JPS6289323A - Organo metallic chemical vapor deposition - Google Patents

Organo metallic chemical vapor deposition

Info

Publication number
JPS6289323A
JPS6289323A JP23030485A JP23030485A JPS6289323A JP S6289323 A JPS6289323 A JP S6289323A JP 23030485 A JP23030485 A JP 23030485A JP 23030485 A JP23030485 A JP 23030485A JP S6289323 A JPS6289323 A JP S6289323A
Authority
JP
Japan
Prior art keywords
gas
substrate
region
crystal
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23030485A
Other languages
Japanese (ja)
Inventor
Kazumi Kasai
和美 河西
Junji Komeno
純次 米野
Hiromi Ito
伊藤 弘巳
Tatsuya Ohori
達也 大堀
Hitoshi Tanaka
均 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23030485A priority Critical patent/JPS6289323A/en
Publication of JPS6289323A publication Critical patent/JPS6289323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable a hetero junction interface, an impurity doping interface, etc., to be formed steeply by a method wherein multiple gas leading-in ports are separately arranged in the longitudinal direction of a horizontal reactive tube; respective gas leading-in ports lead in specified gas to form regions with different gas compositions; and substrates are shifted by susceptors. CONSTITUTION:A horizontal reactive tube 1 separately arranged in the longitudinal direction of the tube 1 is used to lead in specified organic metallic material, impurity material etc. selecting the leading-in ports, flow rate etc. The returning gas from downstream to upstream is negligible while a region wherein the gas composition is fit for the growth of each specified crystal is formed in the reactive tube 1. Besides, another region for retracting a substrate 11 before and after crystal growing can be formed as necessary. Furthermore susceptors 5 loaded with the substrate 11 for growing crystal can be shifted rapidly in the longitudinal direction anytime in a series of crystal growing processes from the crystal growing in one region to that in another region. Through these procedures, an epitaxial growing and an impurity doping can be started and stopped very rapidly.

Description

【発明の詳細な説明】 〔概要〕 この発明は、有機金属熱分解気相成長方法において、 反応管の長さ方向に離隔して配設した複数個のガス導入
口を用いてガスの組成が相互に異なる複数の領域を形成
し、かつ結晶を成長する基板を載置したサセプタを移動
し該基板を該領域内に位置させることにより、 単結晶成長界面を急峻にするものである。
[Detailed Description of the Invention] [Summary] The present invention is a metal-organic pyrolysis vapor phase growth method that uses a plurality of gas inlets spaced apart in the length direction of a reaction tube to adjust the composition of the gas. In this method, a plurality of mutually different regions are formed, and a susceptor on which a substrate on which a crystal is to be grown is placed is moved to position the substrate within the region, thereby making the single crystal growth interface steep.

〔産業上の利用分野〕[Industrial application field]

本発明は有機金属熱分解気相成長方法(MOCVD法)
にかかり、特にヘテロ接合、不純物ドーピング等の界面
を急峻に形成することを可能とする改善に関する。
The present invention is a metal organic pyrolysis vapor phase growth method (MOCVD method)
In particular, the present invention relates to improvements that make it possible to form steep interfaces such as heterojunctions and impurity doping.

例えば化合物半導体装置などにおいて、単結晶基板上に
種々の組成の、或いは不純物をドーピングした単結晶層
をエピタキシャル成長した半導体基体が多く用いられて
いるが、その−例として、不純物が添加される領域とキ
ャリアが移動する領域とをヘテロ接合界面によって空間
的に分離することにより特に低温におけるキャリアの移
動度を増大して、一層の高速化を実現しているヘテロ接
合電界効果I・ランジスタがある。
For example, in compound semiconductor devices, semiconductor substrates are often used in which single crystal layers of various compositions or doped with impurities are epitaxially grown on a single crystal substrate. There is a heterojunction field-effect I transistor that spatially separates a region in which carriers move by a heterojunction interface to increase carrier mobility especially at low temperatures, thereby achieving even higher speeds.

