JPS62204127A - Encoder - Google Patents

Encoder

Info

Publication number
JPS62204127A
JPS62204127A JP4801986A JP4801986A JPS62204127A JP S62204127 A JPS62204127 A JP S62204127A JP 4801986 A JP4801986 A JP 4801986A JP 4801986 A JP4801986 A JP 4801986A JP S62204127 A JPS62204127 A JP S62204127A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
diffracted light
diffraction
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4801986A
Other languages
Japanese (ja)
Inventor
Tetsuji Nishimura
西村 哲治
Akira Ishizuka
公 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4801986A priority Critical patent/JPS62204127A/en
Priority to DE3706277A priority patent/DE3706277C2/en
Priority to GB8704851A priority patent/GB2187282B/en
Publication of JPS62204127A publication Critical patent/JPS62204127A/en
Priority to US07/527,704 priority patent/US5101102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To use luminous flux efficiently for the formation of interference firnges and to improve detection sensitivity by constituting a diffraction grating so that diffracted light beams of specific degree to be superposed among plural diffracted light beams are almost largest in intensity. CONSTITUTION:Luminous flux emitted by a laser 1 is made incident on a polari zation beam splitter 3 through a collimator lens 2 and split into reflected lumi nous flux and transmitted luminous flux which are almost equal in quantity. The reflected luminous flux and transmitted luminous flux are incident on positions M1 and M2 of a radial grating 7 and diffracted light beams of specific degree of the diffracted transmitted light are reflected by reflecting means 8 and 9 to travel through the same optical path in the opposite directions and impinge almost the same positions M1 and M2. When, for example, diffracted light of 1<st> order is utilized, the diffraction rate eta1approx.=10(%) and the diffracted light intensity is maximum at the time of phiw/phip=0.5. Here phip is angular pitch and phiw is the angle of a light transmission part. Consequently, the light beams are superposed by the polarization beam splitter 3 and the interference efficiency of interference fringes detected by photodetecting means 14 and 15 is improved.

Description

【発明の詳細な説明】 く技術分野〉 本発明はエンコーダーに関し、特に移動又は回転物体に
取付けた回折格子に可干渉性光束を入射させ該回折格子
からの回折光を互いに干渉させて干渉縞を形成し、干渉
縞の明暗の縞を計数することによって回折格子の移動状
態、即ち移動物体の移動又は回転状態をΔ1す定するエ
ンコーダーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field> The present invention relates to an encoder, and particularly to an encoder, in which a coherent light beam is incident on a diffraction grating attached to a moving or rotating object, and the diffracted lights from the diffraction grating are made to interfere with each other to form interference fringes. This invention relates to an encoder that determines the movement state of a diffraction grating, that is, the movement or rotation state of a moving object, by Δ1 by counting bright and dark interference fringes.

〈従来技術〉 近年NC工作機械や半導体焼付装置等の精密機械におい
てはlpm以下(サブミクロン)の単位で測定すること
のできる精密な測定器が要求されている。
<Prior Art> In recent years, precision machines such as NC machine tools and semiconductor printing equipment have required precise measuring instruments capable of measuring in lpm or less (submicron) units.

従来よりサブミクロンの単位で測定することのできる測
定器としては、レーザー等の可干渉性光束を用い移動物
体からの回折光より干渉縞を形成させ、該干渉縞を利用
したリニアエンコーダーが良く知られている。
Conventionally, a linear encoder that uses coherent light beams such as a laser to form interference fringes from diffracted light from a moving object is well-known as a measuring instrument capable of measuring in submicron units. It is being

一方、従来よりフロッピーデスクの駆動等のコンピュー
ター機器、プリンター等の事務機器、あるいはNC工作
機械さらにはVTRのギヤブステンモーターや回転ドラ
ム等の回転機構の回転速度や回転速度の変動量を検出す
る為の手段として光電的なロータリーエンコーダーが利
用されてきている。
On the other hand, it has conventionally been used to detect the rotational speed and the amount of variation in rotational speed of computer equipment such as the drive of a floppy desk, office equipment such as a printer, or NC machine tools, as well as rotational mechanisms such as the gearbox motor and rotary drum of a VTR. A photoelectric rotary encoder has been used as a means for this purpose.

光電的なロータリーエンコーダーは例えば絡−−回転軸
±*に連絡した円板 =4の周囲に透光部と遮光部を等間隔に設けた、所An
メインスケールホ4とこれに対応してメインスケールと
等しい間隔で透光部と遮光部とを設けた所謂固定のイン
デックススケールキネとの双方のスケールを投光手段午
守と受光手段客坤で挟んで対向配置した所謂インデック
ススケール方式の構成を採っている。この方法はメイン
スケールの回転に伴って双方のスケールの透光部と遮光
部の間隔に同期した信号が得られ、この信号を周波数回
折して回転軸の回転速度の変動を検出している。この為
、双方のスケールの透光部と遮光部とのスケール間隔を
細かくすればする程、検出精度を高めることかでさる。
For example, a photoelectric rotary encoder is constructed by providing light-transmitting parts and light-shielding parts at equal intervals around a disc = 4 connected to the rotary axis ±*.
Both scales, the main scale 4 and a so-called fixed index scale in which a light-transmitting part and a light-blocking part are provided at equal intervals to the main scale, are sandwiched between a light emitting means and a light receiving means. It adopts a so-called index scale system configuration in which the sensors are arranged facing each other. In this method, as the main scale rotates, a signal synchronized with the interval between the light-transmitting part and the light-blocking part of both scales is obtained, and this signal is frequency diffracted to detect fluctuations in the rotational speed of the rotating shaft. For this reason, the finer the scale interval between the light-transmitting part and the light-blocking part of both scales, the higher the detection accuracy.

