JPH02203517A - Selective vapor-phase epitaxy of iii-v compound semiconductor - Google Patents

Selective vapor-phase epitaxy of iii-v compound semiconductor

Info

Publication number
JPH02203517A
JPH02203517A JP2078989A JP2078989A JPH02203517A JP H02203517 A JPH02203517 A JP H02203517A JP 2078989 A JP2078989 A JP 2078989A JP 2078989 A JP2078989 A JP 2078989A JP H02203517 A JPH02203517 A JP H02203517A
Authority
JP
Japan
Prior art keywords
growth
chamber
substrate
sample
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2078989A
Other languages
Japanese (ja)
Inventor
Haruo Sunakawa
晴夫 砂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2078989A priority Critical patent/JPH02203517A/en
Publication of JPH02203517A publication Critical patent/JPH02203517A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a monomolecular vapor growth on a substrate having openings with different widths by performing altenately a process of supplying a group III element material and hydrogen chloride simultaneously and a process of supplying a group V element material. CONSTITUTION:A substrate sample 14 having a mask of SiO2 partially opened is put within a growing chamber 13 and is heated to a predetermined temperature. Then, HCl is supplied over Ga 12 in a growing chamber 11 and GaCl thus produced is supplied together with HCl from a supply tube 18 so that a mixed atmosphere is established within the growing region. The sample 14 is transferred to the growing chamber 11 and exposed to the mixed atmosphere for a predetermined period of time. Then, the sample 14 is returned to the chamber 13 and AsH3 is supplied to form a GaAs layer in the openings. Thereafter, the chamber 13 is purged of AsH3. These procedures are repeated to grow the GaAs layer. In this manner, thickness per ALE cycle can be controlled by a unit of monomolecular layer in the selective growth on the substrate having openings with different widths.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、マスク開口部を有する基板上への選択気相エ
ピタキシャル成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of selective vapor phase epitaxial growth on a substrate having a mask opening.

[従来の技術およびその課題] ■−v族化合物半導体を用いたMESFET。[Conventional technology and its issues] ■-MESFET using a V group compound semiconductor.

2次元電子ガス(2DEG)FETでは、デバイスの高
性能化を目積した構造形成のため、FETのソース、ド
レイン領域に選択成長による高濃度n 層を形成するこ
とがしばしば行われている。
In a two-dimensional electron gas (2DEG) FET, in order to form a structure aimed at improving the performance of the device, a highly concentrated n layer is often formed in the source and drain regions of the FET by selective growth.

特に20EGFETでは、ヘテロ界面が劣化しや°すい
ため低温での選択成長が必要となる。この成長手法とし
て、従来、有機金属熱分解法(MOCvD)、ハロゲン
輸送気相成長法(VPE)等が広く用いられてきた。
In particular, in the case of 20EGFET, selective growth at low temperatures is required because the hetero interface is easily deteriorated. Conventionally, metal organic pyrolysis (MOCvD), halogen transport vapor phase epitaxy (VPE), etc. have been widely used as this growth method.

しかし、従来のMOCVD、VP、Eの成長手法は、成
長速度が選択成長領域の面積および開口部間の距離に大
きく依存し、成長速度を精密に制御することが難しいと
いう欠点を有すると共に、成長温度が高いことから、ヘ
テロ界面が劣化しやすいという欠点も有している。この
点、新しい成長手法であるA L E (Atomic
 Layer Epitaxy )の成長手法は、成長
温度を低温化できるという大きな長所を有している。ま
た、それ以上に単分子層単位の成長が可能であり、これ
を選択成長に応用できれば、極めて有力な手法となる。
However, the conventional MOCVD, VP, and E growth methods have the disadvantage that the growth rate largely depends on the area of the selective growth region and the distance between the openings, making it difficult to precisely control the growth rate. It also has the disadvantage that the heterointerface tends to deteriorate due to the high temperature. In this respect, ALE (Atomic
The growth method (Layer Epitaxy) has the great advantage of being able to lower the growth temperature. Furthermore, it is possible to grow monolayer units, and if this can be applied to selective growth, it will be an extremely powerful technique.

しかし、これまでに部分的に開口部を持つ基板上へのA
LE法による成長の報告はほとんどない。
However, until now, A
There are few reports of growth using the LE method.

