JPS62202057A - Cr-mo steel plate for multilayered vessel - Google Patents

Cr-mo steel plate for multilayered vessel

Info

Publication number
JPS62202057A
JPS62202057A JP4474486A JP4474486A JPS62202057A JP S62202057 A JPS62202057 A JP S62202057A JP 4474486 A JP4474486 A JP 4474486A JP 4474486 A JP4474486 A JP 4474486A JP S62202057 A JPS62202057 A JP S62202057A
Authority
JP
Japan
Prior art keywords
steel
less
steel plate
toughness
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4474486A
Other languages
Japanese (ja)
Inventor
Haruo Kaji
梶 晴男
Mutsuo Hiromatsu
広松 睦生
Shoji Tone
登根 正二
Akihito Nishijima
西島 明史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4474486A priority Critical patent/JPS62202057A/en
Publication of JPS62202057A publication Critical patent/JPS62202057A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled steel plate having superior weld crack resistance and capable of being welded without preheating by providing a prescribed composition satisfying a specified relation among C, Si and Mn to a steel plate and by regulating the value showing sensitivity to cold cracking during welding. CONSTITUTION:This Cr-Mo steel plate of <=32mm thickness for a multilayered vessel consists of 0.02-0.10% C, 0.02-1.00% Si, 0.20-0.90% Mn, <=0.20% P, prescribed percentages of ten kinds of other elements and the balance Fe, satisfies formula I and has 0.33% Pcm defined by formula II and a bainite structure. The steel plate can be welded without preheating and has high strength and toughness even after stress relief annealing at a high temp. for a long time, so it is especially suitable for the manufacture of a multilayered vessel.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多層容器用Cr −M o鋼板に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a Cr-Mo steel plate for multilayer containers.

[従来の技術] Cr −M o鋼板は、一般に、高温における強度や耐
酸化性にすぐれるため、従来より、石油精製をはじめと
する化学工業プラントにおける中・高温圧力容器や、発
電プラントにおける給水加熱器等として広く用いられて
いる。
[Prior art] Cr-Mo steel sheets generally have excellent strength and oxidation resistance at high temperatures, so they have traditionally been used for medium- to high-temperature pressure vessels in chemical industry plants such as oil refining, and water supplies in power generation plants. Widely used as a heater, etc.

一般に多層容器は、第3図に示すように、内筒1に半円
又は3分円状の多層板2を締め付け、!1目3に長手溶
接4を行ない、このようにして、所要枚数を巻き多して
単位円筒5を構成する0次いで、第4図に示すように、
この単位円筒5の必要数を同軸的に組み合わせ、この単
位円筒の円周に沿って円周溶接6を施して接合し、更に
、両端にフランジ7又は鏡板を溶接することによって製
作される。
In general, a multilayer container is constructed by tightening a semicircular or three-circle-shaped multilayer plate 2 onto an inner cylinder 1, as shown in FIG. Longitudinal welding 4 is performed on the first stitch 3, and in this way, the required number of sheets are wound to form a unit cylinder 5. Then, as shown in FIG.
It is manufactured by assembling the required number of unit cylinders 5 coaxially, performing circumferential welding 6 along the circumference of the unit cylinders to join them, and further welding flanges 7 or end plates to both ends.

従゛来のCr −M o鋼板は、通常、C含有量が0.
15%程度と高く、且つ、Cr、Mo等の合金成分を多
量に含有しているために、溶接割れ感受性組成を示す指
標であるPCMが高い。
Conventional Cr-Mo steel sheets usually have a C content of 0.
Since it is as high as about 15% and contains a large amount of alloy components such as Cr and Mo, its PCM, which is an index indicating the composition susceptible to weld cracking, is high.

従って、その溶接施工に当たっては、低温割れ防止のた
めに、通常、150〜350℃程度での高温の予熱を必
要としている。
Therefore, in welding, high-temperature preheating at about 150 to 350° C. is usually required to prevent cold cracking.

[発明が解決しようとする問題点] 多層容器の製作において、前記単位円筒を長手溶接にて
製作するに際して、高温にて予熱を施すときは、熱膨張
のために開先部の精度が著しく低下し、前層との間に空
隙間を生じ、長手溶接が非常に困難となる。また、仮に
溶接ができたとしても、溶接欠陥を生じやすく、健全な
継手部を選ることが困難である。このために、Cr−M
o鋼板は、高温材料としてすぐれた特性を有しているに
もかかわらず、多層容器への適用は実用化されていない
[Problems to be Solved by the Invention] In manufacturing a multilayer container, when the unit cylinder is manufactured by longitudinal welding, when preheating is performed at a high temperature, the accuracy of the groove portion is significantly reduced due to thermal expansion. However, a gap is created between the layer and the previous layer, making longitudinal welding extremely difficult. Furthermore, even if welding is possible, welding defects are likely to occur, making it difficult to select a sound joint. For this purpose, Cr-M
Although steel plates have excellent properties as high-temperature materials, their application to multilayer containers has not been put to practical use.