しかしながらスケール間隔を細かくすると回折光の影響
で受光手段からの出力信号のS/N比が低下し、検出精
度が低下してしまう欠点があった。この為メインスケー
ルの透光部と遮光部の格子の総本数を固定させ、透光部
と遮光部の間隔を回折光の影響を受けない程度まで拡大
しようとす゛るとメインスケールの円板の直径が増大し
更に厚さも増大し装ご全体が大型化し、この結果被検回
転物体への負荷が大きくなってくる等の欠点があった。
However, when the scale interval is narrowed, the S/N ratio of the output signal from the light receiving means decreases due to the influence of the diffracted light, resulting in a decrease in detection accuracy. For this reason, if we try to fix the total number of gratings in the light-transmitting part and the light-blocking part of the main scale and expand the interval between the light-transmitting part and the light-blocking part to the extent that it is not affected by the diffracted light, the diameter of the disc of the main scale This increases the thickness and increases the overall size of the housing, which has the disadvantage of increasing the load on the rotating object to be tested.

この種の従来のロータリーエンコーダーの欠点を解消す
る方式の1つとして、前述したリニアエンコーダーの干
渉縞検出方式をローターリ−エンコーダーに適用する事
が考えられる。
One possible method for solving the drawbacks of this type of conventional rotary encoder is to apply the interference fringe detection method of the linear encoder described above to the rotary encoder.

しかしながら、リニアエンコーダー、ロータリーエンコ
ーダーに限らず、この種の回折光を用いた干渉縞検出方
式に於ては、回折格子から率、検出感度が悪いという欠
点を生じた。その上、不要な他の回折光がフレアーとな
ったり、ゴースト光発生の原因となったりして、干渉縞
検出時のS/N比が下がるという問題も生じていた。
However, not only linear encoders and rotary encoders but also interference fringe detection systems using this type of diffracted light have the drawbacks of poor detection sensitivity due to the diffraction grating. Moreover, other unnecessary diffracted light may become flare or cause the generation of ghost light, resulting in a problem of lowering the S/N ratio when detecting interference fringes.

〈発明の概要〉 本発明の目的は、上記従来の欠点に鑑み、光源から出射
した光束を効率良く干渉縞形成に用い、検出感度を向上
させたエンコーダーを提供することにある。
<Summary of the Invention> In view of the above-mentioned conventional drawbacks, an object of the present invention is to provide an encoder that efficiently uses the luminous flux emitted from a light source to form interference fringes and has improved detection sensitivity.

上記目的を達成する為に、本発明に係るエンコーダーは
、可干渉光束を得る為の光源手段と、前記可干渉光束を
移動又は回転可能な物体に形成した回折格子に指向する
第1光学手段と、前記回折格子から出射する複数の回折
光を重ね合わせる第2光学手段と前記第2光学手段で得
られる光束を受けて干渉縞を検出する受光手段とを有し
、前記受光手段からの信号より前記物体の移動又は回転
状態を検知する装置であって、前記回折格子から出射す
る複数の回折光のうち、重ね合わせべき特定次数の回折
光の強度が大略最大となる様に前記回折格子を構成した
ことを特徴とする。
In order to achieve the above object, an encoder according to the present invention includes a light source means for obtaining a coherent light beam, and a first optical means for directing the coherent light beam to a diffraction grating formed on a movable or rotatable object. , comprising a second optical means for superimposing a plurality of diffracted lights emitted from the diffraction grating, and a light receiving means for receiving the light beam obtained by the second optical means and detecting interference fringes, and detecting interference fringes from the signal from the light receiving means. A device for detecting the movement or rotation state of the object, wherein the diffraction grating is configured so that the intensity of the diffracted light of a specific order to be superimposed is approximately the maximum among the plurality of diffracted lights emitted from the diffraction grating. It is characterized by what it did.

尚1本発明の更なる特徴は以下に示す実施例から明らか
になるであろう。
Further features of the present invention will become clear from the following examples.

〈実施例〉 第1図は本発明に係るエンコーターの一実施例を示す概
略図で、ここではロータリーエンコーダーを示している
<Embodiment> FIG. 1 is a schematic diagram showing an embodiment of an encoder according to the present invention, and here a rotary encoder is shown.

本実施例ではレーザーlより放射された光束をコリメー
ターレンズ2によって平行光束とし偏光ビームスプリッ
タ−3に入射させ、略等光量の反射光束と透過光束の2
つの直線偏光の光束に分割している。このうち反射した
光束は1/4波長板4を経て、円偏光とし、被測定回転
物体と連結した円板6上の放射状の回折格子が設けられ
ている放射格子7の位置M1に入射させている。そして
放射格子7に入射し回折した透過回折光のうち特定次数
にの回折光を反射手段8により反射させ、同一光路を逆
行させ放射格子7上の略同−位置M1に再入射させてい
る。そして放射格子7により再回折された特定次数の回
折光を1/4波長板4を介して入射したときと90度偏
光方位の異なる直線偏光とし偏光ビームスプリッタ−3
に入射させている。
In this embodiment, the light beam emitted from the laser 1 is made into a parallel light beam by the collimator lens 2 and is made incident on the polarizing beam splitter 3.
It is split into two linearly polarized beams. The reflected light flux passes through a quarter-wave plate 4, becomes circularly polarized light, and is made incident on a position M1 of a radiation grating 7, which is provided with a radial diffraction grating, on a disk 6 connected to the rotating object to be measured. There is. Of the transmitted diffracted light that is incident on the radiation grating 7 and diffracted, the diffracted light of a specific order is reflected by the reflecting means 8, travels the same optical path backwards, and is made to re-enter the radiation grating 7 at substantially the same position M1. Then, the diffracted light of a specific order re-diffracted by the radiation grating 7 is converted into linearly polarized light with a polarization direction that is 90 degrees different from that when it is incident through the quarter-wave plate 4, and is converted into polarized beam splitter 3.
It is input to.

