293260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248917A Active JP4720692B2 (en) 2006-09-14 2006-09-14 Vapor growth susceptor, vapor growth apparatus and vapor growth method

Country Status (1)

Country Link
JP (1) JP4720692B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433738A (en) * 1987-07-30 1989-02-03 Toshiba Corp Optical information recording medium
JPS6454723A (en) * 1987-08-26 1989-03-02 Sony Corp Vapor growth device
JPH01258417A (en) * 1988-04-08 1989-10-16 Mitsubishi Monsanto Chem Co Barrel type susceptor
JPH04354119A (en) * 1991-05-31 1992-12-08 Furukawa Electric Co Ltd:The Substrate retaining structure of vapor growth equipment
JPH05304101A (en) * 1992-04-27 1993-11-16 Furukawa Electric Co Ltd:The Vapor phase epitaxial growth system
JPH06151339A (en) * 1992-11-11 1994-05-31 Mitsubishi Electric Corp Apparatus and method for growth of semiconductor crystal
JP2004235439A (en) * 2003-01-30 2004-08-19 Shin Etsu Handotai Co Ltd Susceptor and vapor phase growth apparatus
JP2007294942A (en) * 2006-03-30 2007-11-08 Sumco Techxiv株式会社 Method of manufacturing epitaxial wafer and production apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433738A (en) * 1987-07-30 1989-02-03 Toshiba Corp Optical information recording medium
JPS6454723A (en) * 1987-08-26 1989-03-02 Sony Corp Vapor growth device
JPH01258417A (en) * 1988-04-08 1989-10-16 Mitsubishi Monsanto Chem Co Barrel type susceptor
JPH04354119A (en) * 1991-05-31 1992-12-08 Furukawa Electric Co Ltd:The Substrate retaining structure of vapor growth equipment
JPH05304101A (en) * 1992-04-27 1993-11-16 Furukawa Electric Co Ltd:The Vapor phase epitaxial growth system
JPH06151339A (en) * 1992-11-11 1994-05-31 Mitsubishi Electric Corp Apparatus and method for growth of semiconductor crystal
JP2004235439A (en) * 2003-01-30 2004-08-19 Shin Etsu Handotai Co Ltd Susceptor and vapor phase growth apparatus
JP2007294942A (en) * 2006-03-30 2007-11-08 Sumco Techxiv株式会社 Method of manufacturing epitaxial wafer and production apparatus

Also Published As

Publication number Publication date
JP4720692B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
KR940009995B1 (en) Method and apparatus of vapor phase growth on semiconductor wafers
US6596086B1 (en) Apparatus for thin film growth
KR101516164B1 (en) Susceptor for epitaxial growth
KR101650837B1 (en) Vapor phase growth apparatus
JP2004319623A (en) Susceptor and vapor phase growing apparatus
JP2010232624A (en) Vapor phase growth apparatus for group-iii nitride semiconductor
JP2013051290A (en) Susceptor, vapor phase growth device using susceptor, and manufacturing method of epitaxial wafer
US8038793B2 (en) Epitaxial growth method
JP7419779B2 (en) Susceptor and chemical vapor deposition equipment
JP5161748B2 (en) Vapor growth susceptor, vapor growth apparatus, and epitaxial wafer manufacturing method
JP2011165964A (en) Method of manufacturing semiconductor device
JP2016119472A (en) WAFER SUPPORT AND MANUFACTURING DEVICE OF SiC EPITAXIAL WAFER INCLUDING THE SAME, AND MANUFACTURING METHOD OF SiC EPITAXIAL WAFER
JP4984046B2 (en) Vapor growth susceptor, vapor growth apparatus, vapor growth susceptor design method and vapor growth method
JP5040333B2 (en) Vapor growth susceptor, vapor growth apparatus and vapor growth method
JP2009071210A (en) Susceptor and epitaxial growth system
US11692266B2 (en) SiC chemical vapor deposition apparatus
KR100568456B1 (en) Semiconductor manufacturing System and Wafer-Film manufacturing Method
JP2009064850A (en) Epitaxial growing apparatus and epitaxial growing method
JP4720692B2 (en) Vapor growth susceptor, vapor growth apparatus and vapor growth method
JP2012124476A (en) Vapor growth device and manufacturing method of epitaxial wafer
JP2011077476A (en) Susceptor for epitaxial growth
JP2007019350A (en) Epitaxial growth apparatus
JP2006351865A (en) Susceptor, apparatus and method for vapor phase epitaxy, and epitaxial wafer
KR101238842B1 (en) Susceptor for manufacturing semiconductor and apparatus comprising the same
JP2008071921A (en) Susceptor for vapor phase epitaxy, vapor phase epitaxial growth device, and vapor phase epitaxial growth method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4720692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250