JPS62200220A - Rotary encoder - Google Patents

Rotary encoder

Info

Publication number
JPS62200220A
JPS62200220A JP4267386A JP4267386A JPS62200220A JP S62200220 A JPS62200220 A JP S62200220A JP 4267386 A JP4267386 A JP 4267386A JP 4267386 A JP4267386 A JP 4267386A JP S62200220 A JPS62200220 A JP S62200220A
Authority
JP
Japan
Prior art keywords
light
light beam
diffracted
diffraction grating
specific order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4267386A
Other languages
Japanese (ja)
Inventor
Akira Ishizuka
公 石塚
Tetsuji Nishimura
西村 哲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4267386A priority Critical patent/JPS62200220A/en
Priority to DE3700906A priority patent/DE3700906C2/en
Priority to GB8700784A priority patent/GB2185314B/en
Publication of JPS62200220A publication Critical patent/JPS62200220A/en
Priority to US07/608,629 priority patent/US5036192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To accurately measure the rotating condition of a rotating object to be inspected by coinciding the advancing and returning light paths for the diffracted light beam of a specific order from a diffraction grating with each other by using optical means. CONSTITUTION:A light beam emitted from a prism 17 to a diffraction grating 7 perpendicularly thereto is projected upon the grating 7 so that the light beam of a specific order diffracted by the grating 7 is emitted perpendicularly thereto by specifying the configuration of an optical member 19 as with the case of a reflected light beam. The diffracted light beam of a specific order in the transmitted and diffracted light beams that are incident upon and diffracted by the grating 7 is returned in the same light path as in advance by optical means 9 and again let be projected upon approximately the same position M2 of the grating 7. After superposed on the diffracted light beam incident via optical means 8, the diffracted light beam is made a circularly polarized light beam through a quarter wavelength plate 10, split in two light beams by a light beam splitter 11. The two beams are projected upon light receiving means 14 and 15 via polarizing plates 12 and 13, respectively, arranged with polarization bearings inclined by 45 degrees relative to each other as a linear polarization with phase differences of 90 degrees relative to the two light beams and the intensity of the interference fringes formed by the two light beams is detected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はロータリーエンコーダーに関し、特に円周上に
例えば透光部と反射部の格子模様を複数個、周期的に該
んだ放射状の回折格子を回転物体に取付け、該回折格子
に例えばレーザーからの光束を照射し、該回折格子から
の回折光を利用して、回折格子若しくは回転物体の回転
速度や回転速度の変動量等の回転状態を充電的に検出す
るロータリーエンコーダーに関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a rotary encoder, and in particular to a radial diffraction grating having a plurality of lattice patterns of, for example, transparent parts and reflective parts on the circumference, periodically intersecting each other. is attached to a rotating object, the diffraction grating is irradiated with a beam of light from, for example, a laser, and the diffracted light from the diffraction grating is used to determine the rotational state of the diffraction grating or the rotating object, such as the rotational speed or the amount of variation in rotational speed. This relates to a rotary encoder that detects electrical charges.

(従来の技術) 従来よりフロッピーデスクの駆動等のコンピューター機
器、プリンター等の事務機器、あるいはNC工作機械さ
らにはVTRのキャブステンモーターや回転ドラム等の
回転機構の回転速度や回転速度の変動量を検出する為の
手段として光電的なロータリーエンコーダーが利用され
てきている。
(Prior art) Conventionally, it has been used to measure the rotational speed and the amount of variation in rotational speed of computer equipment such as the drive of a floppy desk, office equipment such as a printer, or NC machine tools, as well as rotational mechanisms such as the carburetor stainless steel motor and rotating drum of a VTR. A photoelectric rotary encoder has been used as a means for detection.

光電的なロータリーエンコーダーは例えば第3図に示す
ように回転軸30に連絡した円板35の周囲に透光部と
遮光部を等間隔に設けた、所謂メインスケール31とこ
れに対応してメインスケールと等しい間隔で透光部と遮
光部とを設けた所謂固定のインデックススケール32と
の双方のスケールな投先手段33と受光手段34で挟ん
で対向配置した所謂インデックススケール方式の構成を
採っている。
For example, as shown in FIG. 3, a photoelectric rotary encoder has a so-called main scale 31 in which transparent parts and light-shielding parts are provided at equal intervals around a disk 35 connected to a rotating shaft 30, and a corresponding main scale 31. A so-called index scale system configuration is adopted in which a so-called fixed index scale 32 is provided with a light-transmitting part and a light-shielding part at equal intervals to the scale, and both scales are placed opposite to each other with the scale tip means 33 and light receiving means 34 sandwiched therebetween. There is.