本実施例では偏光ビームスプリッタ−3から反射手段8
に至る特定次数の回折光の往復光路を同一としている。
In this embodiment, from the polarizing beam splitter 3 to the reflecting means 8
The round trip optical path of the diffracted light of a specific order is the same.

第2図は第1図で示した反射手段の一実施例の説明図で
ある。
FIG. 2 is an explanatory diagram of one embodiment of the reflecting means shown in FIG. 1.

同図においては反射鏡40を集光レンズ41の略焦点面
上に配置し、集光レンズ41に平行に入射してきた特定
次数の回折光のみをマスク42の開口部43を通過させ
反射鏡40で反射させた後、元の光路を逆戻りするよう
にしている。そして、その他の次数の回折光をマスク4
2により遮光している。反射手段としては、この他第2
図に示す機能と同一のものであれば。
In the figure, a reflecting mirror 40 is arranged approximately on the focal plane of a condensing lens 41, and only the diffracted light of a specific order that is incident parallel to the condensing lens 41 passes through an opening 43 of a mask 42, and the reflecting mirror 40 After reflecting the light, the light travels back along its original path. Then, the diffracted light of other orders is masked 4.
2 to block light. In addition to this, there are other reflective means.
If the functionality is the same as shown in the diagram.

例えばキャッツアイ光学系等のような構成のものでも良
い。このような光学系を用いれば例えばレーザーの発振
波長が変化し1回折角が多少変化しても略同じ光路で戻
すことができる特徴がある。
For example, a configuration such as a cat's eye optical system may be used. If such an optical system is used, for example, even if the oscillation wavelength of the laser changes and the diffraction angle changes somewhat, the light can be returned along substantially the same optical path.

又、キャッツアイ光学系に、屈折率分布型レンズ、例え
ば日本板硝子社製のセルフォックマイクロレンズ(商品
名)等を適用し、その両端平面な点に若目して片面に反
射膜を設けることにより、構成が簡便で且つ又生産性に
富む光学素子として本発明に有効に適用することができ
る。
Alternatively, a gradient index lens such as Selfoc Micro Lens (trade name) manufactured by Nippon Sheet Glass Co., Ltd. may be applied to the cat's eye optical system, and a reflective film may be provided on one side of the lens, with both ends being flat. Therefore, it can be effectively applied to the present invention as an optical element having a simple configuration and high productivity.

第1図に戻り偏光ビームスプリッタ−3で分割された2
つの光束のうち透過した光束は1/4波長板5を介し円
偏光とし、円板6上の放射格子7上の位置M1と回転軸
50に対して略点対称の位置M2に入射させている。そ
して放射格子7に入射し回折した透過回折光のうち特定
次数の回折光を前述の反射手段8と同様の反射手段9に
より同一光路を逆行させて、放射格子7の略同−位置M
2に再入射させている。そして放射格子7より再回折さ
れた特定次数の回折光を1/4波長板5を介し入射した
ときは90度偏光方位の異なる直線偏光とし偏光ビーム
スプリッタ−3に入射させている。
Returning to Figure 1, the 2 beams split by the polarizing beam splitter 3
Of the two light beams, the transmitted light beam is made into circularly polarized light through a quarter-wave plate 5, and is incident on a position M2 on a radiation grating 7 on a disk 6, which is approximately point symmetrical with respect to a position M1 on a radiation grating 7 and a rotation axis 50. . Then, the diffracted light of a specific order among the transmitted diffracted light that is incident on the radiation grating 7 and diffracted is caused to travel backward along the same optical path by a reflecting means 9 similar to the aforementioned reflecting means 8, so that the diffracted light of a specific order is caused to travel in the same optical path at approximately the same position M of the radiation grating 7.
2 is re-injected. When the diffracted light of a specific order re-diffracted by the radiation grating 7 is incident through the quarter-wave plate 5, it is converted into linearly polarized light with a 90 degree polarization direction and is made incident on the polarizing beam splitter 3.

このとき、透過光束も前述の反射光束と同様に偏光ビー
ムスプリッタ−3から反射手段9に至る。特定次数の回
折光の往復光路光路を同一としている。そして反射手段
8を介して入射してきた回折光と重なり合わせた後、l
/4波長板10を介し円偏光とし、光分割器11で2つ
の光束に分割し、各々の光束を互いの偏光方位を45度
傾けて配置した偏光板12.13を介し双方の光束に9
0度の位相差を付けた直線偏光として各々の受光手段1
4.15に入射させている。そして受光手段14.15
により形成された2光束の干渉縞の強度を検出している
At this time, the transmitted light beam also reaches the reflection means 9 from the polarizing beam splitter 3 in the same way as the reflected light beam described above. The round trip optical path of the diffracted light of a specific order is made the same. Then, after overlapping with the diffracted light incident through the reflection means 8,
The circularly polarized light is passed through a /4 wavelength plate 10, split into two beams by a light splitter 11, and each beam is split into two beams by polarizing plates 12 and 13 arranged with their polarization directions tilted by 45 degrees.
Each light receiving means 1 receives linearly polarized light with a phase difference of 0 degrees.
4.15. and light receiving means 14.15
The intensity of the interference fringes of the two light beams formed by this is detected.

