JPS62201313A - Rotary encoder - Google Patents

Rotary encoder

Info

Publication number
JPS62201313A
JPS62201313A JP4455686A JP4455686A JPS62201313A JP S62201313 A JPS62201313 A JP S62201313A JP 4455686 A JP4455686 A JP 4455686A JP 4455686 A JP4455686 A JP 4455686A JP S62201313 A JPS62201313 A JP S62201313A
Authority
JP
Japan
Prior art keywords
light
rotary encoder
diffracted
diffracted light
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4455686A
Other languages
Japanese (ja)
Inventor
Tetsuji Nishimura
西村 哲治
Akira Ishizuka
公 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4455686A priority Critical patent/JPS62201313A/en
Priority to DE3706277A priority patent/DE3706277C2/en
Priority to GB8704851A priority patent/GB2187282B/en
Publication of JPS62201313A publication Critical patent/JPS62201313A/en
Priority to US07/527,704 priority patent/US5101102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a device which satisfies a required measurement accuracy all the time by demanding the parallelism of a body to satisfy a specific expression in an encoder which detects interference fringes to determine the rotation state of the body. CONSTITUTION:Luminous flux emitted by a laser 1 is made incident on positions M1 and M2 of a radiation grating 7 provided with a diffraction grating on a disk 6 coupled with the rotating body to be measured. Then, diffracted light beams of specific degree among transmitted and diffracted light beams are superposed on each other to form interference fringes, which are detected by light receiving means 15 and 17 to detect the rotation state of the body. At this time, when the parallelism (a) of the body is equal to or larger than tan<-1>((pi(m-n)lambda/360n0P)XthetaK) where (m) and (n) are the degrees of the diffracted light beams, n0 the refractive index of the body, P the pitch of the diffraction grating, lambda the wavelength of coherent luminous flux, and thetaK the permissible value of an angle error, the rotation state of the rotating body is measured within a desired angle error.

Description

【発明の詳細な説明】 く技術分野〉 本発明はロータリーエンコーダーに関し、特に放射状に
配した回折格子を回転物体に取付け、該回折格子に例え
ばレーザーからの光束を照射し、該回折格子からの回折
光を利用して、回折格子若しくは回転物体の回転速度や
回転速度の変動量等の回転状態を光電的に検出するロー
タリーエンコーダーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field> The present invention relates to a rotary encoder, and in particular to a rotary encoder, in which a radially arranged diffraction grating is attached to a rotating object, the diffraction grating is irradiated with a beam of light from, for example, a laser, and the diffraction from the diffraction grating is detected. The present invention relates to a rotary encoder that uses light to photoelectrically detect the rotational state of a diffraction grating or a rotating object, such as the rotational speed and the amount of variation in rotational speed.

〈従来技術〉 従来よりフロッピーデスクの駆動等のコンピューター機
器、プリンター等の事務機器、あるいはNC工作機械さ
らにはVTRのキヤブステンモーター澗回転ドラム等の
回転機構の回転速度や回転速度の変動量を検出する為の
手段とし  −て光電的なロータリーエンコーダーが利
用されてきている。
<Prior art> Conventionally, the rotation speed and the amount of variation in rotation speed of rotating mechanisms such as computer equipment such as floppy desk drives, office equipment such as printers, NC machine tools, and VTR cabbage stainless steel motors and rotary drums has been measured. Photoelectric rotary encoders have been used as a means of detection.

光電的なロータリーエンコーダーは例えば第5図に示す
ように回転軸30に連絡した円板35の周囲に透光部と
遮光部を等間隔に設けた、所謂メインスケール31とこ
れに対応してメイ1ンスケールと等しい間隔で透光部と
遮光部とを設けた所謂固定のインデックススケール32
との双方のスケールを投光手段33と受光毛段34で挟
んで対向配置した所謂インデックススケール方式の構成
を採っている。この方法はメインスケールの回転に伴っ
て双方のスケールの透光部と遮光部の間隔に同期した信
号が得られ、この信号を周波数解析して回転軸の回転速
度の変動を検出している。この為、双方のスケールの透
光部と遮光部とのスケール間隔を細かくすればする程、
検出精度を高めることができる。しかしながらスケール
間隔を細かくすると回折光の影響で受光手段からの出力
信号のS/N比が低下し、検出精度が低下してしまう欠
点があった。この為メインスケールの透光部と遮光部の
格子の総本数を固定させ、透光部と遮光部の間隔を回折
光の影響を受けない程度まで拡大しようとするとメイン
スケールの円板の直径が増大し更に厚さも増大し装首全
体が大型化し、この結果被検回転物体への負荷が大きく
なってくる等の欠点があった。
For example, as shown in FIG. 5, a photoelectric rotary encoder has a so-called main scale 31 in which transparent parts and light-shielding parts are provided at equal intervals around a disk 35 connected to a rotating shaft 30, and a corresponding main scale. A so-called fixed index scale 32 in which a light-transmitting part and a light-blocking part are provided at intervals equal to one scale.
A so-called index scale system configuration is adopted in which both scales are placed facing each other and sandwiched between the light projecting means 33 and the light receiving bristles stage 34. In this method, as the main scale rotates, a signal synchronized with the interval between the light-transmitting part and the light-blocking part of both scales is obtained, and this signal is frequency-analyzed to detect fluctuations in the rotational speed of the rotating shaft. For this reason, the finer the scale interval between the light-transmitting part and the light-blocking part of both scales, the more
Detection accuracy can be improved. However, when the scale interval is narrowed, the S/N ratio of the output signal from the light receiving means decreases due to the influence of the diffracted light, resulting in a decrease in detection accuracy. For this reason, if you fix the total number of gratings in the light-transmitting part and light-blocking part of the main scale, and try to increase the distance between the light-transmitting part and the light-blocking part to the extent that it is not affected by diffracted light, the diameter of the main scale disc will increase. This increases the size and thickness of the neck, making the entire neckpiece larger, which has the disadvantage of increasing the load on the rotating object to be tested.