他方において、低温割れ感受性を低めて溶接性を改善す
るためには、PCMを低減すること、特にclを下げる
ことが有効であることは既によく知られている。Cr−
Mo’a41Fiにおいても、かかる手段によって溶接
性を改善することは可能であるが、C量を低減すれば、
強度や靭性の低下、高温クリープ強度の低下等の問題を
生じる。特に、多層容器の製作に用いられる鋼板自体は
、その板厚は32 m m以下と薄いものの、これを積
層した単位の円筒の肉厚はlOO〜500mm程度にも
達するため、圧力容器の組み立て時の円周溶接後のSR
は、100〜500 m mの肉厚に基づいて実施され
る。従って、多層容器の製作に用いられる°Cr−Mo
鋼板は、それぞれの板厚が32 m m以下であっても
、板厚100〜500mm材に相当するSR後にも、所
定の強度及び靭性を保持していることが要求される。従
って、単にC量を低減するのみでは、多層円筒容器の製
作に適用し得るCr−Moを得ることができない。
On the other hand, it is already well known that reducing PCM, especially lowering Cl, is effective in reducing cold cracking susceptibility and improving weldability. Cr-
Although it is possible to improve the weldability of Mo'a41Fi by such means, if the amount of C is reduced,
This causes problems such as a decrease in strength and toughness, and a decrease in high-temperature creep strength. In particular, although the steel plates used in the production of multilayer containers are thin, at less than 32 mm, the wall thickness of the unit cylinder made by laminating them reaches 100 to 500 mm, so it is difficult to assemble the pressure vessel. SR after circumferential welding of
is carried out based on a wall thickness of 100-500 mm. Therefore, °Cr-Mo used for manufacturing multilayer containers
Even if each steel plate has a thickness of 32 mm or less, it is required to maintain a predetermined strength and toughness even after SR, which corresponds to a steel plate with a thickness of 100 to 500 mm. Therefore, simply reducing the amount of C does not make it possible to obtain Cr-Mo that can be applied to the production of multilayer cylindrical containers.

また2合金元素Bは、従来、焼入れ焼戻しを行なう調質
鋼については広く利用されている。
Furthermore, the two alloying elements B have been widely used for tempered steels that are quenched and tempered.

近年では焼ならし鋼乃至焼ならし焼戻し鋼にも微量のB
を添加することにより、鋼の焼入れ性の増加を図り1強
度を増加させる方法が実用化されている。
In recent years, trace amounts of B have been added to normalized steel and normalized and tempered steel.
A method has been put into practical use to increase the hardenability of steel and increase its strength by adding .

しかし、Cr −M o鋼に関しては、B添加は、#S
R脆化特性の付与及び高強度高靭性化、熱間加工性の改
善等の目的に限られており、C含有量が、約0.11%
以上であるC r −M o鋼では、大幅な溶接性の改
善は実現されていない。
However, for Cr-Mo steel, B addition
It is limited to the purpose of imparting R embrittlement properties, increasing strength and toughness, and improving hot workability, and the C content is approximately 0.11%.
With the above-mentioned Cr-Mo steel, significant improvement in weldability has not been achieved.

[発明の目的] 本発明は、すぐれた耐溶接割れ性を有し、溶接施工時に
予熱なしにて溶接が可能であり、そのうえ、高温長時間
のSR熱処理後にも、高強度高靭性を有する焼ならし焼
戻し型の多層容器用Cr −M o鋼板を提供すること
を目的とする。
[Object of the invention] The present invention has excellent weld cracking resistance, allows welding without preheating during welding work, and has high strength and toughness even after long-term SR heat treatment at high temperatures. An object of the present invention is to provide a Cr-Mo steel sheet for use in a conditioned and tempered multilayer container.

[発明の概要] 出願に係る第1の発明は、 C0.02〜o、io% SL   0.02〜1.00% M n   0 、20 NO、90%P    0.
020%以下 s    o、oio%以下 Cu     0.05〜0.35% Ni     0.05〜0.35% Cr     1.65〜3.50% M o     0  、 75〜!、  、  25
%B      0.0002−0,0020%sol
  An   0 .002〜0 .100%Sn  
 0.010%以下 sb   o、oio%以下 As   0.010%以下 残部が、鉄及び不可避的不純物よりなり、44C−7S
i−7Mn(1)≧O を満足すると共に、 で定義されるPCMが0.33%以下であることを特徴
とする多層容器用Cr −M o鋼板である。
[Summary of the invention] The first invention according to the application is as follows: C0.02-o, io% SL 0.02-1.00% M n 0 , 20 NO, 90% P 0.
020% or less so, oio% or less Cu 0.05-0.35% Ni 0.05-0.35% Cr 1.65-3.50% Mo 0, 75~! , , 25
%B 0.0002-0,0020%sol
An 0. 002~0. 100% Sn
0.010% or less sb o, oio% or less As 0.010% or less The balance consists of iron and unavoidable impurities, 44C-7S
This is a Cr--Mo steel sheet for multilayer containers, which satisfies i-7Mn(1)≧O and has a PCM defined by 0.33% or less.

また、本出願に係る第2の発明は、上記した化学成分に
加えて、 T i   0 、005〜0.07%Nb   0.
005〜0.07% V    0.005〜0.07%、及びCa   0
.0005〜0.0070%よりなる群から選ばれる少
なくとも1種の元素を含有することを特徴とする。
Further, the second invention according to the present application includes, in addition to the above-mentioned chemical components, Ti 0 , 005 to 0.07% Nb 0.
005-0.07% V 0.005-0.07%, and Ca 0
.. It is characterized by containing at least one element selected from the group consisting of 0.0005% to 0.0070%.

以下に本発明について詳細に説明する。The present invention will be explained in detail below.