本実施例において被測定回転物体が放射格子7の1ピツ
チ分だけ回転するとm次の回折光の位相は2mπだけ変
化する。同様に放射格子7により再回折されたn次の回
折光の位相は2nπだけ変化する。これにより全体とし
て受光手段からは(2m−2n)個の正弦波形が得られ
る0本実施例ではこのときの正弦波形を検出することに
より回転量を測定している。
In this embodiment, when the rotating object to be measured rotates by one pitch of the radiation grating 7, the phase of the m-th order diffracted light changes by 2mπ. Similarly, the phase of the n-th order diffracted light re-diffracted by the radiation grating 7 changes by 2nπ. As a result, (2m-2n) sine waveforms are obtained from the light receiving means as a whole. In this embodiment, the amount of rotation is measured by detecting the sine waveforms at this time.

例えば回折格子のピッチが3.2pm、回折光として1
次及び−1次を利用したとすれば回転物体がピッチの3
.2gm分だけ回転したとき受光素子からは4個の正弦
波形が得られる。即ち正弦波形1個当りの分解能として
回折格子の1ピツチの1/4の3.274 = 0.8
 p−mが得られる。
For example, if the pitch of the diffraction grating is 3.2 pm, the diffracted light is 1
If we use the next and -1st orders, the rotating object will have a pitch of 3
.. When rotated by 2gm, four sine waveforms are obtained from the light receiving element. In other words, the resolution per sine waveform is 1/4 of 1 pitch of the diffraction grating = 3.274 = 0.8
p-m is obtained.

第3図は未実施例に係るエンコーダーで用いる放射格子
を示す図である。図中、第1図と同様に6は円板を、7
は放射格子を示し、斜線部は光吸収部、空白部は光透過
部で、ψpは放射格子7の角度ピッチ、ψwは光透過部
の角度を准している。
FIG. 3 is a diagram showing a radiation grating used in an encoder according to an unimplemented example. In the figure, as in Figure 1, 6 represents a disk, and 7
indicates a radiation grating, the shaded area is a light absorption part, the blank area is a light transmission part, ψp is the angular pitch of the radiation grating 7, and ψw is the angle of the light transmission part.

をψw/ψp = 0.5としている。即ち第3図に示
す如き所謂振幅型の回折格子に於て白黒チャートのデユ
ーティ比を50%とすることにより、±1次の回折光が
最大強度で得られるように制御1モ出来ており、この結
果、偏光ビームスプリッタ−11で重ね合わされて受光
手段14及び15で検出される干渉縞の干渉効率を向上
させている。又詳細は後述するが、第3図の如き放射格
子を用いれば±2次の回折光は発生しない為にゴースト
光等の発生を仰えることが可能になる。
is set to ψw/ψp = 0.5. That is, by setting the duty ratio of the black and white chart to 50% in the so-called amplitude type diffraction grating as shown in FIG. As a result, the interference efficiency of the interference fringes that are superimposed by the polarizing beam splitter 11 and detected by the light receiving means 14 and 15 is improved. Further, although the details will be described later, if a radiation grating as shown in FIG. 3 is used, since no ±2nd order diffracted light is generated, it is possible to predict the occurrence of ghost light and the like.

さて、第3図に示す如き振幅型の回折格子に於るm次の
回折光の回折効率は、角度ピッチをψp、光透渦部角度
ψwとすれば次の(1)式で表わすことが出来る。
Now, the diffraction efficiency of m-th order diffracted light in an amplitude type diffraction grating as shown in Fig. 3 can be expressed by the following equation (1), where ψp is the angular pitch and ψw is the angle of the transparent vortex part. I can do it.

5in2(πmψw/ψp) ηm=               −−−−(1)
π2゜2 この(1)式を用いてψw/ψpと回折効率ηmとの関
係を示したのが第4図である。第4図に於ては横軸にデ
ユーティ比ψw/ψpを。
5in2 (πmψw/ψp) ηm= −−−−(1)
π2゜2 FIG. 4 shows the relationship between ψw/ψp and diffraction efficiency ηm using equation (1). In Fig. 4, the horizontal axis represents the duty ratio ψw/ψp.

縦軸に回折効* 77 mをとって記載している。The diffraction effect *77 m is plotted on the vertical axis.

第4図から解る様に、1次回折光を利用する場合はψw
/ψF = 0.5の時が回折効率η1主10(%)と
なり、回折光強度は最大となる。
As can be seen from Figure 4, when using the first-order diffracted light, ψw
When /ψF = 0.5, the diffraction efficiency η1 is mainly 10 (%), and the intensity of the diffracted light is maximum.