このヘテロ接合電界効果トランジスタの構造の−例を第
4図に示す。半絶縁性GaAs基板11上に、ノンドー
プのi形GaAs層12、これより電子親和力が小さい
砒化アルミニウムガリウム(AIxGa+−XAs)層
13、及びn形GaAs層14が設げられ、AlGaA
s層13は通常ノンドープのスペーサ層13a と例え
ば濃度2×10Il10l11程度のドナー不純物を含
むn型電子供給層13bからなり、この層からi形Ga
As層12へ遷移した電子によってヘテロ接合界面近傍
に2次元電子ガス12eが形成される。
An example of the structure of this heterojunction field effect transistor is shown in FIG. A non-doped i-type GaAs layer 12, an aluminum gallium arsenide (AIxGa+ -
The s-layer 13 usually consists of a non-doped spacer layer 13a and an n-type electron supply layer 13b containing donor impurities at a concentration of, for example, about 2×10Il10l11, and from this layer i-type Ga
The electrons transferred to the As layer 12 form a two-dimensional electron gas 12e near the heterojunction interface.

このn形GaAs層14上にソース及びドレイン電極1
5が設けられ、AlGaAs層13に接してゲート電極
16が設けられて、ゲート電極16で前記2次元電子ガ
ス12eの面濃度を制御することによりトランジスタ動
作が行われる。
Source and drain electrodes 1 are placed on this n-type GaAs layer 14.
A gate electrode 16 is provided in contact with the AlGaAs layer 13, and a transistor operation is performed by controlling the surface concentration of the two-dimensional electron gas 12e with the gate electrode 16.

このヘテロ接合電界効果トランジスタの半導体基体のエ
ピタキシャル成長方法として従来分子線上ピタギシャル
成長方法が適用されているが、この方法は手数がかかり
、スループットを向」−シ表面欠陥を防止するなどの目
的で、そのエピタキシャル成長にMOCVD法を適用す
ることが要望されている。
Conventionally, epitaxial growth on molecular beams has been applied as a method for epitaxially growing the semiconductor substrate of this heterojunction field effect transistor, but this method is time-consuming and has been used for the purpose of reducing throughput and preventing surface defects. It is desired to apply the MOCVD method to epitaxial growth.

しかしながら従来のMOCVD法によれば、後述する如
くヘテロ接合界面、不純物ドーピング界面等を急峻に形
成することが困難であって、その改善が強く要望されて
いる。
However, according to the conventional MOCVD method, it is difficult to form steep heterojunction interfaces, impurity doping interfaces, etc., as will be described later, and there is a strong demand for improvement.

〔従来の技術〕[Conventional technology]

MOCVD法は従来下記の様な手順で、第5図に例示す
る様に実施されている。ただし同図において、21は例
えば石英ガラスよりなり横型に配置された反応管、22
は反応管21の一端に設けられたガス導入口、23はガ
ス導出口、24は反応管21の反対端を閉じるフランジ
、25は例えばグラファイトよりなるサセプタ、27は
サセプタ25を加熱する高周波コイルであり、11は単
結晶層を成長させる単結晶基板である。
The MOCVD method has conventionally been carried out as illustrated in FIG. 5 using the following procedure. However, in the figure, 21 is a horizontally arranged reaction tube made of, for example, quartz glass;
is a gas inlet provided at one end of the reaction tube 21, 23 is a gas outlet, 24 is a flange that closes the opposite end of the reaction tube 21, 25 is a susceptor made of graphite, for example, and 27 is a high frequency coil that heats the susceptor 25. 11 is a single crystal substrate on which a single crystal layer is grown.

単結晶層を成長する手順は、例えば、 ■ 基板11をサセプタ25に載置して反応管21に入
れ、フランジ24を閉じる。
The procedure for growing a single crystal layer is, for example: (1) The substrate 11 is placed on the susceptor 25, put into the reaction tube 21, and the flange 24 is closed.

■ ガス導入口22からキャリアガスを導入して反応管
21内をキャリアガス雰囲気にした後に、サセプタ25
を加熱することによって基板11を加熱する。
■ After introducing carrier gas from the gas inlet 22 to create a carrier gas atmosphere inside the reaction tube 21, the susceptor 25
The substrate 11 is heated by heating.