本発明によるC r −M O鋼において、Bは、オー
ステナイト中に固溶し、納品粒界に偏析して、フェライ
ト変態を抑制するため、鋼の焼入れ性を向上させる。し
かし、他方において、Bは、鋼中のNと結合しやすく、
BがBNを生成すると、鋼中におけるBの有効量が減少
し、焼入れ性を低下させる。従って、本発明鋼において
は、鋼の焼入れ性を向上させるべく、Bの有効量を確保
するために、鋼中のN量を低減すると共に、Auによっ
てNを固定する。しかし、Bを過多に添加するときは、
オーステナイト粒界にB化合物が析出し、却って焼入れ
性を低下させるので、本発明においては、Bを適正量を
添加することが必要である。
In the Cr-MO steel according to the present invention, B dissolves in solid solution in austenite and segregates at the grain boundaries of the delivered product to suppress ferrite transformation, thereby improving the hardenability of the steel. However, on the other hand, B easily combines with N in steel,
When B forms BN, the effective amount of B in the steel decreases, reducing hardenability. Therefore, in the steel of the present invention, in order to ensure an effective amount of B in order to improve the hardenability of the steel, the amount of N in the steel is reduced and N is fixed with Au. However, when adding too much B,
In the present invention, it is necessary to add an appropriate amount of B, since the B compound precipitates at the austenite grain boundaries and actually reduces the hardenability.

しかし、本発明鋼のように、低C鋼においては、Bの焼
入れ性向上効果を利用するだけでは、強度、靭性ほか目
的とする望ましい特性を得ることは困難である。ここに
おいて、本発明者らは、研究を瓜ねた結果、低C鋼にお
いて、Bを適正量添加して、その焼入れ性向上効果を利
用すると共に、Cu及びNiを複合添加することにより
、鋼の焼入れ性を一層向上させると・同時に、Bの焼入
れ性向上効果その相乗効果によって、低Cの成分系にも
かかわらず鋼組織はベイナイトとなり、同時に、微細な
炭窒化物が結晶粒内に析出し、強度及び靭性を向上させ
ることを見出した。更に、ベイナイトは、各合金元素の
その固溶限が高いために、納品粒界に析出物を生じ難い
性質を有しており、その結果として、SR後の特性及び
クリープ破断強度が改善されることも見出した。
However, in a low C steel like the steel of the present invention, it is difficult to obtain desired properties such as strength and toughness just by utilizing the hardenability improving effect of B. Here, as a result of research, the present inventors added an appropriate amount of B to low C steel to utilize its hardenability improvement effect, and also added Cu and Ni in combination to improve the strength of the steel. At the same time, due to the synergistic effect of the hardenability improvement effect of B, the steel structure becomes bainite despite the low C component system, and at the same time, fine carbonitrides precipitate within the crystal grains. It was discovered that the strength and toughness were improved. Furthermore, since bainite has a high solid solubility limit for each alloying element, it has the property of not easily forming precipitates at grain boundaries, and as a result, the properties and creep rupture strength after SR are improved. I also discovered that.

ここに、上記の効果を確実に得るためには、熱処理時の
オーステナイ化を十分に行ない、合金元素を十分に固溶
させることが必要である。
In order to reliably obtain the above effects, it is necessary to sufficiently austenize during heat treatment and to sufficiently dissolve the alloying elements in solid solution.

合金元票の固溶が十分である場合は、仮に熱処理後に十
分な強度及び靭性が得られたとしても、高温長時間のS
R後には、析出物の凝集と粗大化によって、特に、靭性
が著しく低下する。更に、本発明鋼におけるように、低
C鋼の場合は、clの低減に伴って、オーステナイト化
のための温度、即ち、Ac3点が上昇するので1通常の
オーステナイト化温度である910〜930℃の温度へ
の加熱によっては、充分なオーステナイト化が困難とな
る。しかし、オーステナイト化温度を上昇させることは
、結晶粒が粗大化し、靭性を劣化させるので、避けるべ
きである。更に、鋼板製造の実操業時においては、オー
ステナイト化温度を高くすることは、熱処理炉の損傷を
激しくし、他の鋼材との同時装入も制限されることとな
るために、これも避けるべきである。
If the solid solution of the alloy base is sufficient, even if sufficient strength and toughness are obtained after heat treatment, S
After R, the toughness in particular decreases significantly due to the aggregation and coarsening of the precipitates. Furthermore, in the case of a low C steel like the steel of the present invention, as the Cl decreases, the temperature for austenitization, that is, the Ac3 point increases, so the normal austenitization temperature is 910 to 930°C. Depending on the heating to a temperature of , sufficient austenitization becomes difficult. However, increasing the austenitizing temperature should be avoided because it causes coarse grains and deteriorates toughness. Furthermore, during actual operation of steel sheet manufacturing, raising the austenitizing temperature will severely damage the heat treatment furnace and limit simultaneous charging with other steel materials, so this should also be avoided. It is.

そこで、本発明者らは、A(l変態点に影響を与える元
素について詳細な研究を重ねた結果、Cr −M o鋼
における化学組成を限定すると共に、その組1ItX囲
内において、c量に応じてSi及びM n Qを規制す
ることによって、オーステナイト化温度を高める必要な
しに、通常のオーステナイト化温度にて十分にオーステ
ナイト化を達成し得ることを見出した。
Therefore, as a result of repeated detailed research on the elements that affect the A(l transformation point), the present inventors limited the chemical composition of Cr-Mo steel, and determined that, within the group 1ItX, It has been found that by regulating Si and MnQ, austenitization can be sufficiently achieved at a normal austenitization temperature without the need to increase the austenitization temperature.

更に、SRによる鋼の脆化要因としては、上述した析出
物の凝集及び粗大化とは別に、SR処理時の冷却速度が
遅いために生じる焼戻し脆化をも考慮する必要がある。
Furthermore, as a cause of embrittlement of steel due to SR, apart from the agglomeration and coarsening of precipitates mentioned above, it is also necessary to consider temper embrittlement that occurs due to the slow cooling rate during SR treatment.

