KR100514813B1 - A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS - Google Patents

A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS Download PDF

Info

Publication number
KR100514813B1
KR100514813B1 KR10-2000-0079227A KR20000079227A KR100514813B1 KR 100514813 B1 KR100514813 B1 KR 100514813B1 KR 20000079227 A KR20000079227 A KR 20000079227A KR 100514813 B1 KR100514813 B1 KR 100514813B1
Authority
KR
South Korea
Prior art keywords
steel
less
temperature
present
strength
Prior art date
Application number
KR10-2000-0079227A
Other languages
Korean (ko)
Other versions
KR20020049903A (en
Inventor
장웅성
김숙환
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR10-2000-0079227A priority Critical patent/KR100514813B1/en
Publication of KR20020049903A publication Critical patent/KR20020049903A/en
Application granted granted Critical
Publication of KR100514813B1 publication Critical patent/KR100514813B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은, 발전설비, 압력용기 등의 플랜트 구조용강으로 적용되는 Cr-Mo강의 제조방법에 관한 것으로, 강중 Ca을 첨가하고 Ca/S의 제어하고 열간압연후 직접소입법을 적용함으로써, 강의 강도향상과 용접성 개선을 동시에 확보할 수 있는 중고온용 Cr-Mo 강의 제조방법을 제공함에 그 목적이 있다.The present invention relates to a method for producing Cr-Mo steel, which is applied to plant structural steel such as power generation equipment and pressure vessels. The strength of steel by adding Ca in steel, controlling Ca / S, and applying direct quenching after hot rolling The purpose of the present invention is to provide a method for manufacturing a high-temperature Cr-Mo steel that can secure both improvement and weldability.

상기한 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

중량%로, C:0.06~0.15%, Si:0.40%이하, Mn:0.1~1.0%, Cr:1.8~3.5%, Mo:0.8~1.6%, Al:0.02%이하, P:0.010%이하, N:0.006% 이하, S:0.005% 이하, Ca:0.05%이하를 함유하고, Ca/S의 중량비가 1~10이고, 잔부 Fe 및 기타 불가피한 불순물로 조성된 강을 재가열한 후 미재결정역 온도범위에서 5~30%의 압하율로 열간압연한 후 5~30℃/sec의 냉각속도로 직접소입하고 650~750℃ 온도범위에서 소려처리하는 것을 포함하여 이루어지는 중고온용 Cr-Mo강의 제조방법을 그 기술적 요지로 한다.In weight%, C: 0.06 to 0.15%, Si: 0.40% or less, Mn: 0.1 to 1.0%, Cr: 1.8 to 3.5%, Mo: 0.8 to 1.6%, Al: 0.02% or less, P: 0.010% or less, Unrecrystallized zone temperature after reheating steel containing N: 0.006% or less, S: 0.005% or less, Ca: 0.05% or less, Ca / S weight ratio of 1-10, balance Fe and other unavoidable impurities After hot rolling at a reduction rate of 5-30% in the range, it is directly quenched at a cooling rate of 5-30 ° C./sec and subjected to a soaking treatment at a temperature range of 650 ° C. to 750 ° C. It is to the technical point.

Description

중고온용 Cr-Mo강의 제조방법{A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS}Manufacturing method of Cr-Meau steel for medium and high temperature {A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS}

본 발명은, 발전설비, 압력용기 등의 플랜트 구조용강으로 적용되는 Cr-Mo강의 제조방법에 관한 것으로, 보다 상세하게는 강 성분중 Ca/S의 중량비를 제어하고 열간압연후 직접소입,소려처리를 실시함으로써 모재의 강도 및 인성을 향상시킬 수 있는 중고온용 Cr-Mo강의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing Cr-Mo steel applied to plant structural steel, such as power generation equipment and pressure vessels. More specifically, it controls the weight ratio of Ca / S in the steel components, and direct quenching and glazing treatment after hot rolling. It relates to a method for producing a high-temperature Cr-Mo steel that can improve the strength and toughness of the base material.

발전설비, 압력용기 등의 플랜트 구조용강으로 적용되는 Cr-Mo강으로서, 종래에는 2.25Cr-1Mo강이 널리 사용되었다. 이 강은 높은 Cr, Mo 함량에 의해 고온 환경에서 요구되는 내산화성, 고온강도, 내크립성 등 중고온용강이 필요로 하는 성능을 만족시키는 장점이 있다. As a Cr-Mo steel applied to plant structural steel such as power generation equipment and pressure vessels, 2.25Cr-1Mo steel has been widely used. This steel has the advantage of satisfying the performance required for medium and high temperature steel, such as oxidation resistance, high temperature strength, creep resistance, which is required in high temperature environment by high Cr and Mo content.