■ 所定の温度に到達すれば、第1の単結晶層の反応ガ
スを反応管21内に導入し、そのエピタキシャル成長を
開始する。
(2) When a predetermined temperature is reached, a reaction gas for the first single crystal layer is introduced into the reaction tube 21, and its epitaxial growth is started.

■ 第1の単結晶層が所定の厚さに成長する時間が経過
したとき、反応ガスを切り換えて第2の単結晶層を成長
する。この手順を繰り返して所要の単結晶層を順次成長
する。
(2) When the time for the first single crystal layer to grow to a predetermined thickness has elapsed, the reaction gas is switched and a second single crystal layer is grown. This procedure is repeated to sequentially grow the required single crystal layers.

■ 最後の単結晶層が所定の厚さに成長する時間が経過
したとき、反応ガスを停止しキャリアガスのみとして成
長を終了させる。
(2) When the time for the last single crystal layer to grow to a predetermined thickness has elapsed, the reaction gas is stopped and the growth is completed using only the carrier gas.

■ 基板11の加熱を停止し、所定の温度以下とった後
に基板11を取り出す。
(2) Stop heating the substrate 11 and take out the substrate 11 after the temperature is lower than a predetermined temperature.

の様に進められる。You can proceed as follows.

なお例えばGaAs / A lGaAsの成長には、
キャリアガスを例えば水素(H2)とし、有機金属材料
にはアルシン(八5H3)、トリメチルガリウム((C
I+3) 5Ga)、トリメチルアルミニウム((CH
3) 3A1)を用い、不純物材料はモノシラン(Si
tL)などとする。
For example, in the growth of GaAs/AlGaAs,
For example, hydrogen (H2) is used as the carrier gas, and arsine (85H3) and trimethylgallium ((C) are used as the organic metal materials.
I+3) 5Ga), trimethylaluminum ((CH
3) Using 3A1), the impurity material is monosilane (Si
tL) etc.

〔発明が解決しよ・うとする問題点〕[Problem that the invention attempts to solve]

上述の如き従来のMOCVD法によって例えばヘテロ接
合電界効果トランジスタの半導体基体の成長を試みても
、反応ガスの送出を切り換えたときに基板11の位置に
おいてはそれまでの反応ガスの濃度が緩やかに減少し、
新しい反応ガスの濃度が緩やかに立ち上がるために、ヘ
テロ接合界面、不純物ドーピング界面が鈍化する。
Even if an attempt is made to grow a semiconductor substrate of, for example, a heterojunction field effect transistor using the conventional MOCVD method as described above, when the delivery of the reactive gas is switched, the concentration of the reactive gas at the position of the substrate 11 will gradually decrease. death,
Since the concentration of the new reactant gas rises slowly, the heterojunction interface and the impurity doping interface become dull.

この結果、反応管21か細く例えば直径約5cmの基板
11を辛うじて収容し得る程度であっても、2次元電子
ガスが基板11の一部に漸く生成される程度に止まり、
従来のMOCVD法をこの様な目的に適用することは大
きな困難が伴う。
As a result, even if the reaction tube 21 is thin enough to barely accommodate the substrate 11 with a diameter of about 5 cm, for example, two-dimensional electron gas is only generated in a portion of the substrate 11.
It is very difficult to apply the conventional MOCVD method to such a purpose.

〔問題点を解決するための手段〕 前記問題点は、複数個のガス導入口を横型反応管の長さ
方向に離隔して配設し、所要のガスを該ガス導入口から
導入して該横型反応管内にガスの組成が相互に異なる複
数の領域を形成し、かつ結晶を成長する基板を載置した
サセプタを移動し該基板を該領域内に位置させて、結晶
成長を行う本発明による有機金属熱分解気相成長方法に
より解決される。
[Means for solving the problem] The above problem is solved by arranging a plurality of gas inlet ports spaced apart in the length direction of the horizontal reaction tube, and introducing the required gas through the gas inlet ports. According to the present invention, a plurality of regions having mutually different gas compositions are formed in a horizontal reaction tube, and a susceptor on which a substrate on which a crystal is to be grown is placed is moved to position the substrate within the region, thereby performing crystal growth. Solved by organometallic pyrolysis vapor phase growth method.