−・方、従来からリニアエンコーダーに於て、移動物体
に取付けた回折格子に可干渉光束を入射せしめ、該回折
格子から出射する回折光同志を重ね合わせることにより
得られる干渉縞を受光手段で検出し、移動物体の移動の
際に生じる受光面上での干渉縞の明暗を光電変換して電
気信号(パルス)を得ることにより移動物体の移動量を
検知する方式が提案されていた。
- Conventionally, in linear encoders, a coherent light beam is made incident on a diffraction grating attached to a moving object, and interference fringes obtained by superimposing the diffracted lights emitted from the diffraction grating are detected by a light receiving means. However, a method has been proposed in which the amount of movement of a moving object is detected by photoelectrically converting the brightness and darkness of interference fringes on the light-receiving surface that occur when the moving object moves to obtain an electrical signal (pulse).

従って、リニアエンコーダーに於けるこの干渉縞検出方
式をロータリーエンコーダーに適用すれば、上記従来の
ロータリーエンコーダーの欠点は全て解消出来ると考え
られる。しかしながら、ロータリーエンコーダーにこの
方式を用いる場合1回折格子として円板の如き回転物体
上に放射格子を形成し、この放射格子上に可干渉光束を
入射させて測定する方法を用いる為、この放射格子の中
心と回転物体の回転中心とが正確に一致しないことから
、 1111定時に偏心誤差の影響を受けることが多い
Therefore, if this interference fringe detection method used in a linear encoder is applied to a rotary encoder, it is considered that all of the above-mentioned drawbacks of the conventional rotary encoder can be eliminated. However, when this method is used in a rotary encoder, a radiation grating is formed on a rotating object such as a disk as one diffraction grating, and measurement is performed by making a coherent beam incident on this radiation grating. Since the center of the rotation object does not exactly match the center of rotation of the rotating object, the 1111 timing is often affected by eccentricity errors.

従って、偏心誤差の影響を軽減する為に放射格子の複数
の位置から出射した回折光同志を干渉させる方式をとる
ことが有効であるが、円板の如き回転物体のf相性(平
行度)が悪いと互。
Therefore, in order to reduce the influence of eccentricity errors, it is effective to adopt a method in which the diffracted lights emitted from multiple positions of the radiation grating interfere with each other, but the f-compatibility (parallelism) of a rotating object such as a disk Bad and mutual.

いに干渉させるべき回折光同志に光路長差が発生し、7
1+11定誤差を生じる可能性があった。
A difference in optical path length occurs between the diffracted lights that should be caused to interfere with each other.
There was a possibility that a 1+11 constant error would occur.

〈発明の概要〉 本発明の目的は、上記問題点に鑑み、ロータリーエンコ
ーターに於ける回転物体の平行度に着目し、A11l定
時の所望の許容誤差を満足させる平行度を備えた回転物
体を有するロータリーエンコーダーを提供することにあ
る。
<Summary of the Invention> In view of the above-mentioned problems, an object of the present invention is to focus on the parallelism of a rotating object in a rotary encoder, and to develop a rotating object with a parallelism that satisfies a desired tolerance at the A11l constant time. The objective is to provide a rotary encoder with

に足口的を達成する為に、本発明に係るロータリーエン
コーダーは、回転する物体に設けた回折格子の異なる位
置に可干渉光束を入射させ1、核回折格子から出射する
相異なる回折光を互いに毛ね合わせて1′−#縞を形成
し、該干渉縞を受光手段で検出することにより前記物体
の回転状態を検知するロータリーエンコーダーに於て、
+iii記物体の平行度aが以下の式を満足する様にし
たことを特徴とする。
In order to achieve this goal, the rotary encoder according to the present invention makes coherent light beams enter different positions of a diffraction grating provided on a rotating object, and mutually separates different diffracted lights emitted from the nuclear diffraction grating. In a rotary encoder that detects the rotational state of the object by combining the interference fringes to form 1'-# fringes and detecting the interference fringes with a light receiving means,
+iii The parallelism a of the object is set to satisfy the following formula.

a≦tarrl(” ” ”   0< )60noP 尚、ここで、m、nは回折光の次数、nQは物体の屈折
率、Pは回折格子のピッチ、λは可干渉光束の波及、θ
Kは角度誤差の許容値を示す。
a≦tarrl(” ” 0< )60noP Here, m and n are the orders of the diffracted light, nQ is the refractive index of the object, P is the pitch of the diffraction grating, λ is the spread of the coherent light beam, and θ
K indicates the allowable value of angular error.

尚、本発明の更なる特徴は以下に示す実施例により理解
出来るであろう。
Further features of the present invention will be understood from the examples shown below.

〈実施例〉 第1図は本発明に係るロータリーエンコーダーの一実施
例の光学系概略図である。
<Embodiment> FIG. 1 is a schematic diagram of an optical system of an embodiment of a rotary encoder according to the present invention.

