JPS6254019A - Manufacture of 80kg class ultrathick high tensile steel plate superior in weldability and low temperature toughness - Google Patents

Manufacture of 80kg class ultrathick high tensile steel plate superior in weldability and low temperature toughness

Info

Publication number
JPS6254019A
JPS6254019A JP19301985A JP19301985A JPS6254019A JP S6254019 A JPS6254019 A JP S6254019A JP 19301985 A JP19301985 A JP 19301985A JP 19301985 A JP19301985 A JP 19301985A JP S6254019 A JPS6254019 A JP S6254019A
Authority
JP
Japan
Prior art keywords
steel
toughness
steel plate
weldability
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19301985A
Other languages
Japanese (ja)
Inventor
Riyouji Kinaka
木中 良次
Osamu Tanigawa
谷川 治
Asao Narimoto
成本 朝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19301985A priority Critical patent/JPS6254019A/en
Priority to CA000517272A priority patent/CA1291400C/en
Publication of JPS6254019A publication Critical patent/JPS6254019A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled steel plate, by rolling low C equivalent steel considering weldability in which ppt. hardening of Cu in a specified compsn. is utilized for high strength under a specified condition for preventing toughness deterioration due to ppt. hardening treatment and improving low temp. toughness. CONSTITUTION:Steel slab contg. by weight 0.01-0.10% C, 0.05-0.60% Si, 0.5-2.0% Mn, <=1.0% Cr, 0.1-1.0% Mo, 0.010-0.100% Nb, 0.0005-0.0020% B, 0.7-2.0% Cu, 0.010-0.100% Al, if necessary, <=0.0100% Ca and the balance Fe is prepd. This is hot rolled by >=30% draft at 900-700 deg.C range, successively cooled to room temp. by >=1 deg.C/sec average rate and directly quenched, or once cooled then reheated to 800-950 deg.C and quenched. Thereafter, it is heated to 500-650 deg.C and Cu ppt. treated, thence the titled steel plate is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、大型産業機械や溶接鋼管、海洋構造物、FA
梁、圧力容器用材料として使う溶接性および低温靭性に
優れた極厚(ユ50+u+)高張力鋼板の製造方法に関
するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to large industrial machines, welded steel pipes, marine structures, FA
The present invention relates to a method for producing an extremely thick (U50+U+) high-strength steel plate with excellent weldability and low-temperature toughness for use as a material for beams and pressure vessels.

(従来の技術) 従来の高張力鋼板は、高強度とするために高炭素当(6
)の組成にしており、その結果溶接性割れ感受性が高い
のが普通である。また、低Cにして前記割れ感受性を改
善した高張力鋼板もあるが、60キロ級鋼(引張強度6
0〜70kg f / m+# )までが限度であった
(Prior art) Conventional high-strength steel plates have a high carbon content (6
), and as a result they are usually highly susceptible to weldability cracking. In addition, there are high-strength steel sheets with low C and improved cracking susceptibility, but 60 kg class steel (tensile strength 6
The limit was 0 to 70 kg f/m+#).

さらに、ASTM−A 710. A 73Bに規格さ
れているものや米国特許第3692514号明m書に提
案されているものでは、C0の析出硬化を利用して高強
度をはかった鋼もみられるが、これらは溶接性を考慮し
た低炭素等量の成分系であり、この成分系のみでは50
mm以上の極厚鋼板で引張強度30kgf/−以上の高
強度鋼を得ることはむずかしい。
Additionally, ASTM-A 710. There are steels standardized by A73B and those proposed in U.S. Patent No. 3,692,514 that utilize precipitation hardening of C0 to achieve high strength, but these are steels that take weldability into consideration. It is a component system with a low carbon equivalent, and with this component system alone, 50
It is difficult to obtain high-strength steel with a tensile strength of 30 kgf/- or more using an extremely thick steel plate of mm or more.

(発明が解決しようとする問題点) すなわら、上述した既知の高張力鋼板においては、例え
ばASTM規格に規定されているA710A相当鋼の場
合、俊に述べる第1.2表に示すA鋼板、B鋼板がそれ
であるが、これらの鋼板は溶 、接性は良いが、強度が
不足している。また同表中のE 鋼板はBを添加して高
強度化をはかった既知例であるが、100mm以上の極
厚材では、まだ強度が不十分である。
(Problems to be Solved by the Invention) In other words, in the above-mentioned known high-strength steel plates, for example, in the case of steel equivalent to A710A specified in the ASTM standard, the A steel plate shown in Table 1.2 described in Shun. , B steel plates have good weldability and weldability, but lack strength. Further, steel plate E in the same table is a known example in which B is added to increase the strength, but the strength is still insufficient for extremely thick materials of 100 mm or more.