更に、この時2次回折光の回折効率η2はη2=0とな
る為にψm/ψp = 0.5で構成された回折格子か
らは±2次の回折光は発生しないことになる。例えば、
第1図に示す様なエンコーダーに於ては、特定次数の回
折光を放射格子7から大略垂直に出射させる為に、この
特定次数の回折光の回折角αで可干渉光束を放射格子7
に入射させる場合がある。この時、一般に第5゛図に示
す様な角度βで反射回折する反射ゴースト光が発生する
。反射回折の条件は、 P(sina+sinβ)=m入 で表わされ、これに対して1次の回折角で入射させた場
合の透過回折の条件は Psinα=入 となる為、前記反射回折の条件は以下の様に変形出来る
Furthermore, since the diffraction efficiency η2 of the second-order diffracted light is η2=0 at this time, no ±second-order diffracted light is generated from the diffraction grating configured with ψm/ψp=0.5. for example,
In the encoder as shown in FIG. 1, in order to emit the diffracted light of a specific order approximately perpendicularly from the radiation grating 7, a coherent beam of light is emitted from the radiation grating 7 at a diffraction angle α of the diffracted light of this specific order.
In some cases, it may be input to At this time, reflected ghost light is generally generated which is reflected and diffracted at an angle β as shown in FIG. The condition for reflection diffraction is expressed as P (sina + sin β) = m in, whereas the condition for transmission diffraction when incident at the first-order diffraction angle is P sin α = in, so the above-mentioned condition for reflection diffraction is can be transformed as follows.

Psinβ=(m−1)入 従って、上式からm=2の時α=βとなり、この場合は
2次の反射回折光が入射光路の方向に出射し逆行する為
、所511ゴースト光となって干渉縞の検出の妨げにな
る。しかしながら、上述した様にデユーティ比50%、
ロロちψw/ψp = 0.5にすることで2次の回折
光の発生を抑えること出来る為、この種のゴースト光に
よって干渉縞の検出精度を低下させることがなくなる。
Psinβ=(m-1) Therefore, from the above equation, when m=2, α=β, and in this case, the second-order reflected diffraction light is emitted in the direction of the incident optical path and travels backward, so it becomes a 511 ghost light. This interferes with the detection of interference fringes. However, as mentioned above, the duty ratio is 50%,
By setting the rotation angle ψw/ψp = 0.5, it is possible to suppress the generation of second-order diffracted light, so that this type of ghost light does not degrade the detection accuracy of interference fringes.

又、測定の分解能を」二げる為に2次や3次の回折光を
用いる場合は、第4図から解る様に2次回折光に時はψ
w/ψp=0.25.3次回折光の時はψw/ψF =
 0.5として回折格子(放射格子)を構成すれば良い
、尚、この種の振幅型回折格子ではm次とn次(m≠n
)の回折効率ψm、ψnが等しくなる様なデユーティは
存のが好ましく、干渉縞の明暗比(ビジビリティ−)が
高く検出精度も良い。
In addition, when using second-order or third-order diffracted light to increase the resolution of measurement, as can be seen from Figure 4, the time for the second-order diffracted light is ψ
w/ψp=0.25.For 3rd order diffracted light, ψw/ψF =
It is sufficient to construct a diffraction grating (radiation grating) as 0.5. In addition, in this type of amplitude type diffraction grating,
) It is preferable to have a duty such that the diffraction efficiencies ψm and ψn are equal, and the brightness ratio (visibility) of the interference fringes is high and the detection accuracy is also good.

以上、振幅型回折格子に関して説明したが、本発明に係
るエンコーダーでは位相型の回折格子も用いることが出
来る。とりわけ1位相型回折格子は振幅型回折格子に比
べて回折効率が大きく、光束利用効率を大きく高めるこ
とが可能な為有効である。
Although the explanation has been made regarding the amplitude type diffraction grating, a phase type diffraction grating can also be used in the encoder according to the present invention. In particular, a single-phase diffraction grating is effective because it has a higher diffraction efficiency than an amplitude diffraction grating and can greatly increase the luminous flux utilization efficiency.

第6図(A)、(B)は位相型回折格子を示す断面模式
図であり、この様ちな凹凸のレリーフパターンにより光
束に位相差を生じせしめる回折格子を形成している。こ
の他、透明部材中に交互に屈折率を変えて格子を形成し
たり、上゛記号リーフパターン上に反射膜を施したりし
て、透過又は反射型の種々の位相型回折格子を得ること
が出来る。
FIGS. 6(A) and 6(B) are schematic cross-sectional views showing a phase-type diffraction grating, in which a relief pattern of various concavities and convexities forms a diffraction grating that produces a phase difference in a light beam. In addition, it is possible to obtain various phase-type diffraction gratings of transmission or reflection type by forming gratings with alternating refractive indexes in a transparent member or by applying a reflective film on top leaf patterns. I can do it.

第6図に於て、(A)は矩形状の位相格子、(B)は三
角波状の位相格子を示している。この他、正弦波状の位
相格子や所謂ブレーズド回折格子と言われる非対称形状
の位相格子等格子形状は種々有る。従って、この種の位
相型回折格子に於る回折光の挙動は、格子形状、格子を
成す物質の屈折率、格子の高さ、及び格子ピッチ等の多
くのパラメータから決まり、一般式をここで導出するの
はひかえる。
In FIG. 6, (A) shows a rectangular phase grating, and (B) shows a triangular wave-like phase grating. In addition, there are various grating shapes, such as a sinusoidal phase grating and an asymmetrical phase grating called a so-called blazed diffraction grating. Therefore, the behavior of diffracted light in this type of phase-type diffraction grating is determined by many parameters such as the grating shape, the refractive index of the material forming the grating, the grating height, and the grating pitch. I will refrain from deriving it.

しかしながら、位相型回折格子の特徴として、格子のピ
ッチを小さくすることにより出射する回折光の次数を制
御出来1例えば、0次と+1次のみを出射させることが
可能である。
However, a feature of the phase type diffraction grating is that by reducing the pitch of the grating, the order of the emitted diffracted light can be controlled; for example, it is possible to emit only the 0th order and +1st order.