그러나, 최근 들어 상기 플랜트, 특히 석유화학공업 등에 있어서 플랜트의 효율증대를 위해, 조업조건을 고온, 고압화하고 플랜트를 대형화하는 경향이 있으며, 부재의 박물화에 의해 건설시 재료비용을 저감하려는 노력이 행해지고 있다. 따라서, 기존의 강재보다 높은 강도와 인성이 요구되고 있다. However, in recent years, in order to increase the efficiency of the plant in the plant, especially in the petrochemical industry, there is a tendency to increase the operating conditions at high temperature and pressure and to enlarge the plant, and to reduce the material cost in construction by thinning the members. This is done. Therefore, higher strength and toughness are required than conventional steels.

또한, 이러한 구조물은 다양한 용접공정을 통해 제작되는데, 용접으로 인해 발생되는 잔류응력을 제거하기 위해서는 열처리를 실시해야 하고, 이로 인해 재열균열이 발생하게 되므로, 종래 2.25Cr-1Mo강의 경우, 모재의 강도 및 인성뿐 아니라, 용접성도 동시에 개선해야 하는 어려움이 있었다. 여기서, 재열균열이란 강을 용접한 후 열처리할 때 발생되는 균열을 의미하는 것이다.In addition, the structure is manufactured through a variety of welding process, in order to remove the residual stress caused by welding, heat treatment must be performed, and this causes a re-heat crack, so in the case of conventional 2.25Cr-1Mo steel, the strength of the base material As well as toughness, there was a difficulty in improving weldability at the same time. Here, the reheat crack refers to a crack generated when the heat treatment after welding the steel.

이와 관련된 공지 기술로서, 일본특개소61-223162호에서는, V과 Nb의 미량첨가에 의해 Cr-Mo강의 강도를 향상시키는 기술을 개시하고 있다. 그러나, 상기 기술에서는 V 및 Nb을 첨가하기 때문에 강재를 고온으로 가열해야 하고, 그에 따라 가열설비가 필요하게 되는 문제가 있다. 또한, 오스테나이트 결정립 조대화를 초래하여 인성의 저하가 현저해지는 문제점도 있다.As a related art, Japanese Patent Laid-Open No. 61-223162 discloses a technique for improving the strength of Cr-Mo steel by the minor addition of V and Nb. However, in the above technique, since V and Nb are added, the steel must be heated to a high temperature, thereby requiring a heating facility. In addition, there is also a problem that coarsening of austenite grains is caused and the drop in toughness is remarkable.

이에, 본 발명자들은 상기와 같은 문제점을 해결하기 위하여 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 강중 Ca을 첨가하고 Ca/S의 중량비를 제어하고 열간압연후 직접소입법을 적용함으로써, 강의 강도향상과 용접성 개선을 동시에 확보할 수 있는 중고온용 Cr-Mo 강의 제조방법을 제공함에 그 목적이 있다.Accordingly, the present inventors have repeatedly studied and experimented to solve the above problems, and proposed the present invention based on the results. The present invention adds Ca in steel, controls the weight ratio of Ca / S, and hot rolls. The purpose of the present invention is to provide a method for producing a high-temperature Cr-Mo steel that can secure the strength and weldability of the steel at the same time by applying a direct quenching method.

상기한 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

중량%로, C:0.06~0.15%, Si:0.40%이하, Mn:0.1~1.0%, Cr:1.8~3.5%, Mo:0.8~1.6%, Al:0.02%이하, P:0.010%이하, N:0.006% 이하, S:0.005% 이하, Ca:0.05%이하를 함유하고, Ca/S의 중량비가 1~10이고, 잔부 Fe 및 기타 불가피한 불순물로 조성된 강을 재가열한 후 미재결정역 온도범위에서 5~30%의 압하율로 열간압연한 후 5~30℃/sec의 냉각속도로 직접소입하고 650~750℃ 온도범위에서 소려처리하는 것을 포함하여 이루어지는 중고온용 Cr-Mo강의 제조방법에 관한 것이다.In weight%, C: 0.06 to 0.15%, Si: 0.40% or less, Mn: 0.1 to 1.0%, Cr: 1.8 to 3.5%, Mo: 0.8 to 1.6%, Al: 0.02% or less, P: 0.010% or less, Unrecrystallized zone temperature after reheating steel containing N: 0.006% or less, S: 0.005% or less, Ca: 0.05% or less, Ca / S weight ratio of 1-10, balance Fe and other unavoidable impurities In the manufacturing method of the high-temperature Cr-Mo steel, including hot-rolling at a reduction ratio of 5 to 30% in the range, followed by direct quenching at a cooling rate of 5 to 30 ° C./sec and anodizing at a temperature range of 650 to 750 ° C. It is about.

또한, 상기 강 성분중에는 Cu 및/또는 Ni이 0.5중량% 이하 추가로 함유될 수 있고, 중량%로, V:0.10~0.40%, Nb:0.005~0.1%, Ti:0.005~0.035%, 및 B:0.0005~0.004%의 1종 또는 2종 이상도 함유될 수 있다.In addition, the steel component may further contain 0.5 wt% or less of Cu and / or Ni, and in weight percent, V: 0.10 to 0.40%, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.035%, and B : 0.0005% to 0.004% of one or two or more may be contained.