本実施例ではレーザー1より放射された光束をコリメー
ターレンズ2によって平行光束とし偏光ビームスプリッ
タ−3に入射させ、略等光量の反射光束と透過光束の2
つの直線偏光の光束に分;13シている。このうち反射
した光束は嵐波長板4と反射鏡5を経て、円偏光とし、
被測定回転物体と連結した円板6上の放射状の回折格子
が設けられている放射格子7の位5’l M Lに入射
させている。そして放射格子7に入射し回折した透過回
折光のうち特定次数、例えば+m次の回折光を反射手段
8により反射させ、同一光路を逆行させ放射格子7上の
略同−位置M1に再入射させている。そして放射格子7
により再回折された特定次数の回折光を反射鏡5と電波
長板4を介して入射したときと90度偏光方位の異なる
直線偏光とし偏光ビームスプリッタ−3に入射させてい
る。
In this embodiment, the light beam emitted from the laser 1 is made into a parallel light beam by the collimator lens 2 and is made incident on the polarizing beam splitter 3.
The luminous flux of one linearly polarized light has 13 minutes. Among these, the reflected light flux passes through the storm wavelength plate 4 and the reflecting mirror 5, and becomes circularly polarized light.
The light is incident on the radiation grating 7, which is provided with a radial diffraction grating on the disk 6 connected to the rotating object to be measured. Then, among the transmitted diffracted light that is incident on the radiation grating 7 and diffracted, a specific order, for example, the +m-order diffracted light, is reflected by the reflecting means 8, and is caused to travel backward along the same optical path and re-enter the radiation grating 7 at approximately the same position M1. ing. and radiation grating 7
The diffracted light of a specific order that is re-diffracted by the reflector 5 and the radio wave plate 4 is converted into linearly polarized light having a polarization direction 90 degrees different from that when it is incident through the reflecting mirror 5 and the radio wave plate 4, and is made incident on the polarizing beam splitter 3.

本実施例では偏光ビームスプリッタ−3から反射手段8
に至る特定次数の回折光の往復光路を同一としている。
In this embodiment, from the polarizing beam splitter 3 to the reflecting means 8
The round trip optical path of the diffracted light of a specific order is the same.

反射手段8としては1通常の反射鏡を用いることも可能
であるが、コーナキューブ等の光学素子に対する人出射
光束が常に平行となる様な光学素子が好ましい。
Although it is possible to use an ordinary reflecting mirror as the reflecting means 8, it is preferable to use an optical element such as a corner cube so that the light beam emitted from the person is always parallel to the optical element.

例えば1反射鏡を集光レンズの略焦点面上に配置し、集
光レンズに平行に入射してきた特定次数の回折光のみを
マスクの開日部を通過させ反射鏡で反射させた後1元の
光路を逆戻りするような構成の光学素子を用いると良い
。この時は他の次数の回折光はマスクにより遮光される
ことになる。反射膜1)として、この種の光学素子の機
能と同一のちのであれば、例えばキャッツアイ光学系等
どのような構成のものでも良い。このような光学系を用
いれば例えばレーザーの発振波長が変化し、回折角が多
少変化しても略同じ光路で戻すことかできる特徴がある
For example, a single reflecting mirror is placed approximately on the focal plane of the condensing lens, and only the diffracted light of a specific order that is incident parallel to the condensing lens passes through the aperture of the mask and is reflected by the reflecting mirror. It is preferable to use an optical element configured to reverse the optical path. At this time, diffracted light of other orders is blocked by the mask. The reflective film 1) may have any configuration, such as a cat's eye optical system, as long as it has the same function as this type of optical element. If such an optical system is used, for example, even if the oscillation wavelength of the laser changes and the diffraction angle changes somewhat, the light can be returned along substantially the same optical path.

又、キャッツアイ光学系に、屈折率分布型レンズ、例え
ば日本板硝子社製のセルフォックマイクロレンズ(商品
名)等を適用し、その両端平面な点に着目して片面に反
射膜を1没けることにより、構成が簡便で且つ又生産性
に富む光学素子として本発明に有効に適用することがで
きる。
In addition, a gradient index lens, such as Selfoc Micro Lens (trade name) manufactured by Nippon Sheet Glass Co., Ltd., is applied to the cat's eye optical system, and a reflective film is placed on one side, focusing on the flat points at both ends. Therefore, it can be effectively applied to the present invention as an optical element having a simple configuration and high productivity.

第1図に戻り偏光ビームスプリッタ−3で分割された2
つの光束のうち透過した光束は電波長板9を介し円偏光
とし、更に反射鏡lOを介して円板6上の放射格子7上
の位置M1と回転軸Oに対して略点対称の位iM2に入
射させている。そして放射格子7に入射し回折した透過
回折光のうち特定次数、例えば−m次の回折光を前述の
反射手段8と同様の反射手段11により同一光路を逆行
さ°せて、放射格子7の略同−位1fi M 2に再入
射させている。そして放射格子7より再回折された特定
次数の回折光を反射鏡10と電波長板9を介し入射した
ときは90度偏光方位の異なる直線偏光とし偏光ビーム
スプリッタ−3に入射させている。
Returning to Figure 1, the 2 beams split by the polarizing beam splitter 3
The transmitted light beam among the two light beams is converted into circularly polarized light through the electromagnetic wave plate 9, and is further transmitted through the reflecting mirror lO to a position iM2 approximately symmetrical to the position M1 on the radiation grating 7 on the disc 6 with respect to the rotation axis O. It is input to. Of the transmitted diffracted light incident on the radiation grating 7 and diffracted, the diffracted light of a specific order, for example, -m order, is caused to travel backward along the same optical path by a reflecting means 11 similar to the reflecting means 8 described above. The light is re-injected into 1fi M2 at approximately the same level. When the diffracted light of a specific order re-diffracted by the radiation grating 7 is incident through the reflecting mirror 10 and the radio wave plate 9, it is converted into linearly polarized light with a 90 degree different polarization direction and is made incident on the polarizing beam splitter 3.