又、隣接する次数同志の分離角も犬きくすることが出来
る。又、使用する空回干渉光束の波長入0に対して、格
子の高さTと格子を成す物質の屈折率〇を制御すること
により0次回新党を出射させることなく、入射光の全て
のエネルギーを、例えば±1次回折光のみ、+1次と+
2次の回折光のみに集中させることが出来、当然回折効
率も高い。
Furthermore, the separation angle between adjacent orders can also be increased. In addition, by controlling the height T of the grating and the refractive index 〇 of the material forming the grating, all the energy of the incident light can be absorbed without emitting a new 0-order beam, with respect to the wavelength 0 of the idle interference beam used. For example, only ±1st order diffracted light, +1st order and +
It is possible to concentrate only the second-order diffracted light, and the diffraction efficiency is naturally high.

例えば、第6図(A)に示す矩形状の回折格子に於て、
周囲の屈折=VをnQとすれば。
For example, in the rectangular diffraction grating shown in FIG. 6(A),
If the surrounding refraction=V is nQ.

(m=o、L、2.3 −−−) を満足する様に回折格子を形成すれば零次回折光は発生
しない、この様な場合、回折光同志の分離角や回折効率
を鑑みると、+1次の回折光を用いて干渉縞を検出する
のが、測定精度や装置構成の上で好ましい。
(m=o, L, 2.3 ---) If the diffraction grating is formed so as to satisfy It is preferable to detect interference fringes using +1st-order diffracted light in terms of measurement accuracy and device configuration.

更に前述のブレーズド回折格子は特定次数の回折光の強
度を非常に強くする。例えば+1次や+3次等の回折光
に入射光のエネルギーは集中され、他の回折光強度は微
弱なものとなり極めて有効である。従って、+3次等の
回折光を利用すれば、測定の分解能が数段向上するばか
りでなく、十分な回折光強度を得ることが出来て測定精
度も良い。
Furthermore, the aforementioned blazed diffraction grating greatly increases the intensity of diffracted light of a specific order. For example, the energy of the incident light is concentrated in the +1st order, +3rd order, etc. diffracted light, and the intensity of other diffracted lights becomes weak, which is extremely effective. Therefore, by using diffracted light of the +3rd order, etc., not only the resolution of the measurement is improved by several steps, but also sufficient intensity of the diffracted light can be obtained, resulting in good measurement accuracy.

以上の如く位相型の回折格子を用いても、重ね合わせる
べき特定次数の回折光強度を最大にすることが出来、光
束利用効率の向上、干渉効率の向上、 Al11定精度
の向上も達成可能である。
As described above, even if a phase-type diffraction grating is used, it is possible to maximize the intensity of the diffracted light of a specific order to be superimposed, and it is also possible to improve the luminous flux utilization efficiency, the interference efficiency, and the Al11 constant accuracy. be.

第1図にもどり、本実施例では光分割器11により光束
を2分割し各々の光束間の90度の位相差をつけること
により回転物体の回転方向も判別出来るようにしている
Returning to FIG. 1, in this embodiment, the light beam is divided into two by the light splitter 11, and a phase difference of 90 degrees is created between the two light beams, so that the direction of rotation of the rotating object can also be determined.

、  尚、回転量のみを測定するのであれば光分割器1
1、偏光板、12.13及び一方の受光手段は不要であ
る。
, If only the amount of rotation is to be measured, the light splitter 1
1. A polarizing plate, 12.13, and one light receiving means are unnecessary.

本実施例では回転中心に対して略点対称の2つの位置M
1.M2からの回折光を利用することにより回転物体の
回転中心と放射格子の中心との偏心による測定誤差を軽
減させている。
In this embodiment, there are two positions M that are approximately symmetrical about the center of rotation.
1. By using the diffracted light from M2, measurement errors due to eccentricity between the center of rotation of the rotating object and the center of the radiation grating are reduced.

尚、本実施例に於る構成は略点対称な2点からの回折光
を利用しているわけであるが、略点対称に限らず複数の
位置から回折光を用いることにより略同等の効果を得る
ことが出来る。例えば、尾いに120°の角度を成す3
点から回折光を利用したり、近接しない任意の2点から
回折光を利用するのも有効である。
Note that although the configuration in this example uses diffracted light from two points that are approximately point symmetrical, substantially the same effect can be achieved by using diffracted light from multiple positions, not limited to approximately point symmetrical. can be obtained. For example, 3 with a 120° angle to the tail.
It is also effective to use diffracted light from a point or to use diffracted light from arbitrary two points that are not close to each other.

更に一方の光束の回転軸中心寄りの光束要素と略点対称
な位置に入射させた他方の光束の回転軸中心寄りの光束
要素とを互いに重なり合わせ、同様に回転中心の外側寄
りの光束要素同志を重ね合わせることにより、放射格子
の外側と内側のピッチの違いより生じる波面収差の影!
を除去している。
Furthermore, the luminous flux elements of one luminous flux near the center of the rotation axis and the luminous flux elements of the other luminous flux incident at a substantially point-symmetrical position near the center of the rotation axis are overlapped with each other, and similarly the luminous flux elements near the outside of the rotation center are overlapped with each other. The shadow of wavefront aberration caused by the difference in pitch between the outside and inside of the radiation grating!
is being removed.

