JPS62200221A - Rotary encoder - Google Patents

Rotary encoder

Info

Publication number
JPS62200221A
JPS62200221A JP4267486A JP4267486A JPS62200221A JP S62200221 A JPS62200221 A JP S62200221A JP 4267486 A JP4267486 A JP 4267486A JP 4267486 A JP4267486 A JP 4267486A JP S62200221 A JPS62200221 A JP S62200221A
Authority
JP
Japan
Prior art keywords
light
diffracted
rotating object
grating
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4267486A
Other languages
Japanese (ja)
Inventor
Akira Ishizuka
公 石塚
Tetsuji Nishimura
西村 哲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4267486A priority Critical patent/JPS62200221A/en
Publication of JPS62200221A publication Critical patent/JPS62200221A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure the rotating condition of a rotating object to be inspected by removing the effect of a wave front aberration produced by the difference between the pitches outside and inside a radial grating by superposing the diffracted light beams of a specific order from the radial grating on each other so that the diffracting directions from the radial grating become the same as one another. CONSTITUTION:Optical members are arranged such that the light beam element of the diffracted light beam of a specific order diffracted from a point M1 on a radial grating 7, said light beam element being closer to the rotational center of a rotating object, and the light beam element of the diffracted light beam of the specific order diffracted from a point M2 on the radial grating 7, said light beam element being closer to the rotational center of the rotating object, are superposed on each other and, in the same manner, the light beams of the radial grating closer to the outside of the rotational center are superposed on each other. Thus, the effect of a wave front aberration, especially an astigmatism produced by the difference between the pitches outside and inside the radial grating is removed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はロータリーエンコーダーに関し、特に円周上に
例えば透光部と反射部の格子模様の回折格子を複数個、
周期的に該んだ放射格子を回転物体に取付け、該放射格
子に例えばレーザーからの光束を照射し、該放射格子か
らの回折光を利用して、放射格子若しくは回転物体の回
転速度や回転速度の変動量等の回転状態を充電的に検出
するロータリーエンコーダーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a rotary encoder, in particular a rotary encoder having a plurality of diffraction gratings in a lattice pattern, for example, a transparent part and a reflective part, on the circumference.
A periodic radiation grating is attached to a rotating object, and the radiation grating is irradiated with a beam of light from a laser, for example, and the diffracted light from the radiation grating is used to determine the rotational speed or speed of the radiation grating or the rotating object. This invention relates to a rotary encoder that electrically detects the rotational state such as the amount of variation in the rotary encoder.

(従来の技術) 従来よりフロッピーデスクの駆動等のコンピューター機
器、プリンター等の事務機器、あるいはNC工作機械さ
らにはVTRのキャブステンモーターや回転ドラム等の
回転機構の回転速度や回転速度の変動量を検出する為の
手段として充電的なロータリーエンコーダーが利用され
てきている。
(Prior art) Conventionally, it has been used to measure the rotational speed and the amount of variation in rotational speed of computer equipment such as the drive of a floppy desk, office equipment such as a printer, or NC machine tools, as well as rotational mechanisms such as the carburetor stainless steel motor and rotating drum of a VTR. A rechargeable rotary encoder has been used as a means for detection.

充電的なロータリーエンコーダーは例えば第3図に示す
ように回転軸30に連絡した円板35の周囲に透光部と
遮光部を等間隔に設けた、所謂メインスケール31とこ
れに対応してメインスケールと等しい間隔で透光部と遮
光部とを設けた所謂固定のインデックススケール32と
の双方のスケールを投・先手段33と受光手段34で挟
んで対向配置した所謂インデックススケール方式の構成
を採フている。
For example, as shown in FIG. 3, a rechargeable rotary encoder has a so-called main scale 31 in which transparent parts and light-shielding parts are provided at equal intervals around a disc 35 connected to a rotating shaft 30, and a corresponding main scale. A so-called index scale system configuration is adopted in which a so-called fixed index scale 32 is provided with a light-transmitting part and a light-shielding part at equal intervals to the scale, and both scales are placed facing each other with the projection/tip means 33 and the light-receiving means 34 sandwiching them. It's full.