このとき、透過光束も前述の反射光束と同様に偏光ビー
ムスプリッタ−3から反射手段11に至る特定次数の回
折光の往復光路を同一としている。そして反射手段8を
介し入射してきた回折光と毛なり合わせた後、電波長板
12を介し円偏光とし、光分割器13で2つの光束に分
割し、各々の光束を互いの偏光方位を45度傾けて配置
した偏光板14.16を介し双方の光束に90度の位相
差を伺けた直線偏光として各々の受光「一段15.17
に入射させている。そして受光り段15.17により形
成された2光東の干渉縞の強度を検出している。
At this time, the transmitted light beam also has the same round-trip optical path of the diffracted light of a specific order from the polarizing beam splitter 3 to the reflecting means 11, as in the case of the above-mentioned reflected light beam. After combining the diffracted light incident through the reflection means 8, it is made into circularly polarized light through the electromagnetic wave plate 12, and split into two light beams by the light splitter 13. Each light beam is received as linearly polarized light with a 90 degree phase difference through polarizing plates 14 and 16 arranged at an angle of 15.17 degrees.
It is input to. Then, the intensity of the two-light east interference fringes formed by the light receiving stages 15 and 17 is detected.

本実施例において被測定回転物体が放射格子7の1ピッ
チ分だけ回転するとm次の再回折光の位相は2mπだけ
変化する。同様に放射格子7により11回折されたn次
の回折光の位相は2nπだけ労化する。これにより全体
として受光「段からは(2m−2n)個の正弦波形が得
られる。
In this embodiment, when the rotating object to be measured rotates by one pitch of the radiation grating 7, the phase of the m-th re-diffracted light changes by 2mπ. Similarly, the phase of the n-th order diffracted light that is 11 times diffracted by the radiation grating 7 is increased by 2nπ. As a result, (2m-2n) sine waveforms are obtained from the light receiving stage as a whole.

本実施例ではこのときの正弦波形を検出することにより
回転eを測定している。
In this embodiment, the rotation e is measured by detecting the sine waveform at this time.

第2図は第1図に示すロータリーエンコーダーの断面図
で、円板6より上方の光学系は省略している。尚、図中
の符番の内温1図と同じ符番は同一部材もしくは位置を
示している。
FIG. 2 is a sectional view of the rotary encoder shown in FIG. 1, with the optical system above the disk 6 omitted. Note that the same reference numerals as those in Figure 1 indicate the same members or positions.

又、見は放射格子上の位置M1.M2間の距離、tt及
びt2は夫々M1及びM2側での円板の厚さを示す記り
である。
Also, look at position M1 on the radiation grid. The distance between M2, tt and t2, is a notation indicating the thickness of the disk on the M1 and M2 sides, respectively.

第1図に示す如き透過回折光を利用するロータリーエン
コーダーに於て、第2図の断面図に示す様な放射格子7
を形成している円板6がくさび条になっている場合を考
える。この場合、実線で示されるMlに入射して回折、
再回折を生じるm次の回折光の光路長と、破線で示され
るM2に入射して回折、再回折を生じる一m次の回折光
の光路長との間に差が生じて測定誤差を生じてしまう。
In a rotary encoder using transmitted diffracted light as shown in FIG. 1, a radiation grating 7 as shown in the cross-sectional view of FIG.
Consider the case where the disk 6 forming the . In this case, it is incident on Ml shown by the solid line and diffracted,
A difference occurs between the optical path length of the m-order diffracted light that causes re-diffraction and the optical path length of the 1-m-order diffracted light that enters M2, which is shown by the broken line, and causes diffraction and re-diffraction, resulting in a measurement error. I end up.

即ち、Ml、M2を入射用する光束は大々放射格子7を
往復入射させられる為、Ml、M2に於る厚さの差をΔ
=t 1−t2とすれば、放射格子7が形成された円板
6の屈折率をnQ、レーザーlの発振波長をλとする時
、n□XΔ=λ/2の光路長差が生じることにより円板
6が1回転する毎に±1パルス(+lE弦波形)の誤差
が生じる。
That is, since the light beam incident on Ml and M2 is made to enter the radiation grating 7 back and forth, the difference in thickness between Ml and M2 can be reduced to Δ.
= t 1 - t2, when the refractive index of the disc 6 on which the radiation grating 7 is formed is nQ, and the oscillation wavelength of the laser I is λ, an optical path length difference of n□XΔ=λ/2 will occur. Therefore, an error of ±1 pulse (+lE sinusoidal waveform) occurs every time the disk 6 rotates once.

従って、1回転ちり±にパルスの誤差を生じせしめるΔ
には Δ<=にλ/2nO−−−−−−−−−一−−−−−−
−−−−−−(1)で与えられる。
Therefore, Δ
For Δ<=, λ/2nO−−−−−−−−−−−−−−−
−−−−−−(1) is given.

従って、放射路f−7が形成された円板6の平行度aは a= jan−1(Δに/文) = tan−1(kx
/2no) −−−−−−(2)で表わすことが出来る
Therefore, the parallelism a of the disk 6 on which the radiation path f-7 is formed is a = jan-1(Δto/text) = tan-1(kx
/2no) -------(2).