本実施例では偏光ビームスプリッタ−3から反射手段8
.9に至る特定次数の回折光の往復の光路を同一とする
ことにより、偏光ビームスプリッタ−3における2つの
回折光束の重なり具合を容易にし、装差全体の組立精度
を向上させている。
In this embodiment, from the polarizing beam splitter 3 to the reflecting means 8
.. By making the reciprocating optical path of the diffracted light of the specific order up to 9 the same, the degree of overlapping of the two diffracted light beams in the polarizing beam splitter 3 is facilitated, and the assembly precision of the entire device is improved.

尚、以上の各実施例において1/4波長板4.5は偏光
ビームスプリッタ−3と反射手段8.9との間であれば
どこに配置してもよい、。
In each of the above embodiments, the quarter-wave plate 4.5 may be placed anywhere between the polarizing beam splitter 3 and the reflecting means 8.9.

又、各実施例においては透過回折光の代りに反射回折光
を利用してもよい。
Further, in each embodiment, reflected diffraction light may be used instead of transmitted diffraction light.

尚1本実施例において使用する回折格子は、前述の如く
透光部と遮光部から成る所謂振幅型の回折格子、互いに
異なる屈折率を有する部分から成る位相型の回折格子で
ある。特に位相型の回折格子は、例えば透明円盤の円周
上に凹凸のレリーフパターンを形成することにより作成
出来、エンボス、スタンパ等のプロセスにより量産が可
能である。
As described above, the diffraction grating used in this embodiment is a so-called amplitude type diffraction grating consisting of a light-transmitting part and a light-blocking part, and a phase-type diffraction grating consisting of parts having mutually different refractive indexes. In particular, phase-type diffraction gratings can be created, for example, by forming an uneven relief pattern on the circumference of a transparent disk, and can be mass-produced by processes such as embossing and stamping.

以上、ここではロータリーエンコーダーをとりあげて1
本発明に関して詳述したが、当然リニアエンコーダーに
も適用出来る。即ち、回折格子の移動又は回転状態を回
折格子から出射する回折光のうち特定次数の回折光を重
ね合わせて干渉縞を検出する方式のエンコーダー全てに
本発明は適用可能である。
So, here we will focus on the rotary encoder.
Although the present invention has been described in detail, it can of course also be applied to linear encoders. That is, the present invention is applicable to all encoders that detect interference fringes by superimposing diffracted light of a specific order among diffracted lights emitted from a diffraction grating based on the movement or rotation of the diffraction grating.

尚、本発明の思想にもとづき種々の変形例、応用例が存
在することは言うまでもない。
It goes without saying that there are various modifications and applications based on the idea of the present invention.

〈発明の効果〉 以ヒ、木発明に係るエンコーダーは、光束利用効率に優
れ、干渉縞の干渉効率を高めることにより高精度のl!
III定が可能な装置である。更に回折格子の構成を制
御することでゴースト光等の有害光が受光手段へ入□射
するのを妨ぎ、安定した測定が実施できる。
<Effects of the Invention> Hereinafter, the encoder according to the invention has excellent luminous flux utilization efficiency and high precision l! by increasing the interference efficiency of interference fringes.
This is a device that can be used for Furthermore, by controlling the configuration of the diffraction grating, harmful light such as ghost light is prevented from entering the light receiving means, and stable measurements can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るエンコーダーの実施例を示す図。 第2図は第1図に於る反射手段の一例を示す図。 身 第3図は第1図に於る放射格子の検呑例を示す図。 第4図は振幅型回折格子のデユーティψw/ψpと回折
効率ηとの関係を示す図。 第5図は反射ゴースト光に関する説明図。 の 第6図(A)、(B)は回折格子の他も例を示す模式図
。 i −−−−−−−−−一一−−−光源2−−−−−−
−−−−−−−−コリメータレンズ3−一一−−−−−
−−−−−偏光ビームスプリッター4 、5 、 l 
0−−−−1/4波長板6−−−−−−−−−−−−−
一円板 7−−−−−−−−−−−−−一放射格子8 、9−−
−−−−−−−一反射手段11−−−−−−−−−−−
一光分割器12 、 l 3−−−−−一偏光板 14 、15−−−−−一受光手段 40−−−−−−−−−−−一反射鏡 41−−−−−−−−−−−一集光レンズ42−−−−
−−−−−−−−マスク 43−−−−−一一−−−−−開口部 50−−−−−−−−−−−一回転軸 ψp−−”’−−=−角度ピッチ ψw−−−−−−−−−−−−光透過角度M 1 、 
M 2−−−−−一放射格子上の光東入射位1δ第うM 九忽
FIG. 1 is a diagram showing an embodiment of an encoder according to the present invention. FIG. 2 is a diagram showing an example of the reflecting means in FIG. 1. Figure 3 is a diagram showing an example of the radial grating shown in Figure 1. FIG. 4 is a diagram showing the relationship between duty ψw/ψp and diffraction efficiency η of an amplitude type diffraction grating. FIG. 5 is an explanatory diagram regarding reflected ghost light. FIGS. 6(A) and 6(B) are schematic diagrams showing examples of diffraction gratings. i ----------11---Light source 2------
−−−−−−−Collimator lens 3-11−−−−−
-----Polarizing beam splitter 4, 5, l
0------1/4 wavelength plate 6------------
One circular plate 7 --- One radiation grating 8 , 9 ---
----------One reflection means 11-----
1 light splitter 12, l 3----- 1 polarizing plate 14, 15----- 1 light receiving means 40----- 1 reflecting mirror 41-------- ----- One converging lens 42 -----
-------------Mask 43-------11-------Opening 50-----One rotation axis ψp--"'--=-Angle pitch ψw−−−−−−−−−−−Light transmission angle M 1 ,
M 2-------Position of light east incidence on one radiation grating 1δth M 9th