この焼戻し脆化は、SR処理時に550〜350℃の温
度域を緩慢に冷却されるため、結晶粒界にP、Sn。
This tempering embrittlement is caused by slow cooling in the temperature range of 550 to 350°C during SR treatment, which causes P and Sn to form at grain boundaries.

Sb、As等の不純物が偏析し、粒界を脆化させるため
に生じる0本発明者らは、これらを防ぐためには、上記
した不純物元素量の低減規制が有効であることを見出し
た。
The present inventors have found that in order to prevent these problems, it is effective to reduce the amount of impurity elements described above.

また、高温長時間のSR後にもすぐれた靭性を確保する
ためには、SR前の状態でできる限り高い靭性値を得る
必要があることも見出した。
We have also found that in order to ensure excellent toughness even after high-temperature, long-term SR, it is necessary to obtain as high a toughness value as possible in the state before SR.

本発明は、上記した新しい知見に基づいて完成されたも
のである。
The present invention was completed based on the above-mentioned new findings.

Cは、鋼の強度を確保するために、発明鋼においては、
0.02%以上を添加することが必要であるが、反面、
Ciの増加と共に溶接性、靭性が低下するので、添加量
の上限は00lO%とする。
C is for inventive steel to ensure the strength of the steel.
It is necessary to add 0.02% or more, but on the other hand,
Since weldability and toughness decrease as the amount of Ci increases, the upper limit of the amount added is set at 001O%.

Siは、強度の確保及び耐酸化性の向上のために有効で
あるが、焼戻し脆化感受性を高めるので、添加量は0.
02〜1.00の範囲とする。
Although Si is effective for ensuring strength and improving oxidation resistance, it increases susceptibility to temper embrittlement, so the amount added is 0.
The range is 02 to 1.00.

Mnは、鋼の強度と延性を高めるのに有効であるが、過
多に添加すると、溶接性が低下するので、添加量は0.
20〜0.90%の範囲とする。
Mn is effective in increasing the strength and ductility of steel, but if added in excess, weldability decreases, so the amount added is 0.
The range is 20% to 0.90%.

ただし、StとMnは、前述したように、SR処理後の
靭性を確保する観点からC量に応じて添加量を制御する
必要がある。
However, as described above, it is necessary to control the amounts of St and Mn added in accordance with the amount of C from the viewpoint of ensuring toughness after the SR treatment.

第1図に、本発明で規定する範囲の化学成分を有する板
厚9〜32mmのCr −M o鋼板について、44G
 −7Si+7Mn($)と衝撃特性の関係を示す、焼
きならし焼戻しの状態では、すべて良好な靭性を有して
いるが、690℃で27時間(7)SR処理後ハ44C
−7Si÷7Mn($)カ0 % J: !J モ小さ
い場合にはVEOが急激に低下すると同時に、破面遷移
温度VT r sも大幅に上昇していル、コレニ対し[
,44C−7SiSiH2($)が0%以上であるとき
は、SR処理も、vEoは20kgf11m以上、vT
 r sも−20”0以下で良好な靭性を示している。
FIG. 1 shows a 44G
-7Si+7Mn ($) shows the relationship between impact properties. In the normalized and tempered state, all have good toughness, but after SR treatment at 690°C for 27 hours (7)
-7Si÷7Mn ($) 0% J: ! When J is small, the VEO decreases rapidly and at the same time the fracture surface transition temperature VTrs also increases significantly.
, 44C-7SiSiH2 ($) is 0% or more, SR treatment is also performed, vEo is 20kgf11m or more, vT
rs is also -20"0 or less, indicating good toughness.

従って、C,Si及びMnは、 44C−7Si+7Mn($)≧0−−−−−(1)の
関係を満足するように添加する。
Therefore, C, Si, and Mn are added so as to satisfy the following relationship: 44C-7Si+7Mn ($)≧0---(1).

Pは、鋼中に不純物として含有されるが、靭性及び溶接
性を損なうばかりでなく、焼戻し脆化感受性を高めるた
め、極力低減することが望ましい、従って、本発明にお
いては、Pの含有量が0.020%以下とする。
P is contained as an impurity in steel, but it not only impairs toughness and weldability but also increases susceptibility to temper embrittlement, so it is desirable to reduce it as much as possible. Therefore, in the present invention, the P content is It shall be 0.020% or less.

Sも鋼中に不純物として含有されるが、鋼の靭性を著し
く損なうので、極力低減することが望ましく、含有量は
0.010%以下とする。
S is also contained as an impurity in steel, but since it significantly impairs the toughness of steel, it is desirable to reduce it as much as possible, and the content should be 0.010% or less.

Cuは、固溶強化及び析出強化に有効な成分であり、か
かる効果を有効に発揮させるためには、少なくとも0.
05%を添加する必要がある。一方、0.35%を越え
て過多に添加すると、熱間加工性及び溶接性が劣化する
ので、Cuの添加量は0.05〜0.35%の範囲とす
る。
Cu is an effective component for solid solution strengthening and precipitation strengthening, and in order to effectively exhibit such effects, Cu must be at least 0.
It is necessary to add 0.05%. On the other hand, if added in excess of 0.35%, hot workability and weldability will deteriorate, so the amount of Cu added is in the range of 0.05 to 0.35%.

Niは、鋼の焼入れ性を増し、且つ、高温におけるオー
ステナイト粒界へのCuの析出による亀甲割れを防止す
るのに有効な元素である。
Ni is an element effective in increasing the hardenability of steel and preventing hexagonal cracking due to precipitation of Cu at austenite grain boundaries at high temperatures.