〔作 用〕[For production]

本発明による有機金属熱分解気相成長方法では、複数個
のガス導入口がその長さ方向に離隔して配設された横型
反応管を使用し、所要の有機金属材料、不純物材料等を
導入口、流量等を選択して導入する。ガスの下流側から
上流側への移動は無視し得て、ガスの組成が所要の各結
晶の成長に適合する領域を横型反応管内に形成すること
ができる。
In the organometallic pyrolysis vapor phase growth method according to the present invention, a horizontal reaction tube in which a plurality of gas inlets are spaced apart in the length direction is used to introduce required organometallic materials, impurity materials, etc. Select the port, flow rate, etc. and install. The movement of gas from the downstream side to the upstream side is negligible, and a region can be created in the horizontal reaction tube where the gas composition is compatible with the growth of each desired crystal.

なお必要ならば結晶成長の前後などに結晶を成長する基
板を退避させる領域をも形成する。
Note that, if necessary, a region for retreating the substrate on which the crystal will grow is also formed before and after the crystal growth.

本発明によれば、更に結晶を成長する基板を載置したサ
セプタは一連の結晶成長工程中に随時横型反応管の長さ
方向に移動することを可能とし、前記領域の一つにおけ
る結晶成長から他の領域における結晶成長に速やかに移
動する。なお最初の成長開始、成長完了等の際の退避領
域からの往復も同様である。
According to the present invention, the susceptor on which the substrate on which the crystal is to be grown can be moved in the length direction of the horizontal reaction tube at any time during a series of crystal growth steps, and the Promptly move on to crystal growth in other areas. The same applies to the round trip from the evacuation area at the time of initial growth start, growth completion, etc.

これによって、エピタキシャル成長、不純物ドーピング
の開始及び停止を極めて迅速に行うことが可能となり、
急峻な界面を実現することができる。
This makes it possible to start and stop epitaxial growth and impurity doping extremely quickly.
A steep interface can be realized.

〔実施例〕〔Example〕

以下本発明を第1図に模式図を示す実施例により具体的
に説明する。
The present invention will be specifically explained below with reference to an example schematically shown in FIG.

同図において、1は例えば石英ガラスよりなり横型に配
置された反応管、2a、2b及び2Cは反応管1に設け
られたガス導入口、3はガス導出口、4は反応管1の終
端を閉じるフランジ、5は例えばグラファイトよりなる
サセプタ、6はサセプタ5の駆動機構、7はサセプタ5
を誘導加熱する高周波コイルであり、11は単結晶層を
成長させる単結晶基板である。
In the figure, 1 is a horizontally arranged reaction tube made of quartz glass, 2a, 2b, and 2C are gas inlets provided in the reaction tube 1, 3 is a gas outlet, and 4 is the terminal end of the reaction tube 1. a closing flange, 5 a susceptor made of graphite, 6 a drive mechanism for the susceptor 5, 7 a susceptor 5;
11 is a high frequency coil for induction heating, and 11 is a single crystal substrate on which a single crystal layer is grown.

なおサセプタ5の移動を迅速、正確に行うために、その
駆動機構6を例えば第2図に例示する如く構成する。本
実施例では、サセプタ5に固着されてめねじを備える部
材6a、これに嵌合するおねじを備える部材6b、これ
をモータで駆動する回転軸60等を備えて、いずれもス
テンレス鋼からなる回転軸6cとフランジ4との間は電
磁流体で真空封止されている。なお部材6a、6bには
例えばカーボンが用いられている。
In order to move the susceptor 5 quickly and accurately, its drive mechanism 6 is constructed as illustrated in FIG. 2, for example. In this embodiment, a member 6a that is fixed to the susceptor 5 and has a female thread, a member 6b that has a male thread that fits therein, a rotating shaft 60 that drives this with a motor, etc. are all made of stainless steel. The space between the rotating shaft 6c and the flange 4 is vacuum sealed with electromagnetic fluid. Note that carbon is used for the members 6a and 6b, for example.