この方法はメインスケールの回転に伴って双方のスケー
ルの透光部と遮光部の間隔に同期した信号が得られ、こ
の信号を周波数解析して回転軸の回転速度の変動を検出
している。この為、双方のスケールの透光部と遮光部と
のスケール間隔を細かくすればする程、検出精度を高め
ることができる。しかしながらスケール間隔を細かくす
ると回折光の影響で受光手段からの出力信号のS/N比
が低下し、検出精度が低下してしまう欠点があった。こ
の為メインスケールの透光部と遮光部の格子の総本数を
固定させ、透光部と遮光部の間隔を回折光の影響を受け
ない程度まで拡大しようとするとメインスケールの円板
の直径が増大し更に厚さも増大し装置全体が大型化し、
この結果被検回転物体への負荷が大きくなってくる等の
欠点があった。
In this method, as the main scale rotates, a signal synchronized with the interval between the light-transmitting part and the light-blocking part of both scales is obtained, and this signal is frequency-analyzed to detect fluctuations in the rotational speed of the rotating shaft. Therefore, the finer the scale interval between the light-transmitting part and the light-blocking part of both scales, the higher the detection accuracy can be. However, when the scale interval is narrowed, the S/N ratio of the output signal from the light receiving means decreases due to the influence of the diffracted light, resulting in a decrease in detection accuracy. For this reason, if you fix the total number of gratings in the light-transmitting part and light-blocking part of the main scale, and try to increase the distance between the light-transmitting part and the light-blocking part to the extent that it is not affected by diffracted light, the diameter of the main scale disc will increase. As the thickness increases, the entire device becomes larger.
As a result, there are drawbacks such as an increase in the load on the rotating object to be tested.

(発明が解決しようとする問題点) 本発明は被検回転物体の負荷が小さく、装置全体の小型
化が容易で、しかも回転状態を高精度に検出することの
できるロータリーエンコーダーの提供を特徴とする 特に放射格子からの特定次数の2つの回折光を重ね合わ
せる際、放射格子から射出する回折光束の方向を揃えて
互いに重ね合わせることにより放射格子の周辺部と内部
との格子ピッチによる誤差を補正した高精度のローター
リ−エンコーダーの提供を目的とする。
(Problems to be Solved by the Invention) The present invention is characterized by providing a rotary encoder that has a small load on a rotating object to be inspected, can easily downsize the entire device, and can detect the rotational state with high precision. In particular, when two diffracted lights of a specific order from a radiation grating are superimposed, errors due to the grating pitch between the periphery and the inside of the radiation grating are corrected by aligning the directions of the diffracted beams emitted from the radiation grating and overlapping each other. The purpose is to provide a high-precision rotary encoder.

(問題点を解決するための手段) 可干渉性の複数の光束を回転物体に連結した円板上の回
折格子上であって該回転物体の異なる複数の位置に各々
入射させ、該回折格子からの特定次数の回折光のうち一
方の光束の前記回転物体の回転軸中心寄りの光束要素と
他方の光束の前記回転物体の回転軸中心寄りの光束要素
とが互いに重なり合うようにした後、これらの光束を受
光手段に導光し、該受光手段からの出力信号を利用して
前記回転物体の回転状態を求めたことである。
(Means for Solving the Problem) A plurality of coherent light beams are made incident on a diffraction grating on a disc connected to a rotating object at a plurality of different positions of the rotating object, and from the diffraction grating. Among the diffracted lights of a specific order, the light flux elements of one light flux near the center of the rotational axis of the rotating object and the light flux elements of the other light flux near the center of the rotational axis of the rotating object are made to overlap with each other, and then these The light flux is guided to a light receiving means, and the rotational state of the rotating object is determined using an output signal from the light receiving means.

この他、本発明の特徴は実施例において記載されている
Other features of the invention are described in the Examples.

(実施例) 第1図(A)は本発明の一実施例の光学系の概略図であ
る。
(Embodiment) FIG. 1(A) is a schematic diagram of an optical system according to an embodiment of the present invention.