かかる効果を有効に発現させるためには、0.05%以
上を添加する必要がある。
In order to effectively exhibit such an effect, it is necessary to add 0.05% or more.

Crは、高温における耐酸化性と強度を確保するのに有
効であるが、過度に添加すると溶接性が劣化する。従っ
て、添加量は1.65〜3.50%とする。
Cr is effective in ensuring oxidation resistance and strength at high temperatures, but when added in excess, weldability deteriorates. Therefore, the amount added should be 1.65 to 3.50%.

MOは、鋼の焼入れ性、特にBと共存した場合の焼入性
を高めるのに不可欠な元素であり、また、焼戻し軟化抵
抗を高め、高温強度の向」−にも有効であって、0.7
5%以上添加する必要があるが、高価な元素であるので
、その添加量は0.75〜1,25%の範囲とする。
MO is an essential element for increasing the hardenability of steel, especially when coexisting with B, and is also effective in increasing temper softening resistance and improving high-temperature strength. .7
It is necessary to add 5% or more, but since it is an expensive element, the amount added is in the range of 0.75 to 1.25%.

Bは、前述したように、焼入れ性を高め、強度上昇に有
効であるので1本発明鋼においては、0.0002%以
上を添加することが必要である。しかし、0.0020
%を越えて過剰に添加するときは、B化合物を生成し、
焼入れ性を低下させると同時に靭性の劣化を伴う。
As mentioned above, B is effective in improving hardenability and increasing strength, so it is necessary to add 0.0002% or more in the steel of the present invention. However, 0.0020
When added in excess of more than %, compound B is generated,
It reduces hardenability and is accompanied by deterioration of toughness.

、従って、添加量の上限は0.0020%とする。Therefore, the upper limit of the amount added is 0.0020%.

、。+Allは、Nを固定し、また、組織を微細化する
作用があるが、その含有量が0゜002%よりも少ない
ときは、上記の効果が期待できず、一方含有量が0.1
0%を越えると、鋼塊表面割れの原因となることから、
その含有量は0.002〜o、ioo%の範囲とする。
,. +All has the effect of fixing N and refining the structure, but when its content is less than 0°002%, the above effect cannot be expected;
If it exceeds 0%, it will cause cracks on the surface of the steel ingot.
Its content is in the range of 0.002 to 0,000%.

Sn、Sb及びAsは、SR処理時の冷却過程において
結晶粒界に偏析し、靭性を損なうので、含有量はそれぞ
れ0.010%以下とすることが必要である。
Sn, Sb, and As segregate at grain boundaries during the cooling process during SR treatment and impair toughness, so the content of each needs to be 0.010% or less.

前記pcsは、よく知られているように、溶接時の低温
割れ感受性を示す指標であり、溶接施工時に予熱なしに
て割れを生じることなく溶接を可能とするためには、こ
の値を極力低く抑える必要がある。そのため、PCNを
0.33%以下とする。
As is well known, the PCS is an index indicating the susceptibility to cold cracking during welding, and in order to enable welding without preheating and without cracking during welding, this value must be kept as low as possible. It is necessary to suppress it. Therefore, the PCN is set to 0.33% or less.

本発明によれば、第2の発明による Cr−Mo鋼板は、前記した元素に加えて、Ti、Nb
、V及びCaよりなる群から選ばれる少なくとも1種以
上の元素を含有する。
According to the present invention, the Cr-Mo steel sheet according to the second invention contains Ti, Nb, in addition to the above-mentioned elements.
, V, and Ca.

Tiは、高温まで安定してNを固定し、且つ、組織を微
細化する効果を有する。かかる効果を有効に発揮させる
ためには、少なくともo 、oos%を添加する必要が
あるが、0゜07%を越えて過多に添加するときは、靭
性を劣化させるので、添加量が0.005〜0.07%
の範囲とする。
Ti has the effect of stably fixing N even at high temperatures and refining the structure. In order to effectively exhibit this effect, it is necessary to add at least o. ~0.07%
The range shall be .

Nb、Vは共に、結晶粒を微細化して強度を向上させる
のに有効であるが、それぞれ0゜005%未満ではその
効果が期待できず、一方、それぞれ0.07%を越える
ときは、靭性及び溶接性を劣化させるのみならず、経済
性の点からも好ましくない、従って、その添加量は、そ
れぞれ0.005〜0.07%の範囲とする。
Both Nb and V are effective in refining crystal grains and improving strength, but if each is less than 0.005%, this effect cannot be expected; on the other hand, if each exceeds 0.07%, the toughness This not only deteriorates weldability but is also unfavorable from an economic point of view. Therefore, the amount of each addition is set in the range of 0.005 to 0.07%.

Caは、靭性を改善し、且つ、溶接継手及びボンド部の
靭性を向上させ、更に、板厚方向の特性を改善する。か
かる効果を有効に発揮させるには、少なくとも0.00
05%を添加することが必要である。しかし、0.00
70%を越えて過多に添加するときは、非金属介在物の
量が増して、延性を低下させる。従って、本発明鋼にお
いては、その添加量をo、ooos〜0.0070%の
範囲とする。
Ca improves toughness, improves the toughness of welded joints and bond parts, and further improves properties in the thickness direction. In order to effectively exhibit this effect, at least 0.00
It is necessary to add 0.05%. However, 0.00
When added in excess of more than 70%, the amount of nonmetallic inclusions increases, reducing ductility. Therefore, in the steel of the present invention, the amount added is in the range of o,oos to 0.0070%.

上記Ti、Nb、V及びCaは必要に応じて適当に組み
合わせて使用されるが、■を添加する場合も、PCHを
前述した値以下に抑える必要がある。
The above-mentioned Ti, Nb, V and Ca may be used in appropriate combinations as required, but even when adding (2), it is necessary to suppress the PCH to below the above-mentioned value.