ざらに、別の既知例を示すC鋼板、C鋼板およびF鋼板
のように114板より高合金化により高強度化をはかっ
た鋼板例もあるが、DI板のようにTS : 80kg
f /mdが実現されてはいるものの溶接性が劣化した
り、逆にC#A板、F鋼板のようにC鋼板にくらべ合金
元素の添加を抑えて溶接性を補償し、た場合にはTS 
: 80kgf /vイ以上の高強度鋼を得ることはむ
ずかしい。
Generally speaking, there are other known examples of steel plates, such as C steel plate, C steel plate, and F steel plate, which have higher strength than 114 plate by higher alloying, but TS: 80 kg like DI plate.
f/md is achieved, but the weldability deteriorates, or conversely, when the addition of alloying elements is suppressed compared to the C steel plate, such as C#A plate and F steel plate, to compensate for the weldability, T.S.
: It is difficult to obtain high-strength steel with a strength of 80 kgf/v or more.

また、従来の圧延方法では50mm以上の極厚鋼板を圧
延した場合圧延仕上温度は900℃を超えるため低温で
の高靭性が得られない。
Furthermore, in the conventional rolling method, when an extra-thick steel plate of 50 mm or more is rolled, the rolling finish temperature exceeds 900° C., so high toughness at low temperatures cannot be obtained.

上述したところから明らかなように、まず従来の80キ
ロ級鋼(C鋼板)の場合、高強度・高靭性ではあるが、
溶接時の割れ感受性が高く、低温溶接割れ特性をあられ
すy開先溶接割れ試験(J■5Z3158)で割れ阻止
温度が75℃と高く、そして溶接熱影響部の硬化性も高
い。これに反してA S T M M格に規定されてい
るA 710A 3の鋼(A、B鋼板)は、溶接割れ感
受性が低くかつ高靭性ではあるが、板厚50i+m以上
の極厚材では60キ0綴の強度が限度となっている。
As is clear from the above, in the case of conventional 80kg steel (C steel plate), although it has high strength and toughness,
It has high cracking susceptibility during welding, has a high cracking inhibition temperature of 75°C in the groove weld cracking test (J■5Z3158), and has high hardenability in the weld heat affected zone. On the other hand, A 710A 3 steels (A and B steel plates), which are rated as A S T M M, have low weld cracking susceptibility and high toughness, but extremely thick materials with a plate thickness of 50 i+m or more have a rating of 60 The strength of Ki0 spell is the limit.

本発明は、板厚がsomm以上の極厚材について、溶接
性および低温靭性がともに優れ、かつ高強度(TS :
 80++gf /md)が実現できるC1析出硬化型
の高張力鋼を提供することを目的とする。
The present invention provides excellent weldability and low-temperature toughness, and high strength (TS:
The purpose of the present invention is to provide a C1 precipitation hardening type high tensile strength steel that can achieve a hardening of 80++gf/md).

(問題点を解決するための手段) そこで本発明では、 (1)高強度・高靭性鋼について溶接性を向上さセルタ
メ、Cmヲ0.01〜0,10Wt %ニ低Mすること
とし、 (2)高強度を確保するために、Cu析出硬化を狙って
Cuff1を0.7〜2,0wt%含有させることとし
、ざらにMnff1を0.5〜2.0wt%。
(Means for Solving the Problems) Therefore, in the present invention, (1) Weldability of high-strength and high-toughness steel is improved, Cm is reduced to 0.01 to 0.10 Wt%, and ( 2) In order to ensure high strength, 0.7 to 2.0 wt% of Cuff1 is contained with the aim of Cu precipitation hardening, and roughly 0.5 to 2.0 wt% of Mnff1.

Mo量を0.1〜1.0★t%および8礒0.0005
〜0.0020wt%を含有させることとし、(3)そ
して、上記Cu含有の下で、析出硬化処理に由来する靭
性劣化を防ぎかつ低温靭性を向上させるために制御圧延
を行うことを骨子として次のような手段を採用すること
とした。
The amount of Mo is 0.1-1.0★t% and 0.0005
(3) Under the above Cu content, controlled rolling is performed to prevent toughness deterioration resulting from precipitation hardening treatment and improve low temperature toughness. We decided to adopt the following measures.