−・方、円板5−1−の放射格子7の総本数をNとする
と、第1図に示すロータリーエンコーダーの1パルス当
りの角度分解能0を秒で表わすと、±m次の回折光を用
いる為、 0=360°X602/4mN (秒) =324,0
00 /mN (秒) −=−、(3)となる。
On the other hand, if the total number of radiation gratings 7 of the disk 5-1- is N, then if the angular resolution 0 per pulse of the rotary encoder shown in Fig. 1 is expressed in seconds, the diffracted light of order ±m is To use, 0=360°X602/4mN (sec) =324,0
00/mN (sec) -=-, (3).

又、入射点M1及びM2は放射格子の中心Oに対し略対
称な位置であり、夫々の入射点に於る格子ピッチをPと
すると、 P=πi/Nであるから、(3)式の角度分
解能θは 0=324 、0OOP/πm!L−=−−−−−−−
−−−−−−−−(4)従って、±にパルス当りの誤差
は、次式に示すθに秒の誤差となる。
In addition, the incident points M1 and M2 are approximately symmetrical with respect to the center O of the radiation grating, and if the grating pitch at each incident point is P, then P=πi/N, so the equation (3) Angular resolution θ is 0=324, 0OOP/πm! L-=-------
(4) Therefore, the error per pulse in ± becomes the error in seconds in θ shown in the following equation.

θ=324,000kP/πmfL−=−−−−−−−
−−−−−−(5)上記(2)式と(5)式から、第1
図に示すロータリーエンコーダーに於ける角度誤差θに
秒と放射格子7が形成された円板6の平行度aとの関係
は、 πm入 tana(4,Oo  no   0K):−−−−−
−−−−−(6)となる。
θ=324,000kP/πmfL−=−−−−−−
--------(5) From the above equations (2) and (5), the first
The relationship between the angle error θ in the rotary encoder shown in the figure in seconds and the parallelism a of the disk 6 on which the radiation grating 7 is formed is as follows: πm included tana (4, Oo no 0K):
-----(6).

従って、測定精度OK秒を得る為には、円板6の平行度
aは πmλ a≦jan’(4,00noP  θK ) −−−−
−−(7)となり、第1図に示す如きロータリーエンコ
ーダーに於ては、この(7)式を用いて、所望の角度精
度を得る為の円板6を作成すれば良い事になり1本実施
例では(7)式に基づき構成している。但し、実際の装
芒の詳細な設計に当たっては、この円板6の平面度以外
の種々の要因によっても測定精度が変化するので、夫々
の要因から生じるal一定誤差を考慮して最終的な仕様
を決定すべきである。
Therefore, in order to obtain a measurement accuracy of OK seconds, the parallelism a of the disk 6 must be πmλ a≦jan' (4,00noP θK )
--(7), and in the case of a rotary encoder as shown in Fig. 1, it is sufficient to use this equation (7) to create a disk 6 to obtain the desired angular accuracy. The embodiment is configured based on equation (7). However, in the detailed design of the actual sawing, the measurement accuracy will vary depending on various factors other than the flatness of the disk 6, so the final specifications should be determined by taking into account the al constant error caused by each factor. should be determined.

次に、第(7)式を用いた数値実施例を示す。Next, a numerical example using equation (7) will be shown.

第1図に示すロータリーエンコーダーに於て、使用する
回折光の次数をm=±1、レーザ1の発振波長をλ= 
0.78ルm放射格子のピッチをP=2.85 pm、
円板6の屈折率をno=1.5とすると、要求される角
度精度θKに対する円板6の平行度aは a≦jan−1(8,84X l □−7θりとなり、
11111定精度に0K=lO(秒)を保証するには、
円板6の平行度は、上式にθに=10を代入して、 a ≦ 5.07X10−4 (度)Hl、8(秒)に
する必要があることになる。
In the rotary encoder shown in Figure 1, the order of the diffracted light used is m = ±1, and the oscillation wavelength of laser 1 is λ =
The pitch of the 0.78 lm radiation grating is P=2.85 pm,
If the refractive index of the disk 6 is no=1.5, the parallelism a of the disk 6 with respect to the required angular accuracy θK is a≦jan-1 (8,84X l □-7θ),
11111 To guarantee constant accuracy of 0K=lO (seconds),
The parallelism of the disk 6 must be determined by substituting =10 for θ in the above equation, so that a≦5.07X10−4 (degrees) Hl, 8 (seconds).

第3図、第4図は第1図のロータリーエンコーダーに於
て、反射回折光を利用する形態を示す模式図であり1図
中の符番は全て第1図。
3 and 4 are schematic diagrams showing a form in which reflected and diffracted light is utilized in the rotary encoder of FIG. 1, and all reference numbers in FIG. 1 refer to FIG. 1.

第2図の部材と同部材を示している。ここで示す如き所
ai?反射型のロータリーエンコーダーに於ても、図か
ら解る様に前述した(7)式を用いて、測定精度OKに
対する円板6の平行度aの許容値を求めることが可能で
ある。
The same member as the member in FIG. 2 is shown. Ai as shown here? Even in the case of a reflective rotary encoder, as can be seen from the figure, the allowable value of the parallelism a of the disk 6 for acceptable measurement accuracy can be determined using the above-mentioned equation (7).