この方法はメインスケールの回転に伴って双方のスケー
ルの透光部と遮光部の間隔に同期した信号が得られ、こ
の信号を周波数解析して回転軸の回転速度の変動を検出
している。この為、双方のスケールの透光部と遮光部と
のスケール間隔を細かくすればする程、検出精度を高め
ることができる。しかしながらスケール間隔を細かくす
ると回折光の影響で受光手段からの出力信号のS/N比
が低下し、検出精度が低下してしまう欠点があった。こ
の為メインスケールの透光部と遮光部の格子の総本数を
固定させ、透光部と遮光部の間隔を回折光の影響を受け
ない程度まで拡大しようとするとメインスケールの円板
の直径が増大し更に厚さも増大し装置全体が大型化し、
この結果被検回転物体への負荷が大きくなってくる等の
欠点があった。
In this method, as the main scale rotates, a signal synchronized with the interval between the light-transmitting part and the light-blocking part of both scales is obtained, and this signal is frequency-analyzed to detect fluctuations in the rotational speed of the rotating shaft. Therefore, the finer the scale interval between the light-transmitting part and the light-blocking part of both scales, the higher the detection accuracy can be. However, when the scale interval is narrowed, the S/N ratio of the output signal from the light receiving means decreases due to the influence of the diffracted light, resulting in a decrease in detection accuracy. For this reason, if you fix the total number of gratings in the light-transmitting part and light-blocking part of the main scale, and try to increase the distance between the light-transmitting part and the light-blocking part to the extent that it is not affected by diffracted light, the diameter of the main scale disc will increase. As the thickness increases, the entire device becomes larger.
As a result, there are drawbacks such as an increase in the load on the rotating object to be tested.

(発明が解決しようとする問題点) 本発明は被検回転物体の負荷が小さく、装置全体の小型
化が容易で、しかも回転状態を高精度に検出することの
できるロータリーエンコーダーの提供を特徴とする 特に特定次数の回折光の回折格子からの回折角及び回折
光路を制御することにより装置全体の小型化を図ったロ
ータリーエンコーターの提供を目的とする。
(Problems to be Solved by the Invention) The present invention is characterized by providing a rotary encoder that has a small load on a rotating object to be inspected, can easily downsize the entire device, and can detect the rotational state with high precision. In particular, an object of the present invention is to provide a rotary encoder in which the overall size of the device is reduced by controlling the diffraction angle and diffraction optical path of diffracted light of a specific order from a diffraction grating.

(問題点を解決するための手段) 可干渉性の光束を回転物体に連結した円板上の回折格子
上であって該回転物体の少なくとも1つの位置に入射さ
せ、前記回折格子からの特定次数の回折光を該回折光の
主光線か入射光路と略同一光路を逆行するような光学手
段を介した後、前記回折格子の略同一位置に再度入射さ
せると共に該回折格子からの特定次数の回折光を光束重
ね合わせ手段に導光させた後、該特定次数の回折光を重
ね合わせ、そして受光手段に導光し、該受光手段からの
出力信号を利用して前記回転物体の回転状態を求めたこ
とである。
(Means for Solving the Problem) A coherent light beam is made incident on a diffraction grating on a disk connected to a rotating object at least at one position of the rotating object, and a specific order from the diffraction grating is After passing the diffracted light through an optical means that causes the principal ray of the diffracted light to travel backwards along substantially the same optical path as the incident optical path, the diffracted light is made to enter the diffraction grating at substantially the same position again, and a specific order of diffraction is caused by the diffraction grating. After guiding the light to a beam superimposing means, the diffracted light of the specific order is superimposed, and the light is guided to a light receiving means, and the rotational state of the rotating object is determined using an output signal from the light receiving means. That's what happened.

この他、本発明の特徴は実施例において記載されている
Other features of the invention are described in the Examples.

(実施例) 第1図(t、)は本発明の一実施例の光学系の概略図で
ある。
(Embodiment) FIG. 1(t,) is a schematic diagram of an optical system according to an embodiment of the present invention.