すなわら、第1の手段として、C:0.01〜0.10
 wt%、3i  :  0.05〜0.60wt%、
Mn :  0.5〜2.0wt%、Cr :  1.
0wt%以下、Mo :  0.1〜1.0wt%、N
b:0.010〜0.100wt%、3 :  0,0
005〜0.0020wt%、Cu :  0.7〜2
.0wt%、Al:0.010〜0、100wt%およ
び必要に応じCa :  0.0100wt%以下を含
有し残部が実質的にl”eである鋼スラブを、900℃
〜700℃の温度域が30%以上の圧下率となるように
熱間圧延し、引き続き平均冷却速度1.O℃/ 380
以上にて室温まで冷却することによって直接焼入れし、
その後500℃〜650℃の温度範囲に加熱してCu析
出処理を施すことを特徴とする溶接性および低温靭性に
優れた80キロ級極厚高張力鋼板の製造方法、 および、第2の手段として、 C:0,01 〜0.10Wt  %、3i  :  
0,05 〜0,60  wt%、Mn  :  0.
5〜2.0wt%、Cr :1.0wt%以下、Mo:
  0.1〜1.0wt%、Nb:o、oio〜 0.
100wt%、B  :  0,0005 〜0.00
20wt  %、CLI  :  0.7〜2.0wt
%。A℃ :0.010〜0,100wt%および必要
に応じCa :0.0100wt%以下を含有し残部が
実質的にFeである鋼スラブを、900℃〜700℃の
温度域が30%以上の圧下率となるように熱間圧延し、
一旦冷却してから800〜950℃の温度範囲に再加熱
して焼入れし、その後500℃〜650℃の温度範囲に
加熱してCLI析出処理を施すことを特徴とする溶接性
および低温靭性に優れた80キロ級極厚高張力鋼板の製
造方法を採用することとした。
That is, as the first means, C: 0.01 to 0.10
wt%, 3i: 0.05-0.60wt%,
Mn: 0.5 to 2.0 wt%, Cr: 1.
0wt% or less, Mo: 0.1-1.0wt%, N
b: 0.010-0.100wt%, 3: 0.0
005-0.0020wt%, Cu: 0.7-2
.. A steel slab containing 0 wt%, Al: 0.010 to 0.100 wt% and, if necessary, Ca: 0.0100 wt% or less, with the balance being substantially l”e, was heated to 900°C.
Hot rolling is performed so that the temperature range of ~700°C has a rolling reduction of 30% or more, and then an average cooling rate of 1. ℃/380
Directly quenched by cooling to room temperature above,
A method for producing an 80 kg class extra-thick high tensile strength steel plate with excellent weldability and low temperature toughness, characterized in that the steel plate is then heated to a temperature range of 500°C to 650°C and subjected to Cu precipitation treatment, and as a second means. , C:0.01~0.10Wt%, 3i:
0.05 to 0.60 wt%, Mn: 0.
5 to 2.0 wt%, Cr: 1.0 wt% or less, Mo:
0.1-1.0wt%, Nb:o, oio~0.
100wt%, B: 0,0005 to 0.00
20wt%, CLI: 0.7-2.0wt
%. A steel slab containing A°C: 0.010 to 0,100wt% and, if necessary, Ca: 0.0100wt% or less, and the balance being substantially Fe, is heated in a temperature range of 900°C to 700°C with a temperature range of 30% or more. Hot rolled to achieve the rolling reduction ratio,
It has excellent weldability and low-temperature toughness, as it is once cooled, then reheated to a temperature range of 800 to 950°C for quenching, and then heated to a temperature range of 500 to 650°C to undergo CLI precipitation treatment. We decided to adopt a manufacturing method for 80 kg class extra-thick high-strength steel plates.

以下に本発明方法が上述のように特定される理由につい
て具体的に述べる。
The reason why the method of the present invention is specified as described above will be specifically described below.

化学成分範囲の限定理由; ■ C含有量は、溶接性および低温靭性の面からo、i
o wt%以下が好ましいが、鋼板強度の面に着目する
と0.01wt%以上が不可欠であり、0.01〜0.
10wt%とした。
Reasons for limiting the chemical composition range; ■ The C content is
o wt% or less is preferable, but from the viewpoint of steel sheet strength, 0.01 wt% or more is essential, and 0.01 to 0.
It was set to 10 wt%.

ただし最適条件はC:0.03〜0.07wt%である
However, the optimum condition is C: 0.03 to 0.07 wt%.