이하, 본 발명의 중고온용 Cr-Mo강에 있어서, 강 성분 및 제조공정에 대하여 설명한다.Hereinafter, in the high-temperature Cr-Mo steel of this invention, a steel component and a manufacturing process are demonstrated.

C는 강도 및 소입성 확보에 유용한 원소로서, 0.06% 이상 함유되어야 이와 같은 효과를 얻을 수 있다. 그러나, 과잉 첨가되면 용접성을 저하시키므로 상한은 0.15%로 설정하는 것이 바람직하다.C is an element useful for securing strength and quenching property, and should be contained at least 0.06% to obtain such an effect. However, if excessive addition reduces weldability, it is preferable to set the upper limit to 0.15%.

Si은 강도를 확보하는데 유효한 원소이지만 0.40%를 초과하여 첨가되면 소려취화, 수소침식에 대한 감수성이 증대하고 또한 크립파단응력도 저하경향을 나타내므로, 그 함량은 0.40% 이하로 설정하는 것이 바람직하다.Si is an effective element for securing strength, but when added in excess of 0.40%, susceptibility to thinning embrittlement and hydrogen erosion increases, and creep rupture stress also tends to decrease. Therefore, the content thereof is preferably set to 0.40% or less.

Mn은 탈산작용 및 강도와 소입성 확보를 위해 0.1% 이상 함유할 필요가 있다. 그러나, 그 함량이 1.0%이상이면 소려취화감수성이 증대하고 열처리시 산화에 의해 표면성상이 열화되므로, 0.1~1.0% 범위로 첨가하는 것이 바람직하다.Mn needs to be contained in an amount of 0.1% or more in order to secure deoxidation, strength and quenchability. However, if the content is 1.0% or more, the soothing embrittlement susceptibility increases and the surface property deteriorates by oxidation during heat treatment, so it is preferable to add it in the range of 0.1 to 1.0%.

Cr은 강도, 인성, 내식성, 내수소침식성 향상에 유효한 원소이지만, 1.8% 미만에서는 효과가 충분하지 않고 3.5%를 넘으면 용접성이 손상되기 때문에, 그 함량은 1.8~3.5%로 설정하는 것이 바람직하다.Cr is an element effective for improving strength, toughness, corrosion resistance, and hydrogen corrosion resistance. However, if Cr is less than 1.8%, the effect is not sufficient, and if it exceeds 3.5%, the weldability is impaired. Therefore, the content is preferably set to 1.8 to 3.5%.

Mo는 강도, 인성 및 크립파단강도 향상에 효과가 있지만 0.8% 미만에서는 그 효과가 충분하지 않다. 그러나, 그 함량이 1.6%를 초과하면 상기한 효과가 포화하고 원가 측면에서 불리하기 때문에, 그 함량은 0.8-1.6%로 설정하는 것이 바람직하다.Mo is effective in improving strength, toughness and creep rupture strength, but less than 0.8% is not sufficient. However, if the content exceeds 1.6%, the above-mentioned effect is saturated and disadvantageous in terms of cost, so the content is preferably set to 0.8-1.6%.

Al은 그 함량이 0.02% 이상이면 AlN 석출에 의한 결정립 미세화로 강의 고온특성 및 내수소침식성이 저하될 뿐 아니라, 열간가공성이 저하되므로, 그 함량은 0.02% 이하로 제한하는 것이 바람직하다.If the content of Al is 0.02% or more, not only the high temperature property and hydrogen erosion resistance of the steel are lowered due to the refinement of grains by AlN precipitation, but also the hot workability is lowered, so the content is preferably limited to 0.02% or less.

P는 입계에 편석하여 소려취화를 유발하며 재열균열감수성을 높히므로, 가능한 그 함량을 낮추는 것이 좋은데, 실 조업에서 소려취화가 일어나지 않고 조업원가 상승을 초래하지 않는 0.01% 이하로 한정하는 것이 바람직하다.P is segregated at grain boundaries, causing soot embrittlement and increasing the reheat cracking susceptibility. Therefore, it is preferable to lower the content as much as possible. .

N은 내수소침식성, 내재열균열성 및 크립파단강도의 향상을 도모하기 위하여 첨가하는데, 이와 같은 효과를 얻기 위해서 그 함량은 0.006% 이하로 설정하는 것이 바람직하다.N is added in order to improve hydrogen erosion resistance, crack resistance and creep rupture strength, but in order to obtain such an effect, the content is preferably set to 0.006% or less.

S은 내수소침식성 및 내재열균열성 향상을 위해 첨가하는데, 이와 같은 효과를 얻기 위해서 0.005% 이하로 첨가하는 것이 바람직하다.S is added in order to improve hydrogen erosion resistance and crack resistance, but in order to obtain such an effect, it is preferably added in an amount of 0.005% or less.