本実施例ではレーザー1より放射された光束をコリメー
ターレンズ2によって平行光束とし偏光ビームスプリッ
タ−3に入射させ、略等光量の反射光束と透過光束の2
つの直線偏光の光束に分割している。このうち反射した
光束は属波長板4を経て、円偏光とし、2つの反射面を
有するプリズム16を経て、プリズムより成る光学部材
18に入射させている。そして光学部材18を介して被
測定回転物体と連結した円板6上の放射状の回折格子が
設けられている放射格子7の位置M、に入射させている
。このときプリズム16から放射格子7に対し垂直に射
出してきた光束を第1図(B)に示すように光学部材1
8の形状を特定することにより、放射格子7による特定
次数の回折光が放射格子7に対し略垂直に射出するよう
に放射格子7に入射させている。そして放射格子7に入
射し回折した透過回折光のうち特定次数の回折光を光学
手段8に導光している。光学手段8は例えば集光性部材
と平面鏡若しくは曲面から成る反射鏡を有しており、入
射回折光のうち集光性部材に対する主光線が集光性部材
を介し、反射鏡で反射した後、入射光路と略同−光路を
逆行するように構成されている。そして光学手段8に導
光した回折光を入射光路と略同−光路を逆行させ放射格
子7上の略同−位置M□に再入射させている。そして放
射格子7により再回折された特定次数の回折光を嵐波長
板4を介して入射したときと90度偏光方位の異なる直
線偏光とし偏光ビームスプリッタ−3に入射させている
In this embodiment, the light beam emitted from the laser 1 is made into a parallel light beam by the collimator lens 2 and is made incident on the polarizing beam splitter 3.
It is split into two linearly polarized beams. The reflected light flux passes through the wavelength plate 4, becomes circularly polarized light, passes through a prism 16 having two reflecting surfaces, and enters an optical member 18 made of a prism. The light beam is then made incident on a position M of a radiation grating 7 provided with a radial diffraction grating on a disk 6 connected to a rotating object to be measured via an optical member 18 . At this time, the light flux emitted perpendicularly to the radiation grating 7 from the prism 16 is transmitted to the optical member 1 as shown in FIG. 1(B).
By specifying the shape of the radiation grating 8, the diffracted light of a specific order by the radiation grating 7 is made to enter the radiation grating 7 so as to be emitted substantially perpendicularly to the radiation grating 7. Of the transmitted diffracted light that is incident on the radiation grating 7 and diffracted, the diffracted light of a specific order is guided to the optical means 8. The optical means 8 has, for example, a light condensing member and a reflecting mirror made of a plane mirror or a curved surface, and after the principal ray of the incident diffracted light directed toward the light condensing member passes through the light condensing member and is reflected by the reflecting mirror, It is configured to run substantially in the same direction as the incident optical path and in the opposite direction. Then, the diffracted light guided to the optical means 8 is made to re-enter the radiation grating 7 at substantially the same position M□ by traveling in the opposite direction to the incident optical path. Then, the diffracted light of a specific order re-diffracted by the radiation grating 7 is converted into linearly polarized light with a polarization direction different by 90 degrees from that when it is incident through the storm wave plate 4, and is made incident on the polarizing beam splitter 3.

本実施例では偏光ビームスプリッタ−3から光学手段8
に至る特定次数の回折光の往復光路を同一としている。
In this embodiment, from the polarizing beam splitter 3 to the optical means 8
The round trip optical path of the diffracted light of a specific order is the same.

第2図は第1図で示した光学手段の一実施例の説明図で
ある。
FIG. 2 is an explanatory diagram of one embodiment of the optical means shown in FIG. 1.

同図においては平面鏡から成る反射鏡40を集光性部材
である集光レンズ41の略焦点面上に配置し、集光レン
ズ41に平行に入射してきた特定次数の回折光のみをマ
スク42の開口部43を通過させ反射鏡40で反射させ
た後、集光レンズ41における主光線44が元の光路を
逆戻りするようにしている。
In the figure, a reflecting mirror 40 made of a plane mirror is arranged approximately on the focal plane of a condensing lens 41 which is a condensing member, and only the diffracted light of a specific order that is incident parallel to the condensing lens 41 is reflected by a mask 42. After passing through the aperture 43 and being reflected by the reflecting mirror 40, the principal ray 44 at the condenser lens 41 returns along its original optical path.