またサセプタ5は、例えばその底面に円筒面の凹みを設
け、ころ5aをこれに嵌合させるなどの方法によってそ
の移動を容易にしている。
Further, the susceptor 5 is made easy to move by, for example, providing a cylindrical recess on its bottom surface and fitting the rollers 5a into the recess.

前記へテロ接合電界効果トランジスタの各半導体層の成
長は、この有機金属熱分解気相成長装置を用いて例えば
次の様に実施される。
The growth of each semiconductor layer of the heterojunction field effect transistor is performed, for example, as follows using this metal organic pyrolysis vapor phase growth apparatus.

ガスの導入を例えば下記の様に行い、上流側から、導入
口2a−2b間の領域Aは成長を行わない退避領域、導
入口2b −2c間の右頁域BはノンドープGaAs層
を成長する領域、導入口2cの下流の領域Cを下記3層
を成長する領域とする。
Gas is introduced, for example, as shown below, and from the upstream side, region A between the inlet ports 2a and 2b is a retreat region where no growth is performed, and a non-doped GaAs layer is grown in the right region B between the inlet ports 2b and 2c. The region C downstream of the inlet 2c is the region where the following three layers are grown.

(al  最上流の導入口2a: H2(キャリアガス)        20〜307!
/m1nAsHs (H2希釈;3〜18χ)    
0.5〜I E /m1n(bl  中間の導入口2b
: H21〜2 j!/m1n ASH3(H2希釈;3〜18χ)    0.5〜I
 Il/m1n(C1,) 3ca (H2でバブリン
グ)    20〜30cc/m1n(C)  最下流
の導入口2c: i)ノンドープAlGaAsスペーサ層の成長まで:H
z               1〜21 /win
AS)+3 (H2希釈;3〜18χ)    0.5
〜I Il/m1n(CH3)3Al (H2でバブリ
ング)    2(1〜30cc/m1nii)n型A
lGaAs層の成長時: Hz                1〜2 j! 
/m1nAs)13 (+(2希釈;3〜1.8χ) 
   0.5〜I A /m1n(CHs)iへI (
H2でバフ゛リング)20〜30cc/1IlinSi
H4(H2希釈; 20〜200ppm)    約5
0cc/m1niii)n型GaAs層の成長時; fiz               1〜2 j! 
/m1nAsl!3(H2希釈;3〜18χ)    
0.5〜1 j2/m1nSiH4(H2希釈; 20
〜200ppm)    約50cc/min半絶縁性
GaAs基板11をサセプタ5上に載置して領域へに置
き、前記の如くガスを導入して基板11及び反応管内の
温度が例えば700’Cとなる様に加熱する。
(al Most upstream inlet 2a: H2 (carrier gas) 20-307!
/m1nAsHs (H2 dilution; 3-18χ)
0.5~I E /m1n (bl Middle inlet 2b
: H21~2 j! /m1n ASH3 (H2 dilution; 3-18χ) 0.5-I
Il/m1n (C1,) 3ca (bubbling with H2) 20-30cc/m1n (C) Most downstream inlet 2c: i) Until growth of non-doped AlGaAs spacer layer: H
z 1~21/win
AS)+3 (H2 dilution; 3-18χ) 0.5
~I Il/m1n(CH3)3Al (bubbling with H2) 2 (1-30cc/m1nii) n-type A
During growth of lGaAs layer: Hz 1-2 j!
/m1nAs)13 (+(2 dilution; 3-1.8χ)
0.5 to I A /m1n(CHs)i (
Buffing with H2) 20-30cc/1IlinSi
H4 (H2 dilution; 20-200ppm) approx. 5
0cc/m1niii) When growing an n-type GaAs layer; fiz 1~2 j!
/m1nAsl! 3 (H2 dilution; 3-18χ)
0.5-1 j2/m1nSiH4 (H2 dilution; 20
~200 ppm) Approximately 50 cc/min The semi-insulating GaAs substrate 11 is placed on the susceptor 5 and placed in the region, and the gas is introduced as described above so that the temperature inside the substrate 11 and the reaction tube becomes, for example, 700'C. Heat to.