又、第1図に示すロータリーエンコーダーは、反射手段
8,10を用いてMl、M2に回折光を再度導き、再び
回折光を生じせしめる構成を有するが、例えば反射手段
8.10を用いずに、M 1. M 2で生じた回折光
を所定の手段で直接重ね合わせて干渉縞を得る方式があ
る。
Further, the rotary encoder shown in FIG. 1 has a configuration in which the diffracted light is re-guided to Ml and M2 using the reflecting means 8 and 10 to generate the diffracted light again. , M1. There is a method in which interference fringes are obtained by directly superimposing the diffracted lights generated by M2 using a predetermined means.

この時は、被測定回転物体が放射格子7の1ピッチ分で
け回転するとm次の回折光の位相はm=だけ変化し、同
様に放射格子7の異なる位置により回折されたn次の回
折光の位相はnπだけ変化し、全体として受光手段から
は(m−n)個の正弦波形が得られることになる。
At this time, when the rotating object to be measured rotates by one pitch of the radiation grating 7, the phase of the m-th diffracted light changes by m=, and similarly, the phase of the n-th diffracted light diffracted by different positions of the radiation grating 7 changes. The phase of the light changes by nπ, and as a whole, (m−n) sine waveforms are obtained from the light receiving means.

更に第1図に関する説明では、同次数の±m次回折光同
志を干渉させた場合を例に挙げて(7)式を導いている
が、互いに干渉させ得る回折光は同次数の回折光に限ら
れるものではない。従って、(7)式は本発明を示す一
般式ではなく、以下に一般式を導入する。
Furthermore, in the explanation regarding FIG. 1, formula (7) is derived by taking as an example the case where ±m-order diffracted lights of the same order interfere with each other, but the diffracted lights that can be caused to interfere with each other are limited to diffracted lights of the same order. It's not something you can do. Therefore, formula (7) is not a general formula representing the present invention, and the general formula will be introduced below.

第一1に、干渉縞を形成する為に用いる41定次数の回
折光が回折格子により回折を受けた回数、即ち放射格子
への入射回数をχ七とすれば、nOXΔ=入/χの光路
長差が生じることにより円板6が1回転する毎に±1パ
ルスの誤差が生じる。従って、前記第(1)式は Δに=にλ/χn o  −−−−−−−−−−−−−
−−−−−−−−−−(1) ’と変形される。
First, if the number of times that the 41st-order diffracted light used to form interference fringes is diffracted by the diffraction grating, that is, the number of times it is incident on the radiation grating, is χ7, then the optical path of nOXΔ=input/χ Due to the difference in length, an error of ±1 pulse occurs every time the disk 6 rotates once. Therefore, the above formula (1) is expressed as Δ=λ/χn o −−−−−−−−−−−−−
−−−−−−−−−−(1) It is transformed as '.

従って、円板6の平行度を示す(2)式はに入 a = ta+r+ (χno文)  −−−−−−−
−−−−−−−−−(2) ’となる。
Therefore, equation (2) indicating the parallelism of the disk 6 is as follows: a = ta + r + (χno statement) −−−−−−−
−−−−−−−−−(2) '.

一方、本発明に係るロータリーエンコーダーの1パルス
当りの角度分解能θを度で表わすと1m次及びn次の回
折光を用いるとして。
On the other hand, when the angular resolution θ per pulse of the rotary encoder according to the present invention is expressed in degrees, it is assumed that 1 m-order and n-order diffraction lights are used.

0 =360/χ(m −n) N  −−一−−−=
−−−−−−(3) ’で表わされることになる。
0 =360/χ(m −n) N −−1−−−=
--------(3) It will be expressed as '.

従って、格子ピッチP、M、及びM2間距距離を用いて
(3)′式を書き直すと、 0 =360P/πlχ(m−n) −−−−−−−−
−−−−−(4) ′となる。
Therefore, if we rewrite equation (3)' using the lattice pitches P, M, and the distance between M2, we get 0 = 360P/πlχ(m-n) −−−−−−−−
−−−−−(4) ′.

従って、±にパルス当りの誤差は1次式に示すθに度の
誤差を生じていることになる。
Therefore, an error per pulse in ± causes an error in degrees in θ shown in the linear equation.

OK= 360 kP/πlχ(m−n) −=−=−
−−−−(5) ’上記(2)′式と(5)′式から、
本発明に係るロータリーエンコーダーに於る角度誤差0
KCI■)と放射格子7が形成された円板6のモ行度a
(度)との関係は、 tan aH剥÷トLOK−一−−−−−−−−−−−
−−−(6)′となる。
OK= 360 kP/πlχ(m-n) -=-=-
−−−−(5) 'From the above equations (2)' and (5)',
Angular error in the rotary encoder according to the present invention is 0
KCI■) and the rotation degree a of the disk 6 on which the radiation grating 7 is formed
The relationship with (degree) is tan aH strip ÷ T LOK-1.
---(6)'.

従って、角度誤差OK(度)以内の装置を得る為には、
円板6のf行度a(度)は a≦”−1(+ 0K)−−−−−−(7)′となる。
Therefore, in order to obtain a device with an angular error within OK (degrees),
The f-row degree a (degrees) of the disk 6 is a≦”-1(+0K)−−−−−−(7)′.