Ca는 본 발명의 필수원소로서, 강중 S와 우선적으로 결합하여 구상의 CaS 화합물을 미세하게 형성함으로써 S의 입계편석을 방지하는 작용을 한다. 이와 같은 작용 효과를 얻기 위해서는 그 함량을 0.05% 이하로 설정하는 것이 바람직하다. Ca is an essential element of the present invention, and binds preferentially with S in steel to form spherical CaS compounds to act to prevent grain boundary segregation of S. In order to obtain such an effect, it is preferable to set the content to 0.05% or less.

한편, 본 발명에서는 상기한 Ca과 S의 함량을 고려하여 Ca/S의 중량비를 1~10으로 제한하는데, 그 이유는 상기 중량비가 1 미만이면 Ca에 의한 S 고정 효과가 없고, 10을 초과하면 조대한 Ca 화합물이 과다 석출하여 모재의 기계적성질을 저하시키기 때문이다. On the other hand, in the present invention, considering the content of Ca and S described above, the weight ratio of Ca / S is limited to 1 to 10. The reason is that if the weight ratio is less than 1, there is no S fixing effect by Ca, and if it exceeds 10, This is because coarse Ca compound is excessively precipitated to lower the mechanical properties of the base metal.

상기한 바와 같은 강 성분에, 본 발명에서는 Cu 및/또는 Ni을 추가로 첨가할 수 있다. 상기 Cu, Ni은 모두 소입성 향상에 큰 효과를 나타내지만, Cu 및/또는 Ni의 함량이 0.5%를 초과하면 원가에 비해 효과가 크지 않고 소려취화감수성을 증대시키기 때문에, 그 함량은 0.5% 이하로 한정하는 것이 바람직하다.In the present invention, Cu and / or Ni may be further added to the steel component as described above. Both Cu and Ni show a great effect on the improvement of the hardenability, but when the content of Cu and / or Ni exceeds 0.5%, the effect is not great compared to the cost and the turbid embrittlement susceptibility is increased. It is preferable to limit to.

또한, 본 발명의 강 성분 중에는, 중량%로, V:0.10~0.40%, Nb:0.005~0.1%, Ti:0.005~0.035%, 및 B:0.0005~0.004%의 1종 또는 2종 이상이 추가로 함유될 수 있다. 이 때, 상기 V의 함량이 0.10% 이상, 보다 바람직하게는 0.20% 이상 첨가되면내수소침식성, 고온강도, 크립파단강도가 향상되지만, 0.4%를 초과하면 내재열균열감수성이 증대되므로, 상기 V의 함량은 0.10~0.40%, 보다 바람직하게는 0.20~0.35% 범위로 설정하는 것이 좋다.In addition, in the steel component of the present invention, one or two or more of V: 0.10 to 0.40%, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.035%, and B: 0.0005 to 0.004% are added in weight%. It may be contained as. At this time, when the V content is added at least 0.10%, more preferably at least 0.20%, hydrogen corrosion resistance, high temperature strength, and creep rupture strength are improved, but when the content of V is more than 0.4%, the internal crack cracking sensitivity is increased. The content of is preferably set to 0.10 to 0.40%, more preferably 0.20 to 0.35% range.

상기 Nb는 0.005% 이상 첨가하면 상온강도, 고온강도를 모두 향상시키고 또한 내재열균열감수성을 낮추는 효과가 있지만, 그 함량이 0.1%를 초과하면 비금속개재물을 형성하여 제조성이 손상되므로, 0.005~0.1% 범위, 특히 0.005~0.05%로 첨가하는 것이 바람직하다.When Nb is added to 0.005% or more, it has an effect of improving both room temperature strength and high temperature strength and lowering resistance to thermal cracking, but when the content exceeds 0.1%, since Nb forms non-metallic inclusions and impairs manufacturability, 0.005 ~ 0.1 It is preferable to add in the range of%, especially 0.005 to 0.05%.

상기 Ti는 TiN으로 석출하고 강중 고용N을 저하시켜서 내수소침식성, 내재열균열성을 향상시키는 역할을 한다. 이와 같은 역할을 하기 위해서는 적어도 0.005% 이상 첨가되어야 하지만, 그 함량이 0.035%를 초과하면 인성의 저하를 초래하므로, 상한은 0.035%로 한정하는 것이 바람직하다.The Ti precipitates with TiN and lowers solid solution N in steel, thereby improving hydrogen erosion resistance and internal cracking resistance. In order to play such a role, at least 0.005% or more should be added. However, if the content exceeds 0.035%, the toughness is lowered, so the upper limit is preferably limited to 0.035%.

상기 B은 0.0005% 이상 첨가하면 소입성 향상을 도모할 수 있으나, 그 함량이 0.004% 이상이면 페라이트 생성을 촉진하여 강도, 인성을 오히려 저하시키므로, 그 상한은 0.004%로 한정하는 것이 바람직하다.When B is added to 0.0005% or more, the quenchability can be improved. However, if the content is 0.004% or more, the ferrite is promoted to lower the strength and toughness. Therefore, the upper limit thereof is preferably limited to 0.004%.