■ Slは、鋼板の高靭性化および高強度化のため、0
.05wt%以上の添加が必要(特に0.05wt%以
下になると靭性が劣化する)である。しかしそのMが0
.60wt%を超えると溶接性および溶接継手部の靭性
の劣化をまねく。
■ Sl is reduced to 0 in order to increase the toughness and strength of the steel plate.
.. It is necessary to add 0.05 wt% or more (particularly if it is less than 0.05 wt%, the toughness deteriorates). But that M is 0
.. If it exceeds 60 wt%, weldability and toughness of the welded joint will deteriorate.

従って、3iの範囲は0.05〜0.60wt%と゛し
た。
Therefore, the range of 3i was set to 0.05 to 0.60 wt%.

■ Mnff1は、鋼板の強度および靭性を高める元素
として0.5wt%以上の添加は不可欠であり、製品板
厚が50mmから200mmと厚くなるにしたがってそ
の添加量を増す必要がある。ただし、2.0wt%を超
えると溶接性が損なわれることになるので、Mnの添加
範囲は0.5〜2,0wt%とした。
(2) Mnff1 is an element that increases the strength and toughness of steel sheets, and it is essential to add 0.5 wt% or more, and as the thickness of the product sheet increases from 50 mm to 200 mm, the amount of Mnff1 added needs to be increased. However, if it exceeds 2.0 wt%, weldability will be impaired, so the addition range of Mn was set to 0.5 to 2.0 wt%.

■ Cuは、析出硬化による高強度を達成するための不
可欠な元素であり、そのmは少なくとも0.7wt%以
上の添加が必要である。
(2) Cu is an essential element for achieving high strength through precipitation hardening, and its m must be added in an amount of at least 0.7 wt%.

一方2.0%を越えると低温靭性が損なわれるので、添
加範囲として0.1〜2.0wt%とした。
On the other hand, if it exceeds 2.0%, low-temperature toughness is impaired, so the addition range is set at 0.1 to 2.0 wt%.

■ Crは、高強度化元素として、有効な元素であるが
、その含有量が1,0wt%を超えると溶接性および低
温靭性の劣化をまねき好ましくない。
(2) Cr is an effective element for increasing strength, but if its content exceeds 1.0 wt%, it is undesirable as it leads to deterioration of weldability and low-temperature toughness.

■ Moは、Crと同様高強度化元素として有効であり
、不可欠な元素である。
(2) Mo, like Cr, is effective as a high-strength element and is an essential element.

このMoの添加効果は0.3〜0,4wt%程度が特に
大ぎく、それ以外の添加は効果が小さくなってくる。ま
たMoは1.0wt%以上含有させても若干低温靭性が
劣化するものの溶接継手靭性および溶接性の劣化はみと
められないが、経済性の面から、その量を1.0wt%
以下とした。一方Mo添加量が0,1wt%以下になる
と強度が著しく低下するので、結局Moffl添加の範
囲は0.10〜1,0wt%とした。
The effect of adding Mo is particularly large when it is about 0.3 to 0.4 wt%, and the effect becomes small when it is added other than that. Furthermore, even if Mo is contained at 1.0 wt% or more, the low-temperature toughness slightly deteriorates, but no deterioration of weld joint toughness or weldability is observed.
The following was made. On the other hand, if the amount of Mo added is less than 0.1 wt%, the strength decreases significantly, so the range of Moffl addition was set at 0.10 to 1.0 wt%.

■ Nbは、制御圧延による細粒化を作用を有する元素
であり、その添加量が0.010wt%以下では効果が
が失なわれ、0.10wt%以上では溶接継平部靭性の
劣化を招く。従って、Nb添加通は0.01〜0.10
’wt%とした。
■ Nb is an element that has the effect of grain refining through controlled rolling, and if the amount added is less than 0.010 wt%, the effect will be lost, and if it is more than 0.10 wt%, it will cause deterioration of the weld joint toughness. . Therefore, the Nb addition level is 0.01 to 0.10
'wt%.

■ 八βは、脱酸およびオーステナイトの細粒化のため
に必要な元素であり、少なくともo、oi。
■ 8β is an element necessary for deoxidation and grain refinement of austenite, and at least o, oi.

wt%の添加は必要である。また、0.10wt%以上
では鋼中の清浄度を損ない好ましくない。従ってA℃量
は0.010〜0.100wt%とした。
Addition of wt% is necessary. Moreover, if it exceeds 0.10 wt%, the cleanliness in the steel will be impaired, which is not preferable. Therefore, the amount of A° C. was set to 0.010 to 0.100 wt%.