定常状態に到達した後にサセプタ5を領域Bに移動して
、ノンドープのGaAs層12を例えば厚さ約0.5 
trmに成長する。
After reaching a steady state, the susceptor 5 is moved to the region B, and the non-doped GaAs layer 12 is formed to a thickness of, for example, about 0.5 cm.
Grows to trm.

次いでサセプタ5を領域Cに移動して、ノンドープのA
l o、 3Gao、 7ASスペ一サ層13aを例え
ば厚さ5am程度成長する。
Next, the susceptor 5 is moved to the region C, and the non-doped A
A spacer layer 13a of 10, 3 Gao, 7 AS is grown to a thickness of, for example, about 5 am.

サセプタ5を一旦領域へに戻し、導入口2Cから導入す
るガスに5il14を加えて前記ii)の定常状態とな
った後に、サセプタ5を領域Cに移動して、例えば不純
物濃度I Xl010cm−3程度のn型A10.3G
ao、 TAS層13bを例えば厚さ40nm程度成長
する。
Once the susceptor 5 is returned to the region and 5il14 is added to the gas introduced from the inlet port 2C to reach the steady state of ii), the susceptor 5 is moved to the region C and the impurity concentration is, for example, about IXl010cm-3. n-type A10.3G
ao, TAS layer 13b is grown to a thickness of, for example, about 40 nm.

サセプタ5を再び領域Aに戻し、導入口2Cから導入す
るガスの(C)13)3A]を停止し前記山)の定常状
態となった後に、サセプタ5を領域Cに移動して、例え
ば不純物濃度I X1017cm−’程度のn型GaA
s層14を例えば厚さ1. OOnm程度成長する。
The susceptor 5 is returned to the region A, and the gas (C) 13) 3A] introduced from the inlet port 2C is stopped to reach the steady state of the above-mentioned mountain. n-type GaA with a concentration of about I x 1017 cm-'
The thickness of the s layer 14 is, for example, 1. It grows about OOnm.

以上の手順で、同時に3枚の直径約5cmの基板に前記
各半導体層を成長した半導体基体について、振動磁気抵
抗効果(シュブニコフードゥ・ハース効果;伝導電子が
磁場のためランダウ準位に量子化されることにより、電
気抵抗が磁場の変化につれて周期的に変化する現象)を
利用して2次元電子ガスの生成状態を検出したが、磁場
が基板に垂直方向のときに基板のほぼ全面にわたって第
3図に例示する如き抵抗値の周期的変化が検出され、2
次元電子ガスの生成が確認された。
Through the above procedure, each semiconductor layer is simultaneously grown on three substrates with a diameter of approximately 5 cm. The vibration magnetoresistive effect (Shubnikho-de-Haas effect; conduction electrons move quantumly to the Landau level due to the magnetic field) The generation state of two-dimensional electron gas was detected using the phenomenon in which the electrical resistance changes periodically as the magnetic field changes due to the magnetic field.However, when the magnetic field is perpendicular to the substrate, A periodic change in resistance value as illustrated in FIG. 3 is detected, and 2
Generation of dimensional electron gas was confirmed.

またこの半導体基体を用いてヘテロ接合電界効果トラン
ジスタを製造し、分子線エビタギシャル成長方法による
半導体基体を用いた比較試料とほぼ同等の特性が得られ
ている。
Furthermore, a heterojunction field effect transistor was manufactured using this semiconductor substrate, and characteristics almost equivalent to those of a comparative sample using a semiconductor substrate produced by the molecular beam epitaxy method were obtained.