そして、その他の次数の回折光をマスク42により遮光
している。反射手段としては、この他第2図に示す機能
と同一のものであれば、例えばキャッツアイ光学系や平
面鏡等どのような構成のものでも良い。このような光学
系を用いれば例えばレーザーの発振波長が変化し、回折
角が多少変化しても略同じ光路で戻すことができる特徴
がある。
The diffracted light of other orders is blocked by a mask 42. The reflecting means may be of any configuration, such as a cat's eye optical system or a plane mirror, as long as it has the same function as shown in FIG. If such an optical system is used, for example, even if the oscillation wavelength of the laser changes and the diffraction angle changes somewhat, the light can be returned along substantially the same optical path.

又、キャッツアイ光学系に、屈折率分布型レンズ、例え
ば日本板硝子社製のセルフォックマイクロレンズ(商品
名)等を適用し、その両端平面な点に着目して片面に反
射膜を設けることにより、構成が簡便で且つ又生産性に
富む光学素子として本発明に有効に適用することができ
る。
In addition, by applying a refractive index gradient lens, such as Selfoc Micro Lens (trade name) manufactured by Nippon Sheet Glass Co., Ltd., to the cat's eye optical system and providing a reflective film on one side, focusing on the fact that both ends of the lens are flat. , it can be effectively applied to the present invention as an optical element having a simple structure and high productivity.

第1図に戻り偏光ビームスプリッタ−3で分割された2
つの光束のうち透過した光束はイ波長板5を介し円偏光
とし、2つの反射面を有するプリズム17を経て、プリ
ズムより成る光学部材19に入射させている。そして光
学部材19を介して円板6上の放射格子7上の位置M1
と回転軸50に対して略点対称の位置M2に入射させて
いる。このときプリズム17から放射格子7に対し垂直
に射出してきた光束を前述の反射光束の場合と同様に光
学部材19の形状を特定することにより、放射格子7に
よる特定次数の回折光が放射格子7に対し垂直に射出す
るように放射格子7に入射させている。そして放射格子
7に入射し回折した透過回折光のうち特定次数の回折光
を前述の光学手段8と同様の光学手段9により同一光路
を逆行させて、放射格子7の略同−位置M2に再入射さ
せている。そして放射格子7より再回折された特定次数
の回折光を%波長板5を介し入射したときとは90度偏
光方位の異なる直線偏光とし偏光ビームスプリッタ−3
に入射させている。
Returning to Figure 1, the 2 beams split by the polarizing beam splitter 3
Of the two light beams, the transmitted light beam is converted into circularly polarized light through the wavelength plate 5, and is made incident on an optical member 19 made of a prism through a prism 17 having two reflective surfaces. Then, the position M1 on the radiation grating 7 on the disk 6 is transmitted through the optical member 19.
The light is made incident at a position M2 that is approximately point symmetrical with respect to the rotation axis 50. At this time, by specifying the shape of the optical member 19 for the light beam emitted perpendicularly to the radiation grating 7 from the prism 17 in the same manner as in the case of the reflected light beam described above, the diffracted light of a specific order by the radiation grating 7 is transmitted to the radiation grating 7. The beam is made incident on the radiation grating 7 so as to be emitted perpendicularly to the beam. Then, the diffracted light of a specific order among the transmitted diffracted light that is incident on the radiation grating 7 and diffracted is made to travel backward along the same optical path by an optical means 9 similar to the optical means 8 described above, and is returned to approximately the same position M2 of the radiation grating 7. It is incident. Then, the diffracted light of a specific order re-diffracted by the radiation grating 7 is converted into linearly polarized light with a polarization direction that is 90 degrees different from that when it is incident through the wavelength plate 5. The polarizing beam splitter 3
It is input to.

このとき、透過光束も前述の反射光束と同様に偏光ビー
ムスプリッタ−3から光学手段9に至る特定次数の回折
光の往復光路を同一としている。
At this time, the transmitted light beam also has the same round-trip optical path of the diffracted light of a specific order from the polarizing beam splitter 3 to the optical means 9 as in the above-mentioned reflected light beam.