■ Bは、本発明鋼を得るための不可欠な元素であり、
高強度化のために0.0005 wt%以上の添加が必
要である。ただし、0.0020wt%以上の添加は低
温靭性の劣化を招く。従って、B吊は、0.0005〜
0.0020wt%とした。
■ B is an essential element for obtaining the steel of the present invention,
It is necessary to add 0.0005 wt% or more to increase the strength. However, addition of 0.0020 wt% or more causes deterioration of low temperature toughness. Therefore, B suspension is 0.0005~
It was set to 0.0020wt%.

■ Caは、介在物の形状制御元素として必要に応じ添
加することにより、低温靭性の向上を図れるが、0,0
100wt%以上の添加では、逆に低温靭性の劣化を招
くので0.0100 wt%以下とした。
■ Ca can be added as an element to control the shape of inclusions as needed to improve low-temperature toughness, but
Addition of 100 wt% or more causes deterioration of low-temperature toughness, so the content is set to 0.0100 wt% or less.

つぎに本発明法の圧延条件および、熱処理条件について
の具体的内容を述べる。
Next, specific details regarding the rolling conditions and heat treatment conditions of the method of the present invention will be described.

■ 熱間圧延時の仕上げ温度は900℃以下とする。■ Finishing temperature during hot rolling shall be 900°C or less.

900℃を超える温度では粒が粗大化し靭性が劣化する
。また、この熱間圧延仕上げ温度を700℃よりも低く
すると靭性が損なわれるため700℃を下限とした。シ
ャルピー衝撃試験の破面遷移温度(vTrs)と圧下率
との関係を示す第1図から明らかなように、この温度域
での圧下率は従来技術のものより優れたものを得るには
、第1図より30%以上を要し、30%未満では十分な
細粒組織が得られない。
At temperatures exceeding 900°C, grains become coarse and toughness deteriorates. Furthermore, if the hot rolling finishing temperature is lower than 700°C, toughness will be impaired, so 700°C was set as the lower limit. As is clear from Figure 1, which shows the relationship between the fracture surface transition temperature (vTrs) and the reduction rate in the Charpy impact test, in order to obtain a reduction rate superior to that of the conventional technology in this temperature range, it is necessary to From Figure 1, 30% or more is required, and if it is less than 30%, a sufficient fine grain structure cannot be obtained.

■ Cuの析出処理のための加熱温度は、500〜65
0℃の温度で行う。500〜650℃に限定した理由は
、この温度範囲外ではCuの析出硬化作用が損なわれる
からである。
■ Heating temperature for Cu precipitation treatment is 500 to 65
It is carried out at a temperature of 0°C. The reason why the temperature is limited to 500 to 650°C is that the precipitation hardening effect of Cu is impaired outside this temperature range.

■ このCu析出処理に先立って行う制御圧延のあと再
加熱焼入れを施す場合(第2発明法)、その加熱温度は
800〜950℃として急冷を行うことが焼入れ後の組
成を微細化にするために必要である。また、制御圧延の
終了俊に直接焼入れを行うときは、(第1発明法)、そ
の冷却速度は1.0℃/ 380以上とする。この冷却
速度は、第2図に示すことから明らかなように、板厚に
よって異なるが、極厚ものの板厚100mm相当で、2
.0℃/ 380以上、板厚200mm T’ 1.0
℃/ 380以上の冷却速度が必要である。
■ When reheating and quenching is performed after controlled rolling performed prior to this Cu precipitation treatment (second invention method), the heating temperature is 800 to 950°C and rapid cooling is performed in order to refine the composition after quenching. is necessary. Further, when direct quenching is performed immediately after controlled rolling (first invention method), the cooling rate is set to 1.0° C./380° C. or more. As is clear from Figure 2, this cooling rate varies depending on the thickness of the plate, but for an extremely thick plate of 100 mm, the cooling rate is 2
.. 0℃/380 or more, plate thickness 200mm T' 1.0
A cooling rate of ℃/380 or higher is required.

なお本発明法実施の限界ついて、板厚を50mm以上に
限定したが、これは、板厚50mm以下については、従
来技術の応用で十分製造可能であるからである。
Regarding the limitations of implementing the method of the present invention, the plate thickness was limited to 50 mm or more, but this is because plate thicknesses of 50 mm or less can be sufficiently manufactured by applying conventional techniques.

(実施例) 本発明法に従って製造した第1発明鋼、第2発明鋼およ
び比較鋼の各化学組成を第1表に示した。
(Example) Table 1 shows the chemical compositions of the first invention steel, second invention steel, and comparative steel manufactured according to the method of the present invention.

また、これらの各供試鋼板の製造条件とその材質特性を
第2表に示した。
Further, the manufacturing conditions and material properties of each of these test steel sheets are shown in Table 2.