상기와 같이 조성된 강을 합금원소가 충분히 고용될 수 있는 온도에서 재가열한 후 열간압연할 때, 미재결정온도 구간(재결정온도 이하에서 Ar3 온도 이상)에서 압하율을 5~30%로 하여 압연하는 것이 바람직하다. 상기 미재결정역에서의 압연은, 강재의 강도 및 인성 향상에 효과가 있는데, 이 구간에서 압하율이 30%를 넘으면 압연변형이 커지고 강재의 기계적성질에서 이방성이 현저히 나타나기 때문에, 높은 안전성을 요하는 압력용기용 강에는 적합하지 않게 된다. 반면에, 미재결정역에서의 압하율이 5% 미만이면, 강재의 강도 및 인성의 향상을 이룰 수 없으므로, 열간압연의 최종단계인 미재결정역 온도범위에서의 압하율은 5~30% 범위로 한정하는 것이 바람직하다.When the steel formed as described above is reheated at a temperature at which alloying elements can be sufficiently dissolved, and then hot rolled, the rolling rate is reduced to 5 to 30% in the unrecrystallized temperature section (above A r3 temperature below the recrystallization temperature). It is desirable to. The rolling in the non-recrystallized zone is effective in improving the strength and toughness of the steel. When the rolling reduction exceeds 30% in this section, the rolling deformation increases and the anisotropy in the mechanical properties of the steel is remarkably high. It is not suitable for steel for pressure vessels. On the other hand, if the reduction ratio in the unrecrystallized zone is less than 5%, the strength and toughness of the steel cannot be improved. Therefore, the reduction ratio in the unrecrystallized zone temperature range, which is the final stage of hot rolling, is in the range of 5 to 30%. It is preferable to limit.

상기와 같이 압연을 종료한 후 이어서 직접소입처리를 행하는데, 이 때 소입시 냉각속도에 따라 모재의 조직 및 기계적성질이 크게 달라지므로, 상기 냉각속도를 적절히 제어할 필요가 있다. 본 발명에서는 상기 냉각속도를 5~30℃/sec로 설정하는 것이 바람직한데, 그 이유는 상기 냉각속도가 5℃/sec미만인 경우에는 충분한 소입성 확보가 곤란하며, 30℃/sec를 초과시에는 경화성이 높은 조직이 형성되어 용접시 각종 균열이 발생하고 강재의 사용성능이 저하되기 때문이다. After the rolling is finished as described above, direct quenching treatment is performed. At this time, since the structure and mechanical properties of the base material vary greatly depending on the cooling rate at the time of quenching, it is necessary to appropriately control the cooling rate. In the present invention, it is preferable to set the cooling rate to 5 ~ 30 ℃ / sec, the reason is that when the cooling rate is less than 5 ℃ / sec it is difficult to ensure sufficient hardenability, when it exceeds 30 ℃ / sec curable This is because this high structure is formed, various cracks occur during welding, and the usability of the steel is reduced.

이와 같이 하여 소입된 강재는 통상의 조건인 650~750℃ 온도 범위에서 소려처리를 실시한다.The steel material quenched in this way is subjected to a soaking treatment at a temperature range of 650 to 750 ° C. which is normal conditions.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예 1)(Example 1)

하기 표 1 및 표 2와 같이 조성된 강을 미재결정역에서 20%의 압하율로 열간압연한 다음 10℃/s의 냉각속도로 직접소입하고, 720℃의 온도에서 소려처리하였다. 이와 같이 하여 제조된 강에 대하여, 모재의 인성을 평가하고, 그 결과를 하기 표 3에 나타내었다. 또한, 용접후열처리시 재열균열감수성을 평가하기 위해, 경사Y형 구속균열시험편을 이용해 650℃에서 12시간 열처리하여 노냉한 후 단면 균열발생율을 측정하고, 그 결과를 하기 표 3에 나타내었다. Steels prepared as shown in Tables 1 and 2 were hot-rolled at a reduction ratio of 20% in the non-recrystallization zone, and then directly quenched at a cooling rate of 10 ° C./s, and then treated at a temperature of 720 ° C. Thus, the toughness of the base material was evaluated about the steel manufactured, and the result is shown in following Table 3. In addition, in order to evaluate the reheat cracking susceptibility during post-weld heat treatment, the cross section crack incidence rate was measured after heat treatment at 650 ° C. for 12 hours using an inclined Y-type restraint crack test piece, and the results are shown in Table 3 below.