従って11本発明に係るロータリーエンコーダーでは、
 (7)′式を満たす如き回折格子を有する物体に可干
渉光束を入射せしめて、回転物体の回転状態を所望の角
度;ill差範囲内で測定出来る。換言すれば、(7)
′式を用い、装置の仕様から許容角度誤差の値を設定し
、この許容角度誤差を満たす様にロータリーエンコーダ
ーを構成する回転物体の平行度が得られる如く回転物体
を設計、製作すれば良い、又、言うまでもなく、(7)
’式の下限値はOであり、明らかに完全に平行性が保れ
た回転物体に回折格子を形成するのが望ましい。
Therefore, in the rotary encoder according to the present invention,
By making a coherent light beam incident on an object having a diffraction grating that satisfies the equation (7)', the rotation state of the rotating object can be measured within a desired angle; ill difference range. In other words, (7)
'Using the formula, set the allowable angular error value from the device specifications, and design and manufacture the rotating object so that the parallelism of the rotating object that makes up the rotary encoder can be obtained so as to satisfy this allowable angular error. Also, needless to say, (7)
The lower limit of the equation ' is O, and it is clearly desirable to form the diffraction grating on a rotating object that maintains complete parallelism.

又、第1図に示すロータリーエンコーダーは放射格子の
中心に対して略点対称な位jj!I M 1 !M2か
ら得られる回折光を利用するものであったが、例えば非
対称なT度120’ の角度を成す様な2つの位置から
得られる回折光を利用する場合であても(7)′式は十
分適用出来る。
Moreover, the rotary encoder shown in FIG. 1 has a position jj! that is approximately symmetrical about the center of the radiation grating. I M1! Although the method uses the diffracted light obtained from M2, Equation (7)' is sufficient even when using the diffracted light obtained from two positions forming an asymmetric angle of 120' T degrees, for example. Can be applied.

第1図に示すロータリーエンコーダーに戻り、このロー
タリーエンコーダーに於て、例えば回折格子のピッチが
2.851Lm、回折光として1次及び−1次を利用し
たとすれば回転物体がピッチの2.85gm分だけ回転
したとき受光素子からは4個の正弦波形が得られる。即
ち正弦波形1個当りの分解能として回折格子の1ピツチ
のハの2.85/4=0.71 gmが得られる。
Returning to the rotary encoder shown in Figure 1, in this rotary encoder, for example, if the pitch of the diffraction grating is 2.851 Lm and the 1st and -1st orders are used as diffracted light, the rotating object is 2.85 gm of the pitch. When the light receiving element rotates by the same amount, four sine waveforms are obtained from the light receiving element. That is, the resolution per sine waveform is 2.85/4=0.71 gm of one pitch of the diffraction grating.

本実施例では光分割器11により光束を2分割し各々の
光束間に90度の位相差をつけることにより回転物体の
回転方向も判別出来るようにしている。
In this embodiment, the light beam is divided into two by the light splitter 11, and a phase difference of 90 degrees is created between each beam, so that the direction of rotation of the rotating object can also be determined.

尚、回転量のみを測定するのであれば光分割器13、偏
向板14.16及び一方の受光手段は不要である。
Note that if only the amount of rotation is to be measured, the light splitter 13, the deflection plates 14 and 16, and one of the light receiving means are unnecessary.

又、前述の如く回転中心に対して略点対称の2つの位置
M1.M2からの回折光を利用することにより回転物体
の回転中心と放射格子の中心との偏心による測定誤差を
軽減させている。
Furthermore, as described above, two positions M1. By using the diffracted light from M2, measurement errors due to eccentricity between the center of rotation of the rotating object and the center of the radiation grating are reduced.

更に一方の光束の回転軸中心寄りの光束要素と略点対称
な位置に入射させた他方の光束の回転軸中心寄りの光束
要素とを互いに爪なり合わせ、同様に回転中心の外側寄
りの光束要;に同志を重ね合わせることにより、放射格
子の外側と内側のピッチの違いより生じる波面収差の影
響を除去している。
Furthermore, the luminous flux element of one luminous flux near the rotation axis center and the luminous flux element of the other luminous flux incident at a substantially point-symmetrical position near the rotation axis center are interlocked with each other, and similarly the luminous flux element towards the outside of the rotation center is ; By superimposing them on each other, the influence of wavefront aberration caused by the difference in pitch between the outside and inside of the radiation grating is removed.

又、偏光ビームスプリッタ−3から反射手段8.11に
至る特′・’t i’、(aの回折光の往復の光路を同
一とすることにより、偏光ビームスプリッタ−3におけ
る2つの回折光束の毛なり具合を容易にし、装置全体の
組立精度を向上させている。
Furthermore, by making the round trip optical path of the diffracted light beams from the polarizing beam splitter 3 to the reflecting means 8.11 the same, the two diffracted beams at the polarizing beam splitter 3 are This makes the hair curling easier and improves the assembly accuracy of the entire device.

更に、電波長板4,9は偏光ビームスプリッタ−3と反
射手段8.11との間であればどこに配置しても良い。
Furthermore, the wave plates 4, 9 may be placed anywhere between the polarizing beam splitter 3 and the reflecting means 8.11.

又1各実施例においては透過回折光の代わりに反射回折
光を利用しても良い。
Further, in each embodiment, reflected diffraction light may be used instead of transmitted diffraction light.

尚、本発明において使用する回折格子は、透光部と遮光
部から成る所謂振幅型の回折格子、IFいに異なる屈折
率をイ1する部分から成る位相型の回折格子である。特
に位相型の回折格子は1例えば透明円盤の円周上に凹凸
のレリーフパターンを形成することにより作成出来、エ
ンボス、スタンパ等のプロセスにより量産が可能である
The diffraction grating used in the present invention is a so-called amplitude type diffraction grating consisting of a light transmitting part and a light shielding part, and a phase type diffraction grating consisting of a part having different refractive indexes at IF. In particular, a phase-type diffraction grating can be created by forming a relief pattern of convexes and convexes on the circumference of a transparent disk, for example, and can be mass-produced by processes such as embossing and stamping.