本発明の名調は、すべてオーステナイト鋼(1180℃
)に加熱し、900℃〜800℃における圧下率を50
〜75%確保し、仕上げ温度800℃で製品寸法までの
圧延を終了した。その後H,J、L。
The key feature of this invention is all austenitic steel (1180℃
) and reduce the rolling reduction rate at 900°C to 800°C to 50°C.
~75% was ensured, and rolling to product dimensions was completed at a finishing temperature of 800°C. After that, H, J, L.

M、N鋼については(第1発明鋼)、まず圧延後製品板
厚50mnのH1M鋼は8.6℃/5eC1製品板厚1
00amのJ、N鋼は2.1℃、’5ec1および製品
板厚200mmのL鋼は、1.2℃/ secで冷却し
た。
Regarding M and N steels (first invention steel), H1M steel with a product plate thickness of 50 mm after rolling is 8.6°C/5eC1 product plate thickness 1
00am J and N steels were cooled at 2.1°C, '5ec1 and L steels with a product plate thickness of 200mm were cooled at 1.2°C/sec.

その後570℃でH,M鋼は3.5時間、J、N鋼は6
.5時間、[1は10時間のCu析出処理を行った。
After that, at 570℃ for 3.5 hours for H and M steels, and for 6 hours for J and N steels.
.. The Cu precipitation treatment was performed for 5 hours, and for [1] for 10 hours.

また、第2発明相当鋼のG、1.およびKMについては
、930℃に再加熱俊水冷(焼入れ)し、さらに570
℃でG31ilについては3.5時間、IIIは6.5
時間、K鋼は10時間のCu析出処理を実施した。
Further, G of the steel corresponding to the second invention, 1. and KM are reheated to 930°C and quickly water cooled (quenched), and further heated to 570°C.
3.5 hours for G31il and 6.5 hours for III at °C.
The K steel was subjected to Cu precipitation treatment for 10 hours.

第1表および第2表から明らかなように、第1発明およ
び第2発明によって優れた強度、靭性および溶接性が得
られることがわかる。つまりGa4.1鋼およびにII
Iにおいては、各製品板厚に応じて、高Mn、高Cu、
高Mn、低Cr化をはかり高強度化を達成した。また9
00℃〜700℃の温度範囲での圧下率を30%以上確
保することにより高靭性化がはかられている。
As is clear from Tables 1 and 2, it can be seen that excellent strength, toughness, and weldability can be obtained by the first and second inventions. That is, Ga4.1 steel and II
In I, high Mn, high Cu,
High strength was achieved by achieving high Mn and low Cr. Also 9
High toughness is achieved by ensuring a rolling reduction of 30% or more in the temperature range of 00°C to 700°C.

ざらに、G鋼、I鋼、およびに鋼とそれぞれ同一成分を
有する8w4、J鋼およびLli!においては直接焼入
れ法(第1発明)により製造することにより、再加熱材
(第2発明)よりさらに高強度、高靭性の鋼板が得られ
た。
In general, 8w4, J steel and Lli! steel have the same composition as G steel, I steel, and Ni steel, respectively. By manufacturing by direct quenching method (first invention), a steel plate with even higher strength and toughness than the reheated material (second invention) was obtained.

また、板厚50++onのM鋼では、従来鋼(A鋼)に
、Bを添加し、さらにMoを増加した成分で直接焼入れ
により、80キロ級鋼が得られた。また、本発明におい
ては、Niを無添加としたN1g4においても、高靭性
が得られることがわかる。
In addition, for M steel with a plate thickness of 50++ on, 80 kg class steel was obtained by directly quenching the conventional steel (A steel) with the addition of B and an increased amount of Mo. Further, in the present invention, it is understood that high toughness can be obtained even with N1g4 in which no Ni is added.