そして光学手段8を介し入射してきた回折光と重なり合
わせた後、属波長板10を介し円偏光とし、光分割器1
1で2つの光束に分割し、各々の光束を互いの偏光方位
を45度傾けて配置した偏光板12゜13を介し双方の
光束に90度の位相差を付けた直線偏光として各々の受
光手段14.15に入射させている。そして受光手段1
4.15により形成された2光束の干渉縞の強度を検出
している。
Then, after being superimposed with the diffracted light that has entered through the optical means 8, it is made into circularly polarized light through the wavelength plate 10, and the beam splitter 1
1 is divided into two light beams, and each light beam is passed through polarizing plates 12 and 13 arranged with their polarization directions tilted by 45 degrees, and both light beams are converted into linearly polarized light with a phase difference of 90 degrees to each light receiving means. 14.15. and light receiving means 1
The intensity of the interference fringes of the two beams formed by 4.15 is detected.

このとき本実施例では放射格子7の点M、から回折され
る特定次数の回折光束の回転物体の回転中心寄りの光束
要素と点M2から回折される特定次数の回折光束の回転
物体の回転中心寄りの光束要素とが互いに重なり合うよ
うに、同様に放射格子の回転中心の外側寄りの光束同志
とが重ね合わさるように各光学部材を配置することによ
り放射格子の外側と内側のピッチの違いにより生じる波
面収差、特に非点収差の影習を除去している。
At this time, in this embodiment, a light flux element near the rotation center of the rotating object of the diffracted light beam of a specific order diffracted from the point M of the radiation grating 7 and a rotation center of the rotating object of the diffracted light beam of the specific order diffracted from the point M2. This is caused by the difference in pitch between the outside and inside of the radiation grating by arranging each optical member so that the light flux elements closer to each other overlap with each other, and similarly, the light beam elements closer to the outside of the rotation center of the radiation grating overlap. The effects of wavefront aberration, especially astigmatism, are eliminated.

本実施例において被測定回転物体が放射格子7の1ピツ
チ分だけ回転するとm次の回折光の位相は2mπだけ変
化する。同様に放射格子7により再回折されたn次の回
折光の位相は2nπだけ変化する。これにより全体とし
て受光手段からは(2m−2n)個の正弦波形が得られ
る。本実施例ではこのときの正弦波形を検出することに
より回転量を測定している。
In this embodiment, when the rotating object to be measured rotates by one pitch of the radiation grating 7, the phase of the m-th order diffracted light changes by 2mπ. Similarly, the phase of the n-th order diffracted light re-diffracted by the radiation grating 7 changes by 2nπ. As a result, (2m-2n) sine waveforms are obtained from the light receiving means as a whole. In this embodiment, the amount of rotation is measured by detecting the sine waveform at this time.

例えば回折格子のピッチが3.2μm、回折光として1
次及び−1次を利用したとすれば回転物体がピッチの3
.2μm分だけ回転したとき受光素子からは4個の正弦
波形が得られる。即ち正弦波形1個当りの分解能として
回折格子の1ピツチの嵐の3.2/4− OJBμmが
得られる。
For example, if the pitch of the diffraction grating is 3.2 μm, the diffracted light is 1
If we use the next and -1st orders, the rotating object will have a pitch of 3
.. When rotated by 2 μm, four sine waveforms are obtained from the light receiving element. That is, the resolution per sine waveform is 3.2/4-OJB μm of one pitch of the diffraction grating.

尚、本実施例において放射格子で回折された回折光を再
度回折格子に入射させないで、測定精度は多少低下する
が直接2つの回折光を前述の条件を満足するように重ね
合わせて受光手段に導光させても良い。
In this example, the diffracted light that has been diffracted by the radiation grating is not made to enter the diffraction grating again, but the two diffracted lights are directly superimposed so as to satisfy the above-mentioned conditions, and the measurement accuracy is slightly reduced. Light may be guided.

本実施例では光分割器11により光束を2分割し各々の
光束間に90度の位相差をつけることにより回転物体の
回転方向も判別出来るようにしている。
In this embodiment, the light beam is divided into two by the light splitter 11, and a phase difference of 90 degrees is created between each beam, so that the direction of rotation of the rotating object can also be determined.

尚、回転量のみを測定するのであれば光分割器11、偏
光板12.13及び一方の受光手段は不要である。
Note that if only the amount of rotation is to be measured, the light splitter 11, the polarizing plates 12 and 13, and one of the light receiving means are unnecessary.