尚、不純物として含有されるNは、その量が余りに多い
ときは、前述したように、BNを生成しやすくなり、そ
の結果、焼入れ性に有効なり量を減少させ、鋼の焼入れ
性を低下させるので、本発明においては、N量は0.0
07%以下とすることが好ましい。
In addition, when the amount of N contained as an impurity is too large, as mentioned above, it becomes easy to generate BN, and as a result, the amount effective for hardenability is reduced, and the hardenability of steel is reduced. Therefore, in the present invention, the amount of N is 0.0
It is preferable to set it to 0.07% or less.

本発明によるC r −M o鋼板は、常法に従って前
記所定の化学成分を有する鋼塊又は鋼片を熱間圧延し、
その後、引続いて熱処理を行なえばよい、板厚を32m
m以下としたのは、32mmを超えると溶接時に予熱が
必要となるからである。
The Cr-Mo steel plate according to the present invention is obtained by hot rolling a steel ingot or slab having the predetermined chemical composition according to a conventional method,
After that, the plate thickness can be reduced to 32m by continuing heat treatment.
The reason why it is set to be less than 32 mm is because if it exceeds 32 mm, preheating will be required during welding.

し実施例] 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定させるものではない。
EXAMPLES] The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way.

(実施例) 第1表に本発明による多層容器用Cr−M。(Example) Table 1 shows Cr-M for multilayer containers according to the present invention.

鋼板A−F及び比較例としてのCr −M o鋼板G−
にの化学成分、PCM及び前記式(1)の値を示し、第
2表にこれら鋼板の板厚、熱処理条件、その引張特性、
衝撃特性及び溶接性を示す。
Steel plate A-F and Cr-Mo steel plate G- as a comparative example
The chemical composition, PCM, and the value of the above formula (1) are shown in Table 2, and the thickness, heat treatment conditions, and tensile properties of these steel plates are shown in Table 2.
Indicates impact properties and weldability.

本発明によるC r −M o鋼板は、いずれも、従来
型の高C量Cr−Mo鋼板に比較して、C量を著しく低
減しているためにpc−が低い。
All of the Cr-Mo steel sheets according to the present invention have low pc- because the amount of C is significantly reduced compared to conventional high-C content Cr-Mo steel sheets.

その結果、斜めY形溶接割れ試験JISZ3158にお
けるルート割れ防止予熱温度が室温であることから、本
発明鋼は全て予熱なしに°溶接が可能である。
As a result, since the preheating temperature for preventing root cracking in the diagonal Y-shaped weld cracking test JIS Z3158 is room temperature, all steels of the present invention can be welded without preheating.

更に、本発明鋼板においては、焼きならし焼戻しのまま
は勿論、前記(1)式値を05以上としているため、6
90℃で27時間という条件のような高温長時間のSR
処理を実施した後でも、50 kgf/mゴ以上の引張
強さが得られる。
Furthermore, in the steel sheet of the present invention, the value of the formula (1) is set to 05 or more, as well as the normalized and tempered steel sheet.
SR at high temperature for a long time such as 27 hours at 90℃
Even after the treatment, a tensile strength of more than 50 kgf/m is obtained.

また衝撃特性においても、0℃における吸収エネルギー
vlEoは20 kgf、m以上である。
Also, in terms of impact properties, the absorbed energy vlEo at 0°C is 20 kgf, m or more.

一方比較例においては比較鋼G及びHは従来型のCr 
−M o鋼板であり、Clが多いので、斜めY形溶接割
れ試験におけるルート割れ防止予熱温度はそれぞれ17
5℃、200℃である。従って、これらの鋼板を溶接す
る際には、低温割れの発生を防止するために、予熱を施
すことが必要不可欠であるので、前述した理由によって
、これらの鋼板を多層容器の製造に適用することができ
ない。
On the other hand, in the comparative example, comparative steels G and H are conventional Cr steel.
- Since it is a Mo steel plate and contains a lot of Cl, the preheating temperature for preventing root cracking in the diagonal Y-shaped weld cracking test is 17
5°C and 200°C. Therefore, when welding these steel plates, it is essential to preheat them in order to prevent the occurrence of cold cracks, so for the reasons mentioned above, these steel plates cannot be applied to the manufacture of multilayer containers. I can't.

また、比較鋼I、J及びKはC量を低減しているために
、溶接性は多層容器用鋼板としての要求を満たしている
。しかし、比較鋼重はB無添加鋼板であり、また、比較
鋼JはCu及びNi無添加鋼板であるので、いずれも6
90℃で27時間のSR処理後、引張強さが 50 kgf/mゴ以下となり、多層容器用鋼板として
は強度が不足している。
Furthermore, since comparative steels I, J, and K have a reduced C content, their weldability satisfies the requirements for steel sheets for multilayer containers. However, since the comparative steel weight is a steel plate without B additives, and the comparative steel J is a steel plate without Cu and Ni additives, both are 6
After SR treatment at 90°C for 27 hours, the tensile strength was less than 50 kgf/m, which is insufficient for a steel plate for multilayer containers.

比較鋼には、前記(1)式値が−0,60%であって、
本発明で規定する範囲になく、焼きならし焼戻しままで
は、高強度高靭性を有するが、690℃で27時間のS
R処理後は、vlEoが5 、3kgf−mテあッテ、
靭性の劣化が著しい。
The comparative steel has the formula (1) value of -0.60%,
It is not within the range specified in the present invention, and it has high strength and high toughness as normalized and tempered, but S
After R treatment, vlEo is 5, 3kgf-mte,
Significant deterioration of toughness.