(発明の効果) 以上説明したように本発明によれば、前記組成の化学成
分範囲で板厚に応じて添加合金元素を調整した鋼を、9
00〜700℃の温度域で30%以上の圧下率となるよ
う圧延したのち、引き続き平均冷却速度1.0℃/ s
ec以上で室温まで直接焼入れを実施することにより、
高強度・高靭性lA(第1発明)を提供することができ
る。また仕上げ圧延後−8冷」してから950〜800
℃の範囲に再加熱し、焼入れし、その後500℃〜65
0℃でCIJ析出処理することにより、溶接性に優れた
高強度・高靭性の板厚50〜200mn+の極厚鋼板を
提供(第2発明)りることができる。
(Effects of the Invention) As explained above, according to the present invention, steel in which the added alloying elements are adjusted according to the plate thickness within the chemical composition range of the above-mentioned composition is
After rolling to a rolling reduction of 30% or more in the temperature range of 00 to 700°C, the average cooling rate is 1.0°C/s.
By directly quenching to room temperature at ec or above,
High strength and high toughness 1A (first invention) can be provided. Also, after finishing rolling and cooling by -8'', the temperature is 950 to 800.
Reheat and quench to a range of 500°C to 65°C.
By performing the CIJ precipitation treatment at 0° C., it is possible to provide an extremely thick steel plate with a thickness of 50 to 200 m+, which has excellent weldability, and has high strength and high toughness (second invention).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、 v′rrSに及ぼす900℃から 700
℃まひの圧下率の影響を示すグラフ、 第2図は、直接焼入れ材料における平均冷却速度の引張
強度に及ばず影響を示すグラフである。 TS  今惰− vTrs  (”C)
Figure 1 shows the effect on v'rrS from 900°C to 700°C.
Figure 2 is a graph showing the influence of the rolling reduction rate on ℃ paralysis. Figure 2 is a graph showing the influence of the average cooling rate on the tensile strength in directly quenched materials. TS Imaina-vTrs (”C)

Claims (1)

【特許請求の範囲】 1、C:0.01〜0.10wt%、Si:0.05〜
0.60wt%、Mn:0.5〜2.0wt%、Cr:
1.0wt%以下、Mo:0.1〜1.0wt%、Nb
:0.010〜0.100wt%、B:0.0005〜
0.0020wt%、Cu:0.7〜2.0wt%、A
l:0.010〜0.100wt%および必要に応じC
a:0.0100wt%以下を含有し残部が実質的にF
eである鋼スラブを、900℃〜700℃の温度域が3
0%以上の圧下率となるように熱間圧延し、引き続き平
均冷却速度1.0℃/sec以上にて室温まで冷却する
ことによつて直接焼入れし、その後500℃〜650℃
の温度範囲に加熱してCu析出処理を施すことを特徴と
する溶接性および低温靭性に優れた80キロ級極厚高張
力鋼板の製造方法。 2、C:0.01〜0.10wt%、Si:0.05〜
0.60wt%、Mn:0.5〜2.0wt%、Cr:
1.0wt%以下、Mo:0.1〜1.0wt%、Nb
:0.010〜0.100wt%、B:0.0005〜
0.0020wt%、Cu:0.7〜2.0wt%。A
l:0.010〜0.100wt%および必要に応じC
a:0.0100wt%以下を含有し残部が実質的にF
eである鋼スラブを、900℃〜700℃の温度域が3
0%以上の圧下率となるように熱間圧延し、一旦冷却し
てから800〜950℃の温度範囲に再加熱して焼入れ
し、その後500℃〜650℃の温度範囲に加熱してC
u析出処理を施すことを特徴とする溶接性および低温靭
性に優れた80キロ級極厚高張力鋼板の製造方法。
[Claims] 1. C: 0.01-0.10wt%, Si: 0.05-0.05%
0.60wt%, Mn: 0.5-2.0wt%, Cr:
1.0 wt% or less, Mo: 0.1 to 1.0 wt%, Nb
:0.010~0.100wt%, B:0.0005~
0.0020wt%, Cu: 0.7-2.0wt%, A
l: 0.010-0.100wt% and C as necessary
a: Contains 0.0100wt% or less, the remainder being substantially F
The temperature range of 900°C to 700°C is 3.
Hot rolled to a rolling reduction of 0% or more, then directly quenched by cooling to room temperature at an average cooling rate of 1.0°C/sec or more, then 500°C to 650°C
A method for producing an 80 kg class extra-thick high tensile strength steel plate having excellent weldability and low-temperature toughness, the method comprising heating to a temperature range of 100 to 100 ml and subjecting it to Cu precipitation treatment. 2, C: 0.01~0.10wt%, Si: 0.05~
0.60wt%, Mn: 0.5-2.0wt%, Cr:
1.0 wt% or less, Mo: 0.1 to 1.0 wt%, Nb
:0.010~0.100wt%, B:0.0005~
0.0020 wt%, Cu: 0.7 to 2.0 wt%. A
l: 0.010-0.100wt% and C as necessary
a: Contains 0.0100wt% or less, the remainder being substantially F
The temperature range of 900°C to 700°C is 3.
Hot rolled to a rolling reduction of 0% or more, cooled once, reheated to a temperature range of 800 to 950°C and quenched, then heated to a temperature range of 500 to 650°C to form a C
A method for producing an 80 kg class extra-thick high tensile strength steel plate having excellent weldability and low-temperature toughness, characterized by subjecting it to u-precipitation treatment.
JP19301985A 1985-09-03 1985-09-03 Manufacture of 80kg class ultrathick high tensile steel plate superior in weldability and low temperature toughness Pending JPS6254019A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19301985A JPS6254019A (en) 1985-09-03 1985-09-03 Manufacture of 80kg class ultrathick high tensile steel plate superior in weldability and low temperature toughness
CA000517272A CA1291400C (en) 1985-09-03 1986-09-02 Method of manufacturing extra-thick, high strength steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19301985A JPS6254019A (en) 1985-09-03 1985-09-03 Manufacture of 80kg class ultrathick high tensile steel plate superior in weldability and low temperature toughness