구분division 화학성분(중량%)Chemical composition (% by weight) CC SiSi MnMn CrCr MoMo AlAl NN PP SS CaCa Ca/SCa / S 비교예1Comparative Example 1 0.120.12 0.400.40 0.450.45 2.262.26 1.011.01 0.010.01 0.0050.005 0.0100.010 0.0050.005 비교예2Comparative Example 2 0.120.12 0.400.40 0.450.45 2.262.26 1.011.01 0.010.01 0.0050.005 0.0090.009 0.0050.005 0.0010.001 0.20.2 비교예3Comparative Example 3 0.1120.112 0.280.28 0.440.44 2.182.18 0.980.98 0.010.01 0.0040.004 0.0170.017 0.0030.003 0.0450.045 1515 발명예1Inventive Example 1 0.120.12 0.140.14 0.460.46 2.222.22 0.970.97 0.010.01 0.0040.004 0.0080.008 0.0040.004 0.010.01 2.52.5 발명예2Inventive Example 2 0.090.09 0.240.24 0.500.50 2.112.11 1.121.12 0.010.01 0.0040.004 0.0080.008 0.0040.004 0.020.02 55 발명예3Inventive Example 3 0.100.10 0.090.09 0.400.40 2.102.10 1.011.01 0.010.01 0.0050.005 0.0090.009 0.0030.003 0.0150.015 55 발명예4Inventive Example 4 0.080.08 0.240.24 0.550.55 2.212.21 0.980.98 0.010.01 0.0040.004 0.0080.008 0.0020.002 0.0120.012 66

구분division 화학성분(중량%)Chemical composition (% by weight) CuCu NiNi VV NbNb TiTi BB 비교예1Comparative Example 1 -- -- -- 비교예2Comparative Example 2 -- -- -- -- -- -- 비교예3Comparative Example 3 0.150.15 0.130.13 0.040.04 -- -- -- 발명예1Inventive Example 1 -- -- -- 발명예2Inventive Example 2 -- -- 0.040.04 -- 0.0150.015 0.00090.0009 발명예3Inventive Example 3 0.160.16 0.210.21 0.010.01 발명예4Inventive Example 4 0.040.04 -- --

구분division 기계적 성질Mechanical properties 모재인성(파면천이온도,℃)Base material toughness (wave surface transition temperature, ℃) 재열균열발생율(%)Reheat crack incidence rate (%) 비교예1Comparative Example 1 -40-40 8080 비교예2Comparative Example 2 -60-60 5050 비교예3Comparative Example 3 -50-50 6060 발명예1Inventive Example 1 -80-80 00 발명예2Inventive Example 2 -100-100 00 발명예3Inventive Example 3 -95-95 00 발명예4Inventive Example 4 -100-100 00

상기 표 3에 나타난 바와 같이, Ca/S비를 1~10으로 조절한 본 발명의 발명예(1)~(4)의 경우에는 파면천이온도가 모두 -80℃ 이하로 연성이 매우 우수한 것을 알 수 있다. 또한, 재열균열발생율이 0%로 균열이 전혀 발생하지 않은 것을 알 수 있다. As shown in Table 3, in the case of the invention examples (1) to (4) of the present invention in which the Ca / S ratio was adjusted to 1 to 10, it was found that the wavefront transition temperature was very excellent at ductility of -80 ° C or less. Can be. In addition, it can be seen that the crack was not generated at all with the reheat crack incidence rate being 0%.

이에 반하여, Ca가 함유되지 않거나 Ca/S비가 본 발명 범위를 벗어난 비교예(1)~(3)의 경우에는 파면천이온도도 높고, 재열균열발생율도 50% 이상인 것을 알 수 있다.On the contrary, in the case of Comparative Examples (1) to (3) that do not contain Ca or the Ca / S ratio is outside the scope of the present invention, the wavefront transition temperature is high, and the reheat cracking incidence rate is 50% or more.

(실시예 2)(Example 2)

실시예 1의 발명예(4)의 성분을 갖는 강 슬래브를 1200℃의 온도에서 2시간 가열한 후, 하기 표 4의 제조조건에 따라 열간압연 및 소입,소려하였다. 그 후, 각각의 모재에 대한 기계적 성질을 측정하고, 그 결과를 하기 표 4에 나타내었다.The steel slab having the component of Inventive Example (4) of Example 1 was heated at a temperature of 1200 ° C. for 2 hours, and then hot-rolled, quenched and considered according to the preparation conditions of Table 4 below. Thereafter, the mechanical properties of the respective base materials were measured, and the results are shown in Table 4 below.

한편, 하기 표 4에서, 노말라이징(normalizing)은, 열간압연후 상온까지 냉각한 다음 재가열하고 0.5℃/s의 냉각속도로 공냉한 다음 910℃로 재가열하여 소려처리하는 방법이다.On the other hand, in Table 4, normalizing (normalizing) is a method of cooling by heating to room temperature after hot rolling, then reheating, air-cooling at a cooling rate of 0.5 ℃ / s and then reheated to 910 ℃.

또한, 재가열소입은, 열간압연후 상온까지 냉각한 다음 910℃로 재가열하여 상온까지 40℃/s의 냉각속도로 소입처리하고 다시 재가열하여 소려처리하는 방법이다.In addition, reheating quenching is a method of cooling to room temperature after hot rolling, then reheating to 910 ° C., quenching at a cooling rate of 40 ° C./s to room temperature, and then reheating and soaking.