以上の説明はへテロ接合電界効果トランジスタに用いる
半導体基体を引例しているが、本発明を他の同等な半導
体基体等の形成に適用して同様な効果を得ることができ
る。
Although the above description refers to a semiconductor substrate used in a heterojunction field effect transistor, the present invention can be applied to the formation of other equivalent semiconductor substrates to obtain similar effects.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、半導体装置等の単結
晶層を、従来の有機金属熱分解気相成長方法より遥かに
急峻な界面で再現性よく、また分子線エピタキシャル成
長方法より遥かに容易に成長することが可能となり、化
合物半導体装置等の実用化に大きい効果を与える。
As explained above, according to the present invention, a single crystal layer of a semiconductor device, etc. can be grown at a much steeper interface with better reproducibility than the conventional metal-organic pyrolysis vapor phase growth method, and much more easily than the molecular beam epitaxial growth method. This makes it possible to grow the compound semiconductor, which has a great effect on the practical application of compound semiconductor devices and the like.

また従来ガス切り換え時間を短縮するためにガス流速を
高めることが多く行われているが、本発明によればガス
流速を高める必要がなく、ガス資源及びその純化装置等
について大きい経済的効果が得られる。
In addition, conventionally, the gas flow rate has often been increased in order to shorten the gas switching time, but according to the present invention, there is no need to increase the gas flow rate, and a large economic effect can be obtained for gas resources and their purification equipment. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の模式図、 第2図はサセプタ駆動機構の例を示す模式図、第3図は
振動磁気抵抗効果を示すデータ例、第4図はへテロ接合
電界効果l・ランジスタの模式図、 第5図は従来方法の模式図である。 図において、 1は横型反応管、 2a、 2b及び2Cはガス導入口、 3はガス導出口、 4はフランジ、 5はサセプタ、 5aはころ、 6はサセプタの駆動機構、 6a及び6bはねじを備える部材、 6cは回転軸、 7は加熱用高周波コイル、 11は単結晶層を成長させる単結晶基板、例えば半絶縁
性GaAs基板、 12はノンドープのi形GaAs層、 12eは2次元電子ガス、 13はへlXGa+−xAs層、 13aはノンドープのスペーサ層 13bはドナー不純物を含むn型電子供給層、14はn
形GaAs層、 15はソース及びドレイン電極、 16はゲート電極を示す。 本宅い目の載方電令七〇標代図 第 1 図 ケ 町を乙ブフ、〜区奮p機橋の佇弓Esす標<a年 2 
閃 5   211    4Of、11 カ祢渇     C叫ゝ 1匿−ψ力/ぶaケC月尺オ江シηノ31ムをL倣Tデ
ニ74フ・j第 3 図 ヘテロ梯溌計電界−女力果トランンスヌの株弐図第 4
 図 従来が法の棒戎閃 隼 、3 図
Fig. 1 is a schematic diagram of an embodiment of the present invention, Fig. 2 is a schematic diagram showing an example of a susceptor drive mechanism, Fig. 3 is an example of data showing the vibration magnetoresistive effect, and Fig. 4 is a heterojunction electric field effect l.・Schematic diagram of transistor. Figure 5 is a schematic diagram of the conventional method. In the figure, 1 is a horizontal reaction tube, 2a, 2b and 2C are gas inlets, 3 is a gas outlet, 4 is a flange, 5 is a susceptor, 5a is a roller, 6 is a drive mechanism for the susceptor, 6a and 6b are screws The following members include: 6c is a rotating shaft, 7 is a heating high-frequency coil, 11 is a single crystal substrate on which a single crystal layer is grown, such as a semi-insulating GaAs substrate, 12 is a non-doped i-type GaAs layer, 12e is a two-dimensional electron gas, 13 is a 1XGa+-xAs layer, 13a is a non-doped spacer layer 13b is an n-type electron supply layer containing donor impurities, and 14 is an n-type electron supply layer.
15 is a source and drain electrode, and 16 is a gate electrode. The location of the main house, the 70th standard map of the telegraph code No. 1 Map of the town, and the standing arch of the bridge of the ward, A year 2
Flash 5 211 4Of, 11 Power C cry 1 concealment - ψ force / buake C moonshake Oe Shi η No 31 m L imitation T Deni 74 Fu j No. 3 Hetero ladder measurement electric field - woman Lika Transsunu Stock Illustration No. 4
Fig. 3. Conventional method is Hōbō Ebisu Senryo, Fig. 3