そのため、次のような実験を行ってALE法によるGa
As選択成長の挙動を調べた。成長装置の概略構成図を
第4図に示す。図中、41は■族原料を供給する成長室
、43はV族原料を供給する成長室、42はガリウム、
44は試料である。成長手順としては、まず成長室41
に試料44を配置し、その基板領域にガリウム((3a
)42とHCfとが反応してできる塩化ガリウム(Ga
O2)を供給し、試料44上に吸着させる。ここで試料
44は第5図にその部分断面図を示すように、基板結晶
45上に、5102をマスク46とした開口部を有する
ものである。次に、試料44をヒ素(AS)の成長室4
3に移動する。そこで、ASH3を供給し、GaASを
形成する。この操作を繰り返し、第5図に示すようなG
aAS層47層形7した。
Therefore, we conducted the following experiments to evaluate Ga using the ALE method.
The behavior of As selective growth was investigated. A schematic diagram of the growth apparatus is shown in FIG. In the figure, 41 is a growth chamber that supplies group II raw materials, 43 is a growth chamber that supplies group V raw materials, 42 is gallium,
44 is a sample. The growth procedure begins with the growth chamber 41.
A sample 44 is placed in the substrate area, and gallium ((3a
) 42 and HCf, gallium chloride (Ga
O2) is supplied and adsorbed onto the sample 44. Here, the sample 44 has an opening on the substrate crystal 45 with 5102 as a mask 46, as shown in a partial cross-sectional view in FIG. Next, the sample 44 is placed in the arsenic (AS) growth chamber 4.
Move to 3. Therefore, ASH3 is supplied to form GaAS. Repeat this operation until the G
The aAS layer has 47 layers.

上記のような方法により、成長条例として基板温度45
0°C,GaC!供給時間10秒、ASH3供給時間1
0秒、ASH3ガスのパージ時間を25秒として実験を
行った。その結果、GaO2の成長室41でマスク46
領域にもGaO2が吸着し、マスク46領域に吸着した
GaO2が成長室43で脱離して開口部の成長速度の増
大をもたらし、1ALEサイクル当たりの成長膜厚は単
分子層より厚くなり、膜厚の制御が難しいことが分かっ
た。
By the method described above, the substrate temperature is 45% as a growth regulation.
0°C, GaC! Supply time 10 seconds, ASH3 supply time 1
The experiment was conducted with the ASH3 gas purge time set to 0 seconds and 25 seconds. As a result, a mask 46 is formed in the GaO2 growth chamber 41.
GaO2 is also adsorbed in the mask 46 region, and the GaO2 adsorbed in the mask 46 region is desorbed in the growth chamber 43, resulting in an increase in the growth rate of the opening, and the film thickness grown per one ALE cycle becomes thicker than a monomolecular layer. It turned out to be difficult to control.

本発明は以上述べたような従来の問題点を解決するため
になされたもので、ALE成長方法において、マスク開
口部を持つ基板上の開口部分の成長速度が、開口面積お
よび開口部間からの距離に影響されずに単分子層単位の
成長を行うことのできる手法を提供することを目的とす
る。
The present invention has been made to solve the conventional problems as described above, and in the ALE growth method, the growth rate of the opening portion on the substrate having mask openings is determined by the opening area and the distance between the openings. The purpose of this invention is to provide a method that allows growth in monolayer units without being affected by distance.

[課題を解決するための手段] 本発明は、マスク開口部を有する基板上への■−V族化
合物半導体の気相エピタキシャル成長方法において、■
族元素原料と塩化水素を同時に供給する工程と、V族元
素原料を供給する工程とを交互に行うことを特徴とする
■−v族化合物半導体の選択気相エピタキシャル成長方
法である。
[Means for Solving the Problems] The present invention provides a method for vapor phase epitaxial growth of a ■-V group compound semiconductor on a substrate having a mask opening.
(1) A selective vapor phase epitaxial growth method for group V compound semiconductors characterized in that a step of simultaneously supplying a group element raw material and hydrogen chloride and a step of supplying a group V element raw material are performed alternately.

[作用1 本発明によれば■族元素化合物の供給工程において、塩
化水素(HCf)を同時供給することにより、マスク上
への■族元素の塩化物の吸着が抑制され、あるいは−旦
吸着が起っても脱離することにより、結果的にマスク上
への■族元素塩化物の吸着が生じない。このため、開口
部を持つ基板上への選択成長における1ALEサイクル
当たりの膜厚を1分子層の単位で制御することができる
[Effect 1 According to the present invention, by simultaneously supplying hydrogen chloride (HCf) in the step of supplying the group (III) element compound, the adsorption of the chloride of the group (III) element onto the mask is suppressed, or the adsorption is temporarily prevented. Even if it occurs, it is desorbed, and as a result, adsorption of group (I) element chloride onto the mask does not occur. Therefore, the film thickness per one ALE cycle in selective growth on a substrate having an opening can be controlled in units of one molecular layer.

[実施例] 次に本発明の実施例について図面を参照して詳細に説明
する。
[Example] Next, an example of the present invention will be described in detail with reference to the drawings.

第1図は本実施例で使用したALE成長装置の概略構成
図であり、第2図は本実施例により得られた基板結晶の
部分断面図である。なお、本実施例では、■−v族化合
物半導体としてGaASをALE成長方法により成長さ
せる例を用いて説明する。
FIG. 1 is a schematic diagram of the ALE growth apparatus used in this example, and FIG. 2 is a partial cross-sectional view of a substrate crystal obtained in this example. In this embodiment, an example will be described in which GaAS is grown as a ■-v group compound semiconductor by the ALE growth method.

成長装置は、Ga原料を供給するための成長室11とA
S原料を供給するための成長室13とからなり、成長室
11には(3a原料12とHC1供給配管18が設置さ
れている。各成長室のキャリアガスとして水素(H2)
を用い、成長温度は400℃とした。
The growth apparatus includes a growth chamber 11 for supplying Ga raw material and A
The growth chamber 11 is equipped with a (3a raw material 12) and an HC1 supply pipe 18. Hydrogen (H2) is used as a carrier gas in each growth chamber.
was used, and the growth temperature was 400°C.

その他の成長条件は次の通りである。Other growth conditions are as follows.

HCffi  (Ga)       1  cc/m
tnA S H35cc/m1n HC!  (バイパス用>    8  cc/m1n
H2(各成長室)     4700  cc/min
開口部長さ        200  卯成長に際して
は、5i02をマスク16とし、部分的に開口部を持つ
基板結晶(試料)14をまず成長室13におき、所定の
温度まで昇温する。成長温度に達したところで、成長室
11の成長領域に、ガリウム(Ga)13上にHCff
iを供給して生成した反応生成物GaCf!と、Ga1
2にバイパスするHC2供給配管18からのHCfとを
供給し、成長領域をGaCff1とHC!混合雰囲気に
する。雰囲気が安定したところで試料14を成長室11
に移動する。約7秒間、試料14をこれらのガスにさら
したのち、試料14を成長室13に移動する。そこで、
A・SH3を約7秒間供給し、GaAS層を形成する。
HCffi (Ga) 1 cc/m
tnA S H35cc/m1n HC! (For bypass > 8 cc/m1n
H2 (each growth chamber) 4700 cc/min
Opening Length: 200 During growth, using 5i02 as a mask 16, a substrate crystal (sample) 14 having a partially opened portion is placed in the growth chamber 13 and heated to a predetermined temperature. When the growth temperature is reached, HCff is placed on the gallium (Ga) 13 in the growth region of the growth chamber 11.
The reaction product GaCf! produced by supplying i! and Ga1
2 is supplied with HCf from the bypass HC2 supply pipe 18, and the growth region is divided into GaCff1 and HC! Create a mixed atmosphere. Once the atmosphere has stabilized, sample 14 is transferred to growth chamber 11.
Move to. After exposing the sample 14 to these gases for about 7 seconds, the sample 14 is moved to the growth chamber 13. Therefore,
A.SH3 is supplied for about 7 seconds to form a GaAS layer.

次に、ASH3のパージを25秒間行う。この操作を繰
り返し、第2図に示すようなGaAs層17を成長した
Next, purge ASH3 for 25 seconds. This operation was repeated to grow a GaAs layer 17 as shown in FIG.

第3図に、上記の方法で幅の異なる開口部形成したGa
As層23の1ALEサイクル当たりの膜厚を示す。同
図から、開口部の幅に依らずに1サイクル当たり1分子
層成長が実現されていることが分かる。
Fig. 3 shows Ga with openings of different widths formed by the above method.
The film thickness of the As layer 23 per one ALE cycle is shown. It can be seen from the figure that growth of one molecular layer per cycle is achieved regardless of the width of the opening.

なお、本実施例では■族原料にGaCj!によるGaA
sALEの選択成長の場合を示したが、その他の■−v
族化合物半導体でも塩化物と塩化水素を同時に供給する
ことで、マスクの影響が減少した単分子層単位の選択成
長が得られる。
In addition, in this example, GaCj! is used as the group ■ raw material. GaA by
The case of selective growth of sALE is shown, but other ■-v
By simultaneously supplying chloride and hydrogen chloride even in the case of group compound semiconductors, selective growth in monolayer units with reduced mask influence can be achieved.