以上のように、本発明Cr −M o鋼板によれば、予
熱なしに溶接が可能であり、板厚500azn材に要求
されるSR条件である690℃で27時間のような高温
時間のSR処理を施しても、すぐれた強度と靭性とを保
持している。
As described above, according to the Cr-Mo steel sheet of the present invention, welding is possible without preheating, and SR treatment at a high temperature of 27 hours at 690°C, which is the SR condition required for a 500 AZN plate thickness, is possible. It maintains excellent strength and toughness even when subjected to

多層容器が450℃以上のクリープ領域で使用される場
合には、使用される鋼板は、十分なりリープ破断強度を
有していなければならない0本発明鋼板Aのクリープ破
断強度を従来型の鋼板(C量0.11〜0.16%)と
比較して第2図に示す、第2図において、横軸[P]は
、Larson−Mille rパラメータを示し、T
は試験温度(K)、tは試験時間(h、 )である0本
発明鋼の破断強度は、従来型のそれと比較して同等以上
である。これは、本発明鋼によれば、クリープ温度域に
おいて、ポンド発生の核となる結晶粒界上の炭化物の析
出が少ないうえに、粒界と粒内の強度差が小さいため、
粒界に歪の集中が起こり難いことによるものである。
If the multilayer container is used in a creep region of 450°C or higher, the steel plate used must have a sufficient leap rupture strength. In FIG. 2, the horizontal axis [P] indicates the Larson-Miller r parameter, and T
is the test temperature (K), and t is the test time (h, ). The breaking strength of the steel of the present invention is equal to or higher than that of the conventional steel. This is because, according to the steel of the present invention, in the creep temperature range, there is less precipitation of carbides on the grain boundaries, which are the core of pound formation, and the difference in strength between the grain boundaries and within the grains is small.
This is because strain concentration is difficult to occur at grain boundaries.

[発明の効果] 以上のように、本発明によれば、C量を著しく低減して
、耐低温割れ感受性を低め、予熱なしにて溶接が可能で
あるのみならず、Bと共にCu及びNiを複合添加し、
更に、C,St及びM n iを相対的に制御すると共
に、不純物P 、 S 、 S n、 、 S b及び
As量を低減することによって、高温長時間のSR処理
後にもすぐれた強度及び靭性を保持し、従って、特に、
多層容器の製造に好適に適用し得る厚さ32mmのCr
 −M o鋼板を得ることができる。
[Effects of the Invention] As described above, according to the present invention, not only can the amount of C be significantly reduced, cold cracking resistance and susceptibility be lowered, and welding can be performed without preheating, but also Cu and Ni can be combined with B. Composite addition,
Furthermore, by relatively controlling C, St, and M n i and reducing the amount of impurities P , S , S n , S b , and As, excellent strength and toughness can be achieved even after high-temperature and long-term SR treatment. holds, and therefore, in particular,
32mm thick Cr suitable for manufacturing multilayer containers
-Mo steel plate can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明で規定する範囲の化学成分を有する鋼
板について、(44C−7Si+7Mn)(%)と0℃
における吸収エネルギーvEo及び破面遷移温度y T
 r sとの関係を示すグラフ、第2図は、本発明鋼板
及び比較鋼板の高温クリープ破断強度を示すグラフ、第
3図は、多層容器の製作に用いられる単位容器を示す斜
視図、第4図は、多層容器の一例を示す断面図である。 第1図 (44C−775i −7Mn)  (’10)第2図 破断時間 (h) 15.0 16.○ +7.0  18.0 1’L0
 2CL0 210Larsan−Xi l1erパラ
メータ [P] = T (Qt+20)X10−’T
:試験温度(K) t:破断時間(h)
Figure 1 shows (44C-7Si+7Mn) (%) and 0°C for steel sheets having chemical components within the range specified by the present invention.
Absorbed energy vEo and fracture surface transition temperature y T
FIG. 2 is a graph showing the high-temperature creep rupture strength of the steel sheets of the present invention and comparative steel sheets. FIG. 3 is a perspective view showing a unit container used for manufacturing a multilayer container. The figure is a sectional view showing an example of a multilayer container. Figure 1 (44C-775i -7Mn) ('10) Figure 2 Breaking time (h) 15.0 16. ○ +7.0 18.0 1'L0
2CL0 210Larsan-Xi l1er parameter [P] = T (Qt+20)X10-'T
:Test temperature (K) t: Breaking time (h)

Claims (2)