Claims (1)

【特許請求の範囲】 複数個のガス導入口を横型反応管の長さ方向に離隔して
配設し、所要のガスを該ガス導入口から導入して該横型
反応管内にガスの組成が相互に異なる複数の領域を形成
し、 かつ結晶を成長する基板を載置したサセプタを移動し該
基板を該領域内に位置させて、結晶成長を行うことを特
徴とする有機金属熱分解気相成長方法。
[Scope of Claims] A plurality of gas inlet ports are disposed spaced apart in the length direction of the horizontal reaction tube, and a required gas is introduced from the gas inlet ports so that the compositions of the gases are mutually matched within the horizontal reaction tube. metal-organic pyrolysis vapor phase growth, which is characterized in that a plurality of different regions are formed in the region, and a susceptor on which a substrate on which a crystal is to be grown is placed is moved to position the substrate within the region to perform crystal growth. Method.
JP23030485A 1985-10-16 1985-10-16 Organo metallic chemical vapor deposition Pending JPS6289323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23030485A JPS6289323A (en) 1985-10-16 1985-10-16 Organo metallic chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23030485A JPS6289323A (en) 1985-10-16 1985-10-16 Organo metallic chemical vapor deposition

Publications (1)

Publication Number Publication Date
JPS6289323A true JPS6289323A (en) 1987-04-23

Family

ID=16905731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23030485A Pending JPS6289323A (en) 1985-10-16 1985-10-16 Organo metallic chemical vapor deposition

Country Status (1)

Country Link
JP (1) JPS6289323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100364813B1 (en) * 2000-02-25 2002-12-16 주식회사 하이닉스반도체 Method for Forming Epitaxial Layer of Semiconductor Device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100364813B1 (en) * 2000-02-25 2002-12-16 주식회사 하이닉스반도체 Method for Forming Epitaxial Layer of Semiconductor Device

Similar Documents

Publication Publication Date Title
US4659401A (en) Growth of epitaxial films by plasma enchanced chemical vapor deposition (PE-CVD)
US4773355A (en) Growth of epitaxial films by chemical vapor deposition
Huelsman et al. Plasma‐enhanced metalorganic chemical vapor deposition of GaAs
JPS6289323A (en) Organo metallic chemical vapor deposition
JP2577550B2 (en) Impurity doping of III-V compound semiconductor single crystal thin films
KR101082773B1 (en) Compound semiconductor element and process for fabricating the same
Hayafuji et al. Atomic layer epitaxy of device quality AlGaAs and AlAs
JP3116954B2 (en) Method for growing compound semiconductor thin film
JP3035953B2 (en) (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method
JPH03110829A (en) Manufacture of compound semiconductor thin film
JP2936620B2 (en) Vapor phase growth of compound semiconductor crystals
JPH0337186A (en) Method for forming compound semiconductor thin film
JPS63174314A (en) Method for doping iii-v compound semiconductor crystal
JP3057503B2 (en) Compound semiconductor growth method
JP3106526B2 (en) Compound semiconductor growth method
JPH0426587A (en) Crystal growing method for iii-v group compound semiconductor and crystal growing device used for this method
JP2793239B2 (en) Method for manufacturing compound semiconductor thin film
JP2620546B2 (en) Method for producing compound semiconductor epitaxy layer
JP2003318185A (en) Method for manufacturing compound semiconductor wafer and compound semiconductor element
JPH0788276B2 (en) Vapor phase epitaxial growth method
Momoi et al. 4” InP based HEMT epitaxial wafers grown by MOVPE for volume production
JPH03235323A (en) Vapor growth method of compound semiconductor crystal
JPH0566356B2 (en)
JPH02272722A (en) Molecular beam epitaxial growth method
JPH10177957A (en) Organic metal vapor growth method