구분division 제조조건Manufacture conditions 기계적 성질Mechanical properties 미재결정역압하율(%)Undetermined backpressure reduction rate (%) 열간압연후제조방법Manufacturing method after hot rolling 직접소입시냉각속도(℃/s)Cooling rate when directly quenched (℃ / s) 항복강도(kg/㎟)Yield strength (kg / ㎡) 인장강도(kg/㎟)Tensile Strength (kg / ㎡) 연신율(%)Elongation (%) 파면천이온도(℃)Wave Transition Temperature (℃) 비교예AComparative Example A 노말라이징Normalizing 42.542.5 52.252.2 2424 -30-30 비교예BComparative Example B 재가열소입Reheating Hardening 57.557.5 68.268.2 2020 -50-50 비교예CComparative Example C 22 직접소입Direct quenching 1010 53.653.6 65.165.1 1919 -20-20 비교예DComparative Example D 4040 직접소입Direct quenching 1010 44.344.3 61.261.2 2222 -50-50 비교예EComparative Example E 2020 직접소입Direct quenching 22 40.840.8 56.356.3 2222 -30-30 비교예FComparative Example F 2020 직접소입Direct quenching 4040 60.860.8 70.370.3 1818 -30-30 발명예AInventive Example A 1818 직접소입Direct quenching 1010 55.155.1 67.867.8 2424 -100-100 발명예BInventive Example B 1515 직접소입Direct quenching 2020 55.155.1 68.468.4 2323 -95-95

상기 표 4에 나타난 바와 같이, 본 발명조건에 따라 직접소입한 발명예(A),(B)는 모두 인장강도 및 연신율이 우수한 것을 알 수 있다. As shown in Table 4, it can be seen that the invention examples (A), (B) directly quenched in accordance with the present invention conditions are excellent in tensile strength and elongation.

반면에, 통상의 노말라이징을 적용한 비교예(A), 재가열소입을 적용한 비교예(B), 그리고 직접소입을 행하지만 냉각속도가 낮은 비교예(E)의 경우에는, 인장강도가 낮았고, 파면천이온도도 -30℃로 높았다. 또한, 직접소입하였으나, 미재결정역에서의 압하율이 본 발명범위를 벗어나는 비교예(C),(D),(F)는 연신율도 본 발명예에 비해 낮았고, 파면천이온도도 -20 ~ -50℃로 높아, 저온인성이 나쁜 것을 알 수 있다.On the other hand, in the comparative example (A) to which normal normalization is applied, the comparative example (B) to which reheating quenching is applied, and the comparative example (E) which performs direct quenching but low cooling rate, the tensile strength is low and the wavefront The transition temperature was as high as -30 ° C. In addition, although directly quenched, the comparative examples (C), (D), (F) of the reduction in the unrecrystallized region is outside the scope of the present invention, the elongation was lower than that of the present invention, the wavefront transition temperature is -20 ~- It is high at 50 degreeC, and it turns out that low-temperature toughness is bad.

상기한 바와 같은 본 발명에 의하면, 강도 및 인성이 우수할 뿐 아니라, 동시에 재열균열감수성이 낮은 중고온용 강을 제조할 수 있어서, 용접구조물 제작시 용접작업공수를 절감하거나 비용을 절감할 수 있는 효과가 있는 것이다.According to the present invention as described above, not only excellent strength and toughness, but also can produce a high-temperature steel with a low reheat cracking susceptibility, the effect of reducing the number of welding operations or cost in the production of welded structures There is.

Claims (3)

중량%로, C:0.06~0.15%, Si:0.40%이하, Mn:0.1~1.0%, Cr:1.8~3.5%, Mo:0.8~1.6%, Al:0.02%이하, P:0.010%이하, N:0.006% 이하, S:0.005% 이하, Ca:0.05%이하를 함유하고, Ca/S의 중량비가 1~10이고, 잔부 Fe 및 기타 불가피한 불순물로 조성된 강을 재가열한 후 미재결정역 온도범위에서 5~30%의 압하율로 열간압연한 후 5~30℃/sec의 냉각속도로 직접소입하고 650~750℃ 온도범위에서 소려처리하는 것을 포함하여 이루어지는 중고온용 Cr-Mo강의 제조방법In weight%, C: 0.06 to 0.15%, Si: 0.40% or less, Mn: 0.1 to 1.0%, Cr: 1.8 to 3.5%, Mo: 0.8 to 1.6%, Al: 0.02% or less, P: 0.010% or less, Unrecrystallized zone temperature after reheating steel containing N: 0.006% or less, S: 0.005% or less, Ca: 0.05% or less, Ca / S weight ratio of 1-10, balance Fe and other unavoidable impurities Method for producing a high-temperature Cr-Mo steel, including hot rolling at a reduction ratio of 5 to 30% in the range, followed by direct quenching at a cooling rate of 5 to 30 ° C./sec, and anodizing at a temperature range of 650 to 750 ° C. 제1항에 있어서, 상기 강에 Cu 및 Ni로 이루어진 그룹으로부터 선택된 1종 또는 2종을 0.5중량% 이하의 함량으로 추가 함유시키는 것을 특징으로 하는 중고온용 Cr-Mo강의 제조방법[Claim 2] The method of claim 1, wherein the steel further contains one or two selected from the group consisting of Cu and Ni in an amount of 0.5% by weight or less. 제1항 또는 제2항에 있어서, 상기 강에 중량%로, V:0.10~0.40%, Nb:0.005~ 0.1%, Ti:0.005~0.035%, 및 B:0.0005~0.004%의 1종 또는 2종 이상이 추가로 함유되는 것을 특징으로 하는 중고온용 Cr-Mo강의 제조방법The steel according to claim 1 or 2, wherein the steel is in weight%, V: 0.10 to 0.40%, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.035%, and B: 0.0005 to 0.004%. Method for producing a high-temperature Cr-Mo steel, characterized in that more than one species are further contained
KR10-2000-0079227A 2000-12-20 2000-12-20 A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS KR100514813B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0079227A KR100514813B1 (en) 2000-12-20 2000-12-20 A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0079227A KR100514813B1 (en) 2000-12-20 2000-12-20 A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS

Publications (2)

Publication Number Publication Date
KR20020049903A KR20020049903A (en) 2002-06-26
KR100514813B1 true KR100514813B1 (en) 2005-09-14

Family

ID=27683849

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0079227A KR100514813B1 (en) 2000-12-20 2000-12-20 A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS

Country Status (1)

Country Link
KR (1) KR100514813B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129317A (en) * 1988-11-08 1990-05-17 Nippon Steel Corp Production of 80kgf/mm2 class high tension steel having excellent weldability
KR920012498A (en) * 1990-12-31 1992-07-27 정명식 Manufacturing method of welding steel with excellent stress corrosion cracking resistance
JPH05339629A (en) * 1992-06-11 1993-12-21 Kawasaki Steel Corp Production of cr-mo steel having excellent strength and toughness
JPH09296248A (en) * 1996-05-02 1997-11-18 Nkk Corp High strength chromium-molybdenum-tungsten steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129317A (en) * 1988-11-08 1990-05-17 Nippon Steel Corp Production of 80kgf/mm2 class high tension steel having excellent weldability
KR920012498A (en) * 1990-12-31 1992-07-27 정명식 Manufacturing method of welding steel with excellent stress corrosion cracking resistance
JPH05339629A (en) * 1992-06-11 1993-12-21 Kawasaki Steel Corp Production of cr-mo steel having excellent strength and toughness
JPH09296248A (en) * 1996-05-02 1997-11-18 Nkk Corp High strength chromium-molybdenum-tungsten steel

Also Published As

Publication number Publication date
KR20020049903A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
EP1375694B2 (en) Hot-rolled steel strip and method for manufacturing the same
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP3160329B2 (en) Manufacturing method of heat resistant high strength bolt
JPS61238917A (en) Manufacture of low alloy tempered high tensile seamless steel pipe
KR100723201B1 (en) High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
JP3390596B2 (en) Low yield ratio high strength hot rolled steel sheet excellent in toughness and method for producing the same
KR100514813B1 (en) A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPS60181229A (en) Production of low-yield ratio high-tension thick steel plate
KR102512885B1 (en) Ultra-thick steel sheet with excellent strength and low-temperature impact toughness, and manufacturing method thereof
KR101125986B1 (en) Steel and method for manufacturing steel plate having low yield ratio, high strength and excellent toughness and steel plate made of the same
JPH0445227A (en) Production of steel product with low yield ratio
KR100435458B1 (en) A method for manufacturing steel strip for linepipe with low yield ratio and superior low temperature toughness
JPS6254019A (en) Manufacture of 80kg class ultrathick high tensile steel plate superior in weldability and low temperature toughness
KR20010060389A (en) Method for manufacturing pressure vessel plates with excellent weldability
JPH07118741A (en) Production of extremely thick refined high strength steel plate
JPH101737A (en) Low alloy heat resistant steel, excellent in high temperature strength and toughness, and its production
JPH051323A (en) Production of high tensile strength steel excellent in weldability and brittle crack propagation arresting property
JPH06158160A (en) Production of high tensile strength heat treated steel excellent in cost effectiveness
KR100336850B1 (en) 13% Cr STRUCTURAL STAINLESS STEEL WITH EXCELLENT IMPACT PROPERTY
JPH06248336A (en) Production of 780n/mm2 class high tensile strength steel excellent in weldability and reduced in yield ratio
KR20010017295A (en) A Method for Manufacturing Cr-Mo Steels with Excellent Strength and Toughness
JPH04341516A (en) Production of cu-added steel excellent in toughness at low temperature in weld zone
JPH07242991A (en) High toughness chromium-molybdenum steel sheet excellent in weldability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120903

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130902

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140903

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150907

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160906

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170908

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180906

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190904

Year of fee payment: 15