U発明の効果J 以上説明したように、本発明の選択気相エピタキシャル
成長方法を用いれば、幅の異なる種々の開口部を有する
基板上への選択成長において、どの開口部も1ALEサ
イクル当たり1分子層の単位で成長を制御性良く行うこ
とができる。
U Effect of the Invention J As explained above, if the selective vapor phase epitaxial growth method of the present invention is used, in selective growth on a substrate having various openings with different widths, each opening can be grown by one molecular layer per ALE cycle. Growth can be performed with good controllability in units of .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いられるALE成長装置
の概略構成図、第2図は選択成長により得られた基板結
晶の部分断面図、第3図は本発明の1実施例により得ら
れた開口部幅と1ALEサイクル当たりの膜厚との関係
を示す図、第4図は従来の選択成長層を形成するための
ALE成長装置の概略構成図、第5図は従来技術により
得られた基板結晶の部分断面図である。 11、41・・・■族元素原料を供給するための成長室
12、42・・・ガリウム 13、43・・・V族元素原料を供給するための成長室
14、44・・・試料 15、45・・・基板結晶 16、46・・・マスク 17、47−G a A S層 18・・・HCβ供給配管
FIG. 1 is a schematic configuration diagram of an ALE growth apparatus used in an embodiment of the present invention, FIG. 2 is a partial cross-sectional view of a substrate crystal obtained by selective growth, and FIG. 3 is a schematic diagram of an ALE growth apparatus used in an embodiment of the present invention. Figure 4 is a schematic diagram of an ALE growth apparatus for forming a conventional selectively grown layer, and Figure 5 is a diagram showing the relationship between the opening width and the film thickness per ALE cycle. FIG. 3 is a partial cross-sectional view of a substrate crystal. 11, 41...Growth chambers 12, 42 for supplying group ■ element raw materials...Gallium 13, 43...Growth chambers 14, 44 for supplying group V element raw materials, 45... Substrate crystal 16, 46... Mask 17, 47-G a A S layer 18... HCβ supply piping

Claims (1)

【特許請求の範囲】[Claims] (1)マスク開口部を有する基板上へのIII−V族化合
物半導体の気相エピタキシャル成長方法において、III
族元素原料と塩化水素を同時に供給する工程と、V族元
素原料を供給する工程とを交互に行うことを特徴とする
III−V族化合物半導体の選択気相エピタキシャル成長
方法。
(1) In a method for vapor phase epitaxial growth of a III-V compound semiconductor on a substrate having a mask opening,
It is characterized by alternately performing the step of simultaneously supplying the group element raw material and hydrogen chloride and the step of supplying the group V element raw material.
A method for selective vapor phase epitaxial growth of III-V compound semiconductors.
JP2078989A 1989-02-01 1989-02-01 Selective vapor-phase epitaxy of iii-v compound semiconductor Pending JPH02203517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2078989A JPH02203517A (en) 1989-02-01 1989-02-01 Selective vapor-phase epitaxy of iii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2078989A JPH02203517A (en) 1989-02-01 1989-02-01 Selective vapor-phase epitaxy of iii-v compound semiconductor

Publications (1)

Publication Number Publication Date
JPH02203517A true JPH02203517A (en) 1990-08-13

Family

ID=12036855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2078989A Pending JPH02203517A (en) 1989-02-01 1989-02-01 Selective vapor-phase epitaxy of iii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPH02203517A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers

Similar Documents

Publication Publication Date Title
JPH02203517A (en) Selective vapor-phase epitaxy of iii-v compound semiconductor
JP2743443B2 (en) Compound semiconductor vapor growth method and apparatus
JPH0574724A (en) Method for growth of atomic layer of aluminum compound
JP3159788B2 (en) Compound semiconductor crystal growth method
JP2704931B2 (en) Method for forming selective growth mask and method for removing same
JPH01290221A (en) Semiconductor vapor growth method
JP3090232B2 (en) Compound semiconductor thin film formation method
JPH0574717A (en) Compound semiconductor crystal growth method
JPS61260622A (en) Growth for gaas single crystal thin film
JPH01313927A (en) Compound-semiconductor crystal growth method
JPS63222420A (en) Epitaxial growth method for atomic layer of iii-v compound semiconductor
JPH05186295A (en) Method for growing crystal
JP2705726B2 (en) Atomic layer epitaxial growth method
JP3106526B2 (en) Compound semiconductor growth method
JPH01290222A (en) Semiconductor vapor growth method
JPS63222421A (en) Epitaxial growth method for atomic layer of iii-v compound semiconductor
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JP2577543B2 (en) Single crystal thin film growth equipment
JP3668802B2 (en) Thin film formation method by atomic layer growth
JPH0864530A (en) Selective growing method
JP2620546B2 (en) Method for producing compound semiconductor epitaxy layer
JPH02116120A (en) Crystal growth method
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPS62296415A (en) Vapor growth of iii-v compound semi-conductor
JPS61111518A (en) Vapor phase epitaxial growth equipment