【特許請求の範囲】[Claims] (1)C 0.02〜0.10% Si 0.02〜1.00% Mn 0.20〜0.90% P 0.020%以下 S 0.010%以下 Cu 0.05〜0.35% Ni 0.05〜0.35% Cr 1.65〜3.50% Mo 0.75〜1.25% B 0.0002〜0.0020% solAl 0.002〜0.100% Sn 0.010%以下 Sb 0.010%以下 As 0.010%以下 残部が、鉄及び不可避的不純物よりなり、 44C−7Si+7Mn(%)≧0 を満足すると共に、 P_C_M=C+Si/30+(Mn+Cu+Cr)/
20+Ni/60+Mo/15+V/10+5B(%)
で定義されるP_C_Mが0.33%以下であり、且つ
組織がベイナイトであって、予熱なしに溶接が可能であ
り、高温長時間の応力除去焼なまし処理後にも高強度高
靭性を有する板厚32mm以下の多層容器用Cr−Mo
鋼板。
(1) C 0.02-0.10% Si 0.02-1.00% Mn 0.20-0.90% P 0.020% or less S 0.010% or less Cu 0.05-0.35 % Ni 0.05-0.35% Cr 1.65-3.50% Mo 0.75-1.25% B 0.0002-0.0020% solAl 0.002-0.100% Sn 0.010 % or less Sb 0.010% or less As 0.010% or less The remainder consists of iron and unavoidable impurities, satisfies 44C-7Si+7Mn(%)≧0, and P_C_M=C+Si/30+(Mn+Cu+Cr)/
20+Ni/60+Mo/15+V/10+5B(%)
P_C_M defined as 0.33% or less, the structure is bainite, welding is possible without preheating, and the plate has high strength and high toughness even after high-temperature and long-term stress relief annealing treatment. Cr-Mo for multilayer containers with a thickness of 32 mm or less
steel plate.
(2)C 0.02〜0.10% Si 0.02〜1.00% Mn 0.20〜0.90% P 0.020%以下 S 0.010%以下 Cu 0.05〜0.35% Ni 0.05〜0.35% Cr 1.65〜3.50% Mo 0.75〜1.25% B 0.0002〜0.0020% solAl 0.002〜0.100% Sn 0.010%以下 Sb 0.010%以下 As 0.010%以下 を含有し、更に、 Ti 0.005〜0.07% Nb 0.005〜0.07% V 0.005〜0.07%、及び Ca 0.0005〜0.0070% よりなる群から選ばれる少なくとも1種の元素を含有し
残部が鉄および不可避的不純物よりからなり、 44C−7Si+7Mn(%)≧0 を満足すると共に、 P_C_M=C+Si/30+(Mn+Cu+Cr)/
20+Ni/60+Mo/15+V/10+5B(%)
で定義されるP_C_Mが0.33%以下であり、且つ
組織がベイナイトであって、予熱なしにて溶接が可能で
あり、高温長時間の応力除去焼なまし処理後にも高強度
高靭性を有する板厚32mm以下の多層容器用Cr−M
o鋼板。
(2) C 0.02-0.10% Si 0.02-1.00% Mn 0.20-0.90% P 0.020% or less S 0.010% or less Cu 0.05-0.35 % Ni 0.05-0.35% Cr 1.65-3.50% Mo 0.75-1.25% B 0.0002-0.0020% solAl 0.002-0.100% Sn 0.010 % or less Sb 0.010% or less As 0.010% or less, Ti 0.005-0.07% Nb 0.005-0.07% V 0.005-0.07%, and Ca Contains at least one element selected from the group consisting of 0.0005 to 0.0070%, with the remainder consisting of iron and unavoidable impurities, satisfies 44C-7Si+7Mn(%)≧0, and P_C_M=C+Si/ 30+(Mn+Cu+Cr)/
20+Ni/60+Mo/15+V/10+5B(%)
P_C_M defined as 0.33% or less, the structure is bainite, welding is possible without preheating, and it has high strength and high toughness even after high temperature and long stress relief annealing treatment. Cr-M for multilayer containers with a plate thickness of 32 mm or less
o Steel plate.
JP4474486A 1986-03-01 1986-03-01 Cr-mo steel plate for multilayered vessel Pending JPS62202057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4474486A JPS62202057A (en) 1986-03-01 1986-03-01 Cr-mo steel plate for multilayered vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4474486A JPS62202057A (en) 1986-03-01 1986-03-01 Cr-mo steel plate for multilayered vessel

Publications (1)

Publication Number Publication Date
JPS62202057A true JPS62202057A (en) 1987-09-05

Family

ID=12699951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4474486A Pending JPS62202057A (en) 1986-03-01 1986-03-01 Cr-mo steel plate for multilayered vessel

Country Status (1)

Country Link
JP (1) JPS62202057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321228A (en) * 2006-06-05 2007-12-13 Kobe Steel Ltd Steel sheet having excellent haz toughness and undergoing little deterioration in strength caused by heat treatment after welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321228A (en) * 2006-06-05 2007-12-13 Kobe Steel Ltd Steel sheet having excellent haz toughness and undergoing little deterioration in strength caused by heat treatment after welding

Similar Documents

Publication Publication Date Title
EP3549760A1 (en) Rolled composite steel plate of super austenitic stainless steel and manufacturing method therefor
WO2009123292A1 (en) High-tensile strength steel and manufacturing method thereof
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JPH11502259A (en) Ferritic heat-resistant steel excellent in high-temperature strength and method for producing the same
JPS6366368B2 (en)
JPH02284777A (en) Manufacture of stainless steel cladded plate having excellent corrosion resistance and toughness
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JP3319222B2 (en) Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPS62202057A (en) Cr-mo steel plate for multilayered vessel
JPS61104054A (en) High-strength and high-toughness welded clad steel pipe for line pipe
JPS61186453A (en) High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPS62146247A (en) Cr-mo steel plate for multilayer vessel
JPH0368100B2 (en)
JPS63190117A (en) Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method
JPH01172516A (en) Manufacture of acicular ferritic stainless steel having excellent stress corrosive cracking resistance
JPH07300618A (en) Production of hot rolled steel strip for construction use, excellent in refractoriness and toughness
JPH06293940A (en) High cr ferritic steel excellent in high temperature ductility and high temperature strength
JPH04354856A (en) Ferritic heat resistant steel excellent in touchness and creep strength and its production
JPS61166917A (en) Manufacture of cr-mo steel for pressure vessel excelling in weldability and in creep strength
JP2824698B2 (en) Method for producing low alloy heat resistant steel with improved weldability and toughness
KR100514813B1 (en) A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS
JPH07242991A (en) High toughness chromium-molybdenum steel sheet excellent in weldability