JPS6220331A - Selectively growing method for alumina film - Google Patents

Selectively growing method for alumina film

Info

Publication number
JPS6220331A
JPS6220331A JP15990085A JP15990085A JPS6220331A JP S6220331 A JPS6220331 A JP S6220331A JP 15990085 A JP15990085 A JP 15990085A JP 15990085 A JP15990085 A JP 15990085A JP S6220331 A JPS6220331 A JP S6220331A
Authority
JP
Japan
Prior art keywords
film
aluminum
al2o3
substrate
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15990085A
Other languages
Japanese (ja)
Other versions
JPH0255946B2 (en
Inventor
Takayuki Oba
隆之 大場
Ikuro Kobayashi
小林 郁朗
Yoshimi Shiotani
喜美 塩谷
Yuji Furumura
雄二 古村
Fumitake Mieno
文健 三重野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15990085A priority Critical patent/JPS6220331A/en
Publication of JPS6220331A publication Critical patent/JPS6220331A/en
Publication of JPH0255946B2 publication Critical patent/JPH0255946B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To coat an aluminum wiring layer with a very stable Al2O3 protective film by using an Al2O3 selectively growing method. CONSTITUTION:A substrate is filled in a plasma etching unit, boron trichloride BCl3 is fed as etching gas, gas pressure is maintained 0.2-0.3Torr, a high frequency voltage is applied to perform a plasma etching. The plasma etching with BCl3 has strong selectivity, the surface of partly exposed silicon becomes an activated surface, but does not almost react with an insulating film such as a PSG film. Then, an Al2O3 film is grown by a vapor-phase grown on the surfaces of the activated aluminum and silicon. At this time, the temperature of the substrate is held at approx. 260-320 deg.C, but if the substrate temperature is excessively high to exceed 360 deg.C, the selectivity of the Al2O3 film is lost. The Al2O3 film is not almost grown on the aluminum and silicon surface if the activated surfaces are not exposed.

Description

【発明の詳細な説明】 〔概要〕 アルミナ(A7!zCh)は化学的に極めて安定した祠
料として知られているが、その成長方法あるいは成長後
の処理が難しいため、半導体装置の製造には多く利用さ
れていない。本発明ではアルミナをシリコン及びアルミ
ニウム上に選択的に気相成長可能とする方法を述べる。
[Detailed Description of the Invention] [Summary] Alumina (A7!zCh) is known as a chemically extremely stable abrasive material, but it is difficult to grow and process after growth, so it is not suitable for manufacturing semiconductor devices. Not used much. The present invention describes a method that enables selective vapor phase growth of alumina on silicon and aluminum.

〔産業上の利用分野〕[Industrial application field]

本発明は、アルミナをアルミニウム及びシリ:1ン上に
選択的に成長させるプロセスにに関する。
The present invention relates to a process for selectively growing alumina on aluminum and silicon.

アルミニウムは31′−導体装置の配線層とし、て広く
用いられ、その積層の方法としては、物理的な蒸着法(
PVD法)が専ら用いられている。
Aluminum is widely used as a wiring layer for 31'-conductor devices, and physical vapor deposition (
PVD method) is used exclusively.

一方蒸着法の欠点として1ンタクI・窓でのステップカ
バレージの問題があり、これを解決する方法として有機
金属化合物、即しTIBA()リイソブチール・アルミ
ニラ1、)を用いた気相成長法(CVD法)が開発され
ている。
On the other hand, a drawback of the vapor deposition method is the problem of step coverage in one tank I/window, and a method to solve this problem is the vapor phase epitaxy (CVD) using an organometallic compound, namely TIBA () law) has been developed.

アルミニウム層が気相成長法で積層可能となったことに
より、A 7!z O3もアルミニウムの気相成長プロ
セスにおいて、02及びN20を添加することにより成
長可能である、−とは知られているが、基板の全面にA
l2O2を成長させずに、アルミニウム及びシリコンの
表面のみに選択的に成長を行うにはプロセスのコンlロ
ールが難しり改善が要望されている。
A7! Aluminum layers can now be stacked by vapor phase growth. It is known that O3 can also be grown by adding O2 and N20 in the aluminum vapor phase growth process.
It is difficult to control the process to selectively grow only on the surfaces of aluminum and silicon without growing 12O2, and improvements are desired.