Claims (5)

【特許請求の範囲】[Claims] (1)可干渉光束を得る為の光源手段と前記可干渉光束
を移動又は回転可能な物体に形成した回折格子に指向す
る第1光学手段と前記回折格子から出射する複数の回折
光を重ね合わせる第2光学手段と前記第2光学手段で得
られる光束を受けて干渉縞を検出する受光手段とを有し
、前記受光手段からの信号より前記物体の移動又は回転
状態を検知する装置であって、前記回折格子から出射す
る複数の回折光のうち、重ね合わせるべき特定次数の回
折光の強度が大略最大となる様に前記回折格子を構成し
たエンコーダー。
(1) A light source means for obtaining a coherent light beam, a first optical means for directing the coherent light beam toward a diffraction grating formed on a movable or rotatable object, and a plurality of diffracted lights emitted from the diffraction grating are superimposed. An apparatus comprising a second optical means and a light receiving means for receiving a light beam obtained by the second optical means and detecting interference fringes, and detecting a movement or rotation state of the object based on a signal from the light receiving means. and an encoder in which the diffraction grating is configured such that the intensity of the diffraction light of a specific order to be superimposed among the plurality of diffraction lights emitted from the diffraction grating becomes approximately maximum.
(2)前記回折格子が振幅型回折格子から成ることを特
徴とする特許請求の範囲第(1)項記載のエンコーダー
(2) The encoder according to claim (1), wherein the diffraction grating is an amplitude type diffraction grating.
(3)前記回折格子が位相型回折格子から成ることを特
徴とする特許請求の範囲第(1)項記載のエンコーダー
(3) The encoder according to claim (1), wherein the diffraction grating is a phase type diffraction grating.
(4)前記振幅型回折格子の角度ピッチψpと光透過部
又は光反射部角度ψwとの比ψw/ψpが (ψw)/(ψp)≒0.5 であることを特徴とする特許請求の範囲第(2)項記載
のエンコーダー。
(4) The ratio ψw/ψp of the angular pitch ψp of the amplitude type diffraction grating to the angle ψw of the light transmitting part or the light reflecting part is (ψw)/(ψp)≒0.5. The encoder described in range item (2).
(5)前記重ね合わせるべき特定次数の回折光を±1次
の回折光としたことを特徴とする特許請求の範囲第(1
)項記載のエンコーダー。
(5) Claim No. 1 (1) characterized in that the specific order diffraction light to be superimposed is ±1st order diffraction light.
) Encoder described in section.
JP4801986A 1986-02-28 1986-03-05 Encoder Pending JPS62204127A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4801986A JPS62204127A (en) 1986-03-05 1986-03-05 Encoder
DE3706277A DE3706277C2 (en) 1986-02-28 1987-02-26 Rotation encoder
GB8704851A GB2187282B (en) 1986-02-28 1987-03-02 Rotary encoder
US07/527,704 US5101102A (en) 1986-02-28 1990-05-23 Rotary encoder having a plurality of beams emitted by a diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4801986A JPS62204127A (en) 1986-03-05 1986-03-05 Encoder

Publications (1)

Publication Number Publication Date
JPS62204127A true JPS62204127A (en) 1987-09-08

Family

ID=12791596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4801986A Pending JPS62204127A (en) 1986-02-28 1986-03-05 Encoder

Country Status (1)

Country Link
JP (1) JPS62204127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661295A (en) * 1994-07-28 1997-08-26 Matsushita Electric Industrial Co., Ltd. Optical encoder with dual diffraction gratings

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661295A (en) * 1994-07-28 1997-08-26 Matsushita Electric Industrial Co., Ltd. Optical encoder with dual diffraction gratings
US5696373A (en) * 1994-07-28 1997-12-09 Matsushita Electric Industrial Co., Ltd. Optical encoder with dual diffraction grating
US5696374A (en) * 1994-07-28 1997-12-09 Matsushita Electric Industrial Co., Ltd. Optical encoder using doubled diffraction angle based on first and second diffraction gratings

Similar Documents

Publication Publication Date Title
US4868385A (en) Rotating state detection apparatus using a plurality of light beams
US5101102A (en) Rotary encoder having a plurality of beams emitted by a diffraction grating
JPS626119A (en) Rotary encoder
JP3254737B2 (en) encoder
JP2010230667A (en) Cylindrical grating rotation sensor
US5017777A (en) Diffracted beam encoder
JPS62200225A (en) Rotary encoder
JPH0781883B2 (en) encoder
JPS62204127A (en) Encoder
JPS62200224A (en) Rotary encoder
JPH07119626B2 (en) Rotary encoder
JPS62204126A (en) Encoder
JPS62163919A (en) Rotary encoder
JP2688988B2 (en) Optical measuring device
JPS62200222A (en) Rotary encoder
JPS62201313A (en) Rotary encoder
JPH045142B2 (en)
JPS62163921A (en) Rotary encoder
JPS62200223A (en) Encoder
JPS62163922A (en) Rotary encoder
JPS62204125A (en) Encoder
JPS62163918A (en) Rotary encoder
JPS62200220A (en) Rotary encoder
JPH045349B2 (en)
JPS62200221A (en) Rotary encoder