本実施例では光学部材18.19を用いて光束を放射格
子7に入射させる際、放射格子7からの特定次数の回折
光が放射格子7に対して略垂直に射出するようにして装
置全体の簡素化及び組立精度の向上を図っているが必ず
しも放射格子7より略垂直に射出させる必要はなく光学
部材18.19を省略し、ある角度を有して射出させる
ようにしても良い。
In this embodiment, when the optical members 18 and 19 are used to make the light beam incident on the radiation grating 7, the diffracted light of a specific order from the radiation grating 7 is emitted approximately perpendicularly to the radiation grating 7, so that the entire apparatus is Although the aim is to simplify and improve assembly accuracy, it is not always necessary to emit light substantially perpendicularly from the radiation grating 7, and the optical members 18 and 19 may be omitted and the light may be emitted at a certain angle.

本実施例では回転中心に対して略点対称の2つの位置M
、、M2からの回折光を利用することにより回転物体の
回転中心と放射格子の中心との偏心による測定誤差を軽
減させている。
In this embodiment, there are two positions M that are approximately symmetrical about the center of rotation.
By using the diffracted light from M2, measurement errors due to eccentricity between the center of rotation of the rotating object and the center of the radiation grating are reduced.

尚、本実施例に於る構成は略点対称な2点からの回折光
を利用しているわけであるが、略点対称に限らず複数の
位置からの回折光を用いることにより略同等の効果を得
ることが出来る。例えば、互いに120°の角度を成す
3点からの回折光を利用したり、近接しない任意の2点
からの回折光を利用するのも有効である。
Although the configuration in this example uses diffracted light from two points that are approximately point symmetrical, it is possible to obtain approximately the same diffraction light by using diffracted light from multiple positions, not limited to approximately point symmetrical. You can get the effect. For example, it is also effective to use diffracted light from three points that are at an angle of 120 degrees to each other, or to use diffracted light from arbitrary two points that are not close to each other.

本実施例では偏光ビームスプリッタ−3から反射手段8
,9に至る特定次数の回折光の往復の光路を同一とする
ことにより、偏光ビームスプリッタ−3における2つの
回折光束の重なり具合を容易にし、装置全体の組立粒度
を向上させている。
In this embodiment, from the polarizing beam splitter 3 to the reflecting means 8
.

尚、以上の各実施例において%波長板4,5は偏光ビー
ムスプリッタ−3と反射手段との間であればどこに配置
しても良い。 又、各実施例においては透過回折光の代
わりに反射回折光を利用しても良い。
In each of the above embodiments, the wavelength plates 4 and 5 may be placed anywhere between the polarizing beam splitter 3 and the reflecting means. Further, in each embodiment, reflected diffraction light may be used instead of transmitted diffraction light.

更に本発明によれば回転角度のみならず回転速度をも検
出することができる。
Furthermore, according to the present invention, not only the rotation angle but also the rotation speed can be detected.

尚、本発明において使用する回折格子は、透光部と遮光
部から成る所謂振幅型の回折格子、互いに異なる屈折率
を有する部分から成る位相型の回折格子である。特に位
相型の回折格子は、例えば透明円盤の円周上に凹凸のレ
リーフパターンを形成することにより作成出来、エンボ
ス、スタンパ等のプロセスにより量産が可能である。
The diffraction grating used in the present invention is a so-called amplitude type diffraction grating consisting of a light transmitting part and a light shielding part, and a phase type diffraction grating consisting of parts having mutually different refractive indexes. In particular, phase-type diffraction gratings can be created, for example, by forming an uneven relief pattern on the circumference of a transparent disk, and can be mass-produced by processes such as embossing and stamping.