〔従来の技術〕[Conventional technology]

TIBAはA 12 (C4H9) 3なる分子式で表
され、250〜300℃で熱分解して、下記のごとくA
βを析出する。
TIBA is represented by the molecular formula A 12 (C4H9) 3, and is thermally decomposed at 250 to 300°C to form A as shown below.
Precipitate β.

Aβ(C,4H9)3→Aβ+3/2H2+3C4He
TIBAは常温では液体であるが、反応を促進するため
約50℃に加熱して、He、あるいはArガスをバブリ
ングさせて、300°C前後に加熱された基板を設置せ
る反応槽に導入される。
Aβ(C,4H9)3→Aβ+3/2H2+3C4He
TIBA is a liquid at room temperature, but to accelerate the reaction, it is heated to about 50°C, He or Ar gas is bubbled through it, and it is introduced into a reaction tank in which a substrate heated to around 300°C is installed. .

上記のガスを反応槽に導入する前に、酸素ガス02及び
Neoを添加することにより、Aj2に換わってAA2
03が基板上に堆積される。
By adding oxygen gas 02 and Neo before introducing the above gases into the reaction tank, AA2 replaces Aj2.
03 is deposited on the substrate.

上記の反応によるAβ、03析出は、基板の温度による
依存性が大きく基板温度が340℃以上となると基板の
全面にAl2203膜を析出する。
The Aβ,03 precipitation caused by the above reaction is highly dependent on the temperature of the substrate, and when the substrate temperature reaches 340° C. or higher, an Al2203 film is deposited over the entire surface of the substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記に述べた、TTBAを用いた気相成長方法では、基
板の全面にA7!203膜を積層する場合には適用可能
である。
The above-described vapor phase growth method using TTBA is applicable to the case where an A7!203 film is laminated over the entire surface of a substrate.

然し、一度A 1203膜を全面に成長させると、その
後プロセスは極めて難しくなる。こればAa203は極
めて安定なる皮膜を形成するため、その後の加工が非常
に難しいことに起因する。
However, once the A1203 film is grown over the entire surface, the process becomes extremely difficult. This is because Aa203 forms an extremely stable film, making subsequent processing extremely difficult.

半導体装置の信頼性を低下させる原因の一つにアルミニ
ウム配線層における断線、あるいはアルミニウム表面に
発生ずるスパイクによる短絡不良等がある。
One of the causes of reduced reliability of semiconductor devices is disconnection in the aluminum wiring layer or short-circuit failure due to spikes occurring on the aluminum surface.

これらを防止するためパシベーション膜としてPSG膜
あるいは5i3Nn膜等を被覆する方法が一般に用いら
れているが、アルミニウム配線層、特にコンタク(・窓
の段差の大きい領域のアルミニウムあるいは一部露出せ
るシリコン面をAl2203膜で選択的に被覆すること
が可能となればその効果は大きい。
To prevent these problems, a method of covering the PSG film or 5i3Nn film as a passivation film is generally used. If it becomes possible to selectively cover with the Al2203 film, the effect will be great.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、基板を三塩化硼素ガスによるプラズマ・
エッチング処理を行ない、アルミニウム及びシリコンの
活性化された表面を露出させる。
The problem mentioned above is that the substrate is exposed to plasma using boron trichloride gas.
An etching process is performed to expose the activated surfaces of the aluminum and silicon.

その後TIBAと酸素をソースガスとせる気相成長法に
より前記活性化されたアルミニウムとシリコン面にアル
ミナを選択的に成長させることよりなる本発明のAN2
0.の選択成長方法によって解決される。
AN2 of the present invention, which comprises selectively growing alumina on the activated aluminum and silicon surfaces by a vapor phase growth method using TIBA and oxygen as source gases.
0. The choice of growth method is solved.

〔作用〕[Effect]

三塩化硼素ガスを用いたプラズマ・エッチングはアルミ
ニウム及びシリコンの表面を選択的にエツチングして活
性面を形成する。
Plasma etching using boron trichloride gas selectively etches the aluminum and silicon surfaces to form active surfaces.

次いで、TIBAガスと酸素ガスの混合ガスを用いた気
相成長で、前記アルミニウム及びシリコ 。
Next, the aluminum and silicon were grown by vapor phase growth using a mixed gas of TIBA gas and oxygen gas.

ンの活性面にのみ選択的にアルミナ層を成長させること
が出来る。
It is possible to selectively grow an alumina layer only on the active surface of the ion.