Publications (1)

Publication Number Publication Date
JPS6254019A true JPS6254019A (en) 1987-03-09

Family

ID=16300822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19301985A Pending JPS6254019A (en) 1985-09-03 1985-09-03 Manufacture of 80kg class ultrathick high tensile steel plate superior in weldability and low temperature toughness

Country Status (2)

Country Link
JP (1) JPS6254019A (en)
CA (1) CA1291400C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215122A (en) * 1988-07-04 1990-01-18 Kobe Steel Ltd Production of high strength and high toughness thick steel plate having excellent weldability
CN103352108A (en) * 2013-06-24 2013-10-16 米云霞 H13 molten steel cold and hot treatment process
CN113399948A (en) * 2021-07-02 2021-09-17 东北大学 Method for producing 1000MPa hydroelectric steel with thickness of more than 100mm and specification

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059018A (en) * 1983-08-03 1985-04-05 Nippon Steel Corp Production of cu-added steel having excellent weldability and low-temperature toughness
JPS60149722A (en) * 1984-01-14 1985-08-07 Nippon Steel Corp Manufacture of cu added steel having superior toughness at low temperature in weld zone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059018A (en) * 1983-08-03 1985-04-05 Nippon Steel Corp Production of cu-added steel having excellent weldability and low-temperature toughness
JPS60149722A (en) * 1984-01-14 1985-08-07 Nippon Steel Corp Manufacture of cu added steel having superior toughness at low temperature in weld zone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215122A (en) * 1988-07-04 1990-01-18 Kobe Steel Ltd Production of high strength and high toughness thick steel plate having excellent weldability
JPH0735538B2 (en) * 1988-07-04 1995-04-19 株式会社神戸製鋼所 Method for manufacturing high strength and high toughness thick steel plate with excellent weldability
CN103352108A (en) * 2013-06-24 2013-10-16 米云霞 H13 molten steel cold and hot treatment process
CN113399948A (en) * 2021-07-02 2021-09-17 东北大学 Method for producing 1000MPa hydroelectric steel with thickness of more than 100mm and specification

Also Published As

Publication number Publication date
CA1291400C (en) 1991-10-29

Similar Documents

Publication Publication Date Title
JPS5877528A (en) Manufacture of high tensile steel with superior toughness at low temperature
JPS61238917A (en) Manufacture of low alloy tempered high tensile seamless steel pipe
KR102166601B1 (en) Hot forming part and manufacturing method thereof
JPS6141968B2 (en)
JPS59129724A (en) Production of thick walled ultra high tension steel
JPS625216B2 (en)
JPS6254019A (en) Manufacture of 80kg class ultrathick high tensile steel plate superior in weldability and low temperature toughness
JPH0696742B2 (en) High strength / high toughness non-heat treated steel manufacturing method
JPH0159333B2 (en)
JPH01319629A (en) Production of cr-mo steel sheet having excellent toughness
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPH0530883B2 (en)
KR102493979B1 (en) High-strength steel plate for pressure vessels with excellent impact toughness and manufacturing method thereof
JPS6033340A (en) Extremely thick low carbon steel plate with excellent weldability
JPH1068045A (en) 600n/mm2 class high tensile strength steel excellent in weld cracking sensitivity and large heat input welded joint toughness and its production
JPS62158817A (en) Manufacture of thick steel plate having high strength and high toughness
JPH01255622A (en) Manufacture of directly quenched wear resistant steel plate having superior delayed cracking resistance
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPH02133521A (en) Production of tempered high tensile steel plate having excellent toughness
KR100514813B1 (en) A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS
JPH04333516A (en) Production of thick 80kgf/mm2 class high tensile strength steel excellent in weldability
JP3114493B2 (en) Thick steel plate manufacturing method