(発明の効果) 本発明によれば放射格子からの特定次数の回折光を互い
に重ね合わせる際、放射格子からの回折方向が同一とな
るように互いに重ね合わせ放射格子の外側と内側のピッ
チの違いにより生じる波面収差の影響を除去することに
より、被検回転物体の回転状態を高精度に測定すること
のできるロータリーエンコーダーを達成することができ
る。
(Effects of the Invention) According to the present invention, when the diffracted lights of a specific order from the radiation grating are superimposed on each other, they are superimposed on each other so that the diffraction directions from the radiation grating are the same, and the pitch between the outside and the inside of the radiation grating is different. By eliminating the influence of wavefront aberration caused by this, it is possible to achieve a rotary encoder that can measure the rotational state of a rotating object to be detected with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(八) 、 (B)は本発明の一実施例の光学系
の概略図、第2図は第1図の一部分の説明図、第3図は
従来の光電的ロータリーエンコーダーの説明図である。 図中1はレーザー、2はコリメーターレンズ、3は偏光
ど一ムスプリッター、4゜5.10は%波長板、6は円
板、7は放射格子、8.9は各々光学手段、12.’1
3は各々偏光板、14、15は各々受光手段である。
Figures 1 (8) and (B) are schematic diagrams of an optical system according to an embodiment of the present invention, Figure 2 is an explanatory diagram of a portion of Figure 1, and Figure 3 is an explanatory diagram of a conventional photoelectric rotary encoder. It is. In the figure, 1 is a laser, 2 is a collimator lens, 3 is a polarization splitter, 4°5.10 is a % wavelength plate, 6 is a disk, 7 is a radiation grating, 8.9 is an optical means, and 12. '1
3 are polarizing plates, and 14 and 15 are light receiving means.

Claims (1)

【特許請求の範囲】[Claims] 可干渉性の複数の光束を回転物体に連結した円板上の回
折格子上であって該回転物体の異なる複数の位置に各々
入射させ、該回折格子からの特定次数の回折光のうち一
方の光束の前記回転物体の回転軸中心寄りの光束要素と
他方の光束の前記回転物体の回転軸中心寄りの光束要素
とが互いに重なり合うようにした後、これらの光束を受
光手段に導光し、該受光手段からの出力信号を利用して
前記回転物体の回転状態を求めたことを特徴とするロー
タリーエンコーダー。
A plurality of coherent light beams are incident on a diffraction grating on a disc connected to a rotating object at different positions of the rotating object, and one of the diffracted lights of a specific order from the diffraction grating is After the light flux element of the light flux near the center of the rotation axis of the rotating object and the light flux element of the other light flux near the center of the rotation axis of the rotating object are made to overlap with each other, these light fluxes are guided to a light receiving means, A rotary encoder characterized in that the rotational state of the rotating object is determined using an output signal from a light receiving means.
JP4267486A 1986-02-27 1986-02-27 Rotary encoder Pending JPS62200221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4267486A JPS62200221A (en) 1986-02-27 1986-02-27 Rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4267486A JPS62200221A (en) 1986-02-27 1986-02-27 Rotary encoder

Publications (1)

Publication Number Publication Date
JPS62200221A true JPS62200221A (en) 1987-09-03

Family

ID=12642577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4267486A Pending JPS62200221A (en) 1986-02-27 1986-02-27 Rotary encoder

Country Status (1)

Country Link
JP (1) JPS62200221A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953209B2 (en) * 1981-08-06 1984-12-24 工業技術院長 Casting method of polycrystalline silicon ingot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953209B2 (en) * 1981-08-06 1984-12-24 工業技術院長 Casting method of polycrystalline silicon ingot

Similar Documents

Publication Publication Date Title
US4868385A (en) Rotating state detection apparatus using a plurality of light beams
JPS626119A (en) Rotary encoder
JPS62200225A (en) Rotary encoder
JPS62200224A (en) Rotary encoder
JPH0781883B2 (en) encoder
JPS62200226A (en) Rotary encoder
JPH0462003B2 (en)
JPS62200221A (en) Rotary encoder
JPS62163919A (en) Rotary encoder
JPH0462004B2 (en)
JPS62200222A (en) Rotary encoder
JPS61212728A (en) Rotary encoder
JPS62163918A (en) Rotary encoder
JPH045142B2 (en)
JPH07119623B2 (en) Displacement measuring device
JPS62200220A (en) Rotary encoder
JPS62200223A (en) Encoder
JPH0466294B2 (en)
JPH0466293B2 (en)
JPS62204126A (en) Encoder
JPS62163920A (en) Rotary encoder
JPH0462002B2 (en)
JPS62201313A (en) Rotary encoder
JPS62204127A (en) Encoder
JPS62204125A (en) Encoder