〔実施例〕〔Example〕

本発明による一実施例を更に詳細説明する。第1図に示
すごとく基板1に、深い段差2をもったSing等の絶
縁膜3が積層され、この絶縁膜上にアルミニウム配線層
4が形成されている。
An embodiment according to the present invention will be described in further detail. As shown in FIG. 1, an insulating film 3 such as Sing having a deep step 2 is laminated on a substrate 1, and an aluminum wiring layer 4 is formed on this insulating film.

アルミニウム配線層4は、真空蒸着法あるいはTrBA
によるCVD法で積層した後、パターンニングすること
により得られる。
The aluminum wiring layer 4 is formed by vacuum evaporation method or TrBA
It can be obtained by laminating layers using a CVD method and then patterning.

真空蒸着よりもCVD法の方がカバレージが良いことは
既に説明せる通りである。このような配線層上に17!
203膜によって保護する方法を述べる。
As already explained, the CVD method has better coverage than vacuum deposition. 17 on such a wiring layer!
A method of protection using a 203 film will be described.

上記基板をプラズマ・エッチング装置に入れ、エツチン
グ・ガスとしては三塩化硼素(BCA3)を導入する。
The substrate is placed in a plasma etching apparatus, and boron trichloride (BCA3) is introduced as an etching gas.

ガス圧力を0.2〜0.3 T orrに維持して高周
波電圧を印加してプラズマ・エッチングを行う。
Plasma etching is performed by maintaining the gas pressure at 0.2 to 0.3 Torr and applying a high frequency voltage.

BCl2によるプラズマ・エッチングは強い選択性があ
りアルミニウムと一部露出せるシリコンの表面は、活性
化された表面となるが5iC12、PSG膜のごとき絶
縁膜には殆ど反応しない。
Plasma etching using BCl2 has strong selectivity, and aluminum and partially exposed silicon surfaces become activated surfaces, but hardly reacts with insulating films such as 5iC12 and PSG films.

次いで、活性化されたアルミニウム及びシリコンの表面
に気相成長によりAl!to3膜を成長させる。その方
法はCVD装置を用い、TIBA溶液を50℃に維持し
、流量200’sccmでTIBA溶液中をバブリング
さ・1)゛たH eガス乙コ、02ガスを400scc
m 、及びN20ガスを50secm流量にて混合して
反応槽に導入する。
Next, Al! is deposited on the activated aluminum and silicon surfaces by vapor phase growth. Grow to3 film. The method is to use a CVD device, maintain the TIBA solution at 50°C, and bubble it through the TIBA solution at a flow rate of 200'sccm.
m and N20 gas are mixed at a flow rate of 50 seconds and introduced into the reaction tank.

この時、基板1の温度I:1′約260−320℃に保
1当される。この基板温度はAl2O2膜を選択成長さ
・1」゛る場合の重要なる要素で、温度が高すぎて36
0°Cを越えるとAρ20.l膜の選択性は失われる。
At this time, the temperature I:1' of the substrate 1 is maintained at about 260-320°C. This substrate temperature is an important factor when selectively growing an Al2O2 film.
When it exceeds 0°C, Aρ20. l membrane selectivity is lost.

またアルミニウムyム、シリコンの表面は活性化された
面が露出していないとAn20.膜は殆ど成長しない。
Also, if the activated surface of the aluminum or silicon surface is not exposed, An20. The film hardly grows.

第2図(a)、 (I〕lは本発明の成長JJ法により
アルミニラJ、配線層にA7!203膜5を選択的に成
長させた場合の第1図X−X面Qこおける成長1r1後
を基板断面図を示す。
FIG. 2(a), (I)l shows the growth in the XX plane Q in FIG. A cross-sectional view of the substrate after 1r1 is shown.

〔発明の効果〕〔Effect of the invention〕

以十に説明せるごとく、本発明のAff20.の選択成
長ブJ法により非常に安定なるAAz(:lh保護膜で
アルミニウム配線層を被覆することが可能になり、更に
プロセスが気相反応で行われるので、深い段差での被覆
性も良好である。、−れにより半導体装置の信頼141
の同士に寄与Jる所大である。
As explained below, Aff20. of the present invention. The selective growth BuJ method makes it possible to cover the aluminum wiring layer with a very stable AAz(:lh protective film), and since the process is carried out using a gas phase reaction, the coverage of deep steps is also good. There is. - This increases the reliability of semiconductor devices 141
The key is to contribute to each other.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の成長方法を説明するだめの基板断面図
、 第2図(al、 (1:+lは本発明のAl!203膜
成長前後の比較説明するための断面図、 を示す。 図面において、 I It基板、 2は段差、 3 番よに色縁膜、 4はアルミニウム配線層、 5はA/!203膜、 をそれぞれ示す。
FIG. 1 is a cross-sectional view of a substrate for explaining the growth method of the present invention, and FIG. 2 is a cross-sectional view for comparing and explaining before and after growing an Al!203 film of the present invention. In the drawings, 2 is a step, 3 is a color border film, 4 is an aluminum wiring layer, and 5 is an A/!203 film.

Claims (1)

【特許請求の範囲】 三塩化硼素ガスにより、シリコン基板またはアルミニウ
ム配線の表面のプラズマ・エッチング処理を行った後、 気相成長法により露出せるアルミニウム、またはシリコ
ン表面にアルミナ膜を成長させることを特徴とするアル
ミナ膜の選択成長方法。
[Claims] The method is characterized in that after performing plasma etching treatment on the surface of a silicon substrate or aluminum wiring using boron trichloride gas, an alumina film is grown on the exposed aluminum or silicon surface by vapor phase growth. Selective growth method for alumina film.
JP15990085A 1985-07-18 1985-07-18 Selectively growing method for alumina film Granted JPS6220331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15990085A JPS6220331A (en) 1985-07-18 1985-07-18 Selectively growing method for alumina film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15990085A JPS6220331A (en) 1985-07-18 1985-07-18 Selectively growing method for alumina film

Publications (2)

Publication Number Publication Date
JPS6220331A true JPS6220331A (en) 1987-01-28
JPH0255946B2 JPH0255946B2 (en) 1990-11-28

Family

ID=15703624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15990085A Granted JPS6220331A (en) 1985-07-18 1985-07-18 Selectively growing method for alumina film

Country Status (1)

Country Link
JP (1) JPS6220331A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197381A (en) * 1987-09-04 1989-04-14 Nederland Omroe Prod Bedrijf Nv Connecting device and method thereof
US5067437A (en) * 1988-03-28 1991-11-26 Kabushiki Kaisha Toshiba Apparatus for coating of silicon semiconductor surface
JP2016119358A (en) * 2014-12-19 2016-06-30 株式会社デンソー Method of producing thin film made of aluminium compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197381A (en) * 1987-09-04 1989-04-14 Nederland Omroe Prod Bedrijf Nv Connecting device and method thereof
US5067437A (en) * 1988-03-28 1991-11-26 Kabushiki Kaisha Toshiba Apparatus for coating of silicon semiconductor surface
JP2016119358A (en) * 2014-12-19 2016-06-30 株式会社デンソー Method of producing thin film made of aluminium compound

Also Published As

Publication number Publication date
JPH0255946B2 (en) 1990-11-28

Similar Documents

Publication Publication Date Title
JP2002329847A (en) SINGLE TRANSISTOR FERROELECTRIC TRANSISTOR STRUCTURE HAVING high-k INSULATING FILM AND ITS MANUFACTURING METHOD
JPS6220331A (en) Selectively growing method for alumina film
JPH0645606A (en) Manufacture of thin-film transistor matrix
JP3184013B2 (en) Semiconductor device and method of manufacturing the same
JP2907236B2 (en) Method for manufacturing semiconductor device
JPS5874043A (en) Semiconductor device
JPH0547720A (en) Removing method of natural oxide film
JPS5925245A (en) Manufacture of semiconductor device
JP2975496B2 (en) Method of forming element isolation structure
JP2545450B2 (en) Method for manufacturing semiconductor device
JPS6414968A (en) Formation of gate electrode
JPS5943549A (en) Method of forming aluminum wiring layer
JPS60116138A (en) Manufacture of multilayer film
JPS61256626A (en) Selective growth method of thin film on surface of insulating film
JPH0657411A (en) Method and device for producing dielectric thin film
TW202244986A (en) Method and system of forming a structure
JPS63233537A (en) Formation of insulating layer
JPS6294933A (en) Dry etching method
JPH01238126A (en) Manufacture of semiconductor device
JPS62247064A (en) Growing method for metallic film
JP3018985B2 (en) Method of forming dielectric thin film
JPS6333888A (en) Semiconductor laser device
JPS5852330B2 (en) Manufacturing method of semiconductor device
JPH07176610A (en) Fabrication of semiconductor device
JPH04107924A (en) Manufacture of semiconductor device