本実施例ではレーザー1より放射された光束をコリメー
ターレンズ2によって平行光束とし偏光ビームスプリッ
タ−3に入射させ、略等光量の反射光束と透過光束の2
つの直線偏光の光束に分割している。このうち反射した
光束は%波長板4を経て、円偏光とし、2つの反射面を
有するプリズム】6を経て、プリズムより成る光学部材
18に入射させている。そして光学部材】8を介して被
測定回転物体と連結した円板6上の放射状の回折格子が
設けられている回折格子7の位置M1に入射させている
。このときプリズム16から回折格子7に対し垂直に射
出してきた光束を第1図(B)に示すように光学部材1
8の形状を特定することにより、回折格子7による特定
次数の回折光が回折格子7に対し略垂直に射出するよう
に回折格子7に入射させている。そして回折格子7に入
射し回折した透過回折光のうち特定次数の回折光を光学
手段8に導光している。光学手段8は例えば集光性部材
と平面鏡若しくは曲面から成る反射鏡を存しており、入
射回折光のうち集光性部材に対する主光線が集光性部材
を介し反射鏡で反射した後、入射光路と略同一光路を逆
行するように構成されている。そして光学手段8に導光
した回折光を入射光路と略同一光路を逆行させ回折格子
7上の略同一位置M1に再入射させている。そして回折
格子7により再回折された特定次数の回折光を%波長板
4を介して入射したときと90度偏光方位の異なる直線
偏光とし偏光ビームスプリッタ−3に入射させている。
In this embodiment, the light beam emitted from the laser 1 is made into a parallel light beam by the collimator lens 2 and is made incident on the polarizing beam splitter 3.
It is split into two linearly polarized beams. The reflected light beam passes through a wavelength plate 4, becomes circularly polarized light, passes through a prism 6 having two reflecting surfaces, and enters an optical member 18 made of a prism. Then, the light beam is made incident on a position M1 of a diffraction grating 7, which is provided with a radial diffraction grating on a disk 6 connected to a rotating object to be measured via an optical member 8. At this time, the light beam emitted from the prism 16 perpendicularly to the diffraction grating 7 is transmitted to the optical member 1 as shown in FIG. 1(B).
By specifying the shape of the diffraction grating 8, the diffracted light of a specific order by the diffraction grating 7 is made to enter the diffraction grating 7 so as to be emitted substantially perpendicularly to the diffraction grating 7. Of the transmitted diffracted light that is incident on the diffraction grating 7 and diffracted, the diffracted light of a specific order is guided to the optical means 8. The optical means 8 includes, for example, a light condensing member and a reflecting mirror made of a plane mirror or a curved surface, and the principal ray of the incident diffracted light directed toward the light condensing member is reflected by the reflecting mirror via the light condensing member. It is configured to travel backward along substantially the same optical path as the optical path. Then, the diffracted light guided to the optical means 8 is made to travel backward along substantially the same optical path as the incident optical path, and is made to re-enter substantially the same position M1 on the diffraction grating 7. Then, the diffracted light of a specific order re-diffracted by the diffraction grating 7 is converted into linearly polarized light having a polarization direction different by 90 degrees from that when it is incident through the % wavelength plate 4, and is made incident on the polarizing beam splitter 3.

本実施例では偏光ビームスプリッタ−3から光学手段8
に至る特定次数の回折光の往復光路を同一としている。
In this embodiment, from the polarizing beam splitter 3 to the optical means 8
The round trip optical path of the diffracted light of a specific order is the same.

第2図は第1図で示した光学手段の一実施例の説明図で
ある。
FIG. 2 is an explanatory diagram of one embodiment of the optical means shown in FIG. 1.

同図においては平面から成る反射鏡40を集光性部材で
ある集光レンズ41の略焦点面上に配置し、集光レンズ
41に平行に入射してきた特定次数の回折光のみをマス
ク42の開口部43を通過させ反射鏡40で反射させた
後、集光レンズ41における主光線44が元の光路を逆
戻りするようにしている。そして、その他の次数の回折
光をマスク42により遮光している。
In the figure, a flat reflecting mirror 40 is arranged approximately on the focal plane of a condensing lens 41, which is a condensing member, and only diffracted light of a specific order that is incident parallel to the condensing lens 41 is reflected by a mask 42. After passing through the aperture 43 and being reflected by the reflecting mirror 40, the principal ray 44 at the condenser lens 41 returns along its original optical path. The diffracted light of other orders is blocked by a mask 42.