〈発明の効果〉 以北、本発明に係るロータリーエンコーダーは、411
1定時の所望の許容誤差を満足する平行度を有した回転
物体に回折路Tを設けて有り、要求される測定精度を常
時満足出来るロータリーエンコーダーである。
<Effects of the Invention> North of this, the rotary encoder according to the present invention is 411
This rotary encoder has a diffraction path T provided on a rotating object having parallelism that satisfies a desired tolerance at one fixed time, and can always satisfy the required measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に係るロータリーエンコーダ
ーの一例を示す図で、第1図は光学系概略図、第2図は
円板の断面図。 第3図及び第4図は本発明に係るロータリーエンコーダ
ーの他の例を示す模式図。 第5図は従来のロータリーエンコーダーを示す概略図。
1 and 2 are diagrams showing an example of a rotary encoder according to the present invention, in which FIG. 1 is a schematic diagram of an optical system, and FIG. 2 is a sectional view of a disk. FIGS. 3 and 4 are schematic diagrams showing other examples of the rotary encoder according to the present invention. FIG. 5 is a schematic diagram showing a conventional rotary encoder.

Claims (1)

【特許請求の範囲】[Claims] (1)回転する物体に設けた回折格子の異なる位置に可
干渉光束を入射させ、該異なる位置から出射する特定次
数の回折光を互いに重ね合わせて干渉縞を形成し、該干
渉縞を受光手段で検出することにより前記物体の回転状
態を検知するロータリーエンコーダーに於て、前記物体
の平行度aが以下の式を満足する様にしたことを特徴と
するロータリーエンコーダー。 a≦tan^−^1([π(m−n)λ]/360n_
0Pθ_K)尚、ここで、m、nは回折光の次数、n_
0は物体の屈折率、Pは回折格子のピッチ、λは可干渉
光束の波長、θ_Kは角度誤差の許容値を示す。
(1) Coherent light beams are incident on different positions of a diffraction grating provided on a rotating object, and the diffracted lights of specific orders emitted from the different positions are superimposed on each other to form interference fringes. A rotary encoder for detecting the rotational state of the object by detecting the rotational state of the object, characterized in that the parallelism a of the object satisfies the following equation. a≦tan^-^1([π(m-n)λ]/360n_
0Pθ_K) Here, m and n are the orders of the diffracted light, and n_
0 is the refractive index of the object, P is the pitch of the diffraction grating, λ is the wavelength of the coherent light beam, and θ_K is the allowable value of the angular error.
JP4455686A 1986-02-28 1986-02-28 Rotary encoder Pending JPS62201313A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4455686A JPS62201313A (en) 1986-02-28 1986-02-28 Rotary encoder
DE3706277A DE3706277C2 (en) 1986-02-28 1987-02-26 Rotation encoder
GB8704851A GB2187282B (en) 1986-02-28 1987-03-02 Rotary encoder
US07/527,704 US5101102A (en) 1986-02-28 1990-05-23 Rotary encoder having a plurality of beams emitted by a diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4455686A JPS62201313A (en) 1986-02-28 1986-02-28 Rotary encoder

Publications (1)

Publication Number Publication Date
JPS62201313A true JPS62201313A (en) 1987-09-05

Family

ID=12694772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4455686A Pending JPS62201313A (en) 1986-02-28 1986-02-28 Rotary encoder

Country Status (1)

Country Link
JP (1) JPS62201313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442172A (en) * 1994-05-27 1995-08-15 International Business Machines Corporation Wavefront reconstruction optics for use in a disk drive position measurement system
US5909333A (en) * 1994-05-27 1999-06-01 International Business Machines Corporation Servo-writing system for use in a data recording disk drive

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953209B2 (en) * 1981-08-06 1984-12-24 工業技術院長 Casting method of polycrystalline silicon ingot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953209B2 (en) * 1981-08-06 1984-12-24 工業技術院長 Casting method of polycrystalline silicon ingot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442172A (en) * 1994-05-27 1995-08-15 International Business Machines Corporation Wavefront reconstruction optics for use in a disk drive position measurement system
US5909333A (en) * 1994-05-27 1999-06-01 International Business Machines Corporation Servo-writing system for use in a data recording disk drive

Similar Documents

Publication Publication Date Title
US4868385A (en) Rotating state detection apparatus using a plurality of light beams
US5101102A (en) Rotary encoder having a plurality of beams emitted by a diffraction grating
JPS626119A (en) Rotary encoder
JP2010230667A (en) Cylindrical grating rotation sensor
JPH03148015A (en) Position measuring apparatus
JPS62200225A (en) Rotary encoder
JPS62201313A (en) Rotary encoder
JPS62200224A (en) Rotary encoder
JPH0781883B2 (en) encoder
JPS6166927A (en) Rotary encoder
JPS62200226A (en) Rotary encoder
JPH0462003B2 (en)
JPS62163919A (en) Rotary encoder
JPS62204126A (en) Encoder
JPH045142B2 (en)
JP2600888B2 (en) Encoder
JP2683098B2 (en) encoder
JPS62200222A (en) Rotary encoder
JPS62163921A (en) Rotary encoder
JPS62204127A (en) Encoder
JPS62163918A (en) Rotary encoder
JPS62200220A (en) Rotary encoder
JPH0466293B2 (en)
JPS62200223A (en) Encoder
JPS62200221A (en) Rotary encoder