第1図に戻り偏光ビームスプリッタ−3で分割された2
つの光束のうち透過した光束は%波長板5を介し円偏光
とし、2つの反射面を有するプリズム】7を経て、プリ
ズムより成る光学部材19に入射させている。そして光
学部材19を介して円板6上の回折格子7上の位置M1
と回転軸50に対して略点対称の位置M2に入射させて
いる。このときプリズム17から回折格子7に対し垂直
に射出してきた光束を前述の反射光束の場合と同様に光
学部材19の形状を特定することにより、回折格子7に
よる特定次数の回折光が回折格子7に対し垂直に射出す
るように回折格子7に入射させている。そして回折格子
7に入射し回折した透過回折光のうち特定次数の回折光
を前述の光学手段8と同様の光学手段9により同一光路
を逆行させて、回折格子7の略同一位置M2に再入射さ
せている。そして回折格子7より再回折された特定次数
の回折光を%波長板5を介し入射したときとは90度偏
光方位の異なる直線偏光とし偏光ビームスプリッタ−3
に入射させている。
Returning to Figure 1, the 2 beams split by the polarizing beam splitter 3
Of the two light beams, the transmitted light beam is converted into circularly polarized light through a wavelength plate 5, and is incident on an optical member 19 made of a prism through a prism 7 having two reflecting surfaces. Then, a position M1 on the diffraction grating 7 on the disk 6 is transmitted through the optical member 19.
The light is made incident at a position M2 that is approximately point symmetrical with respect to the rotation axis 50. At this time, by specifying the shape of the optical member 19 for the light beam emitted perpendicularly to the diffraction grating 7 from the prism 17 in the same manner as in the case of the reflected light beam described above, the diffracted light of a specific order by the diffraction grating 7 is transmitted to the diffraction grating 7. The light is made incident on the diffraction grating 7 so as to be emitted perpendicularly to the beam. Then, the diffracted light of a specific order among the transmitted diffracted light that is incident on the diffraction grating 7 and diffracted is reversed along the same optical path by an optical means 9 similar to the optical means 8 described above, and is re-injected into substantially the same position M2 of the diffraction grating 7. I'm letting you do it. Then, the diffracted light of a specific order re-diffracted by the diffraction grating 7 is converted into linearly polarized light with a polarization direction that is 90 degrees different from that when it is incident through the wavelength plate 5. The polarizing beam splitter 3
It is input to.

このとき、透過光束も前述の反射光束と同様に偏光ビー
ムスプリッタ−3から光学手段9に至る特定次数の回折
光の往復光路を同一としている。
At this time, the transmitted light beam also has the same round-trip optical path of the diffracted light of a specific order from the polarizing beam splitter 3 to the optical means 9 as in the above-mentioned reflected light beam.

そして光学手段8を介し入射してきた回折光と重なり合
わせた後、属波長板10を介し円偏光とし、光分割器1
1で2つの光束に分割し、各々の光束を互いの偏光方位
を45度傾けて配置した偏光板12゜13を介し双方の
光束に90度の位相差を付けた直線偏光として各々の受
光手段14.15に入射させている。そして受光手段1
4.15により形成された2光束の干渉縞の強度を検出
している。
Then, after being superimposed with the diffracted light that has entered through the optical means 8, it is made into circularly polarized light through the wavelength plate 10, and the beam splitter 1
1 is divided into two light beams, and each light beam is passed through polarizing plates 12 and 13 arranged with their polarization directions tilted by 45 degrees, and both light beams are converted into linearly polarized light with a phase difference of 90 degrees to each light receiving means. 14.15. and light receiving means 1
The intensity of the interference fringes of the two beams formed by 4.15 is detected.

本実施例において被測定回転物体が回折格子7の1ピツ
チ分だけ回転するとm次の回折光の位相は2mπだけ変
化する。同様に回折格子7により再回折されたn次の回
折光の位相は2nπだけ変化する。これにより全体とし
て受光手段からは(2m−2n)個の正弦波形が得られ
る。本実施例ではこのときの正弦波形を検出することに
より回転量を測定している。
In this embodiment, when the rotating object to be measured rotates by one pitch of the diffraction grating 7, the phase of the m-th order diffracted light changes by 2mπ. Similarly, the phase of the n-th order diffracted light re-diffracted by the diffraction grating 7 changes by 2nπ. As a result, (2m-2n) sine waveforms are obtained from the light receiving means as a whole. In this embodiment, the amount of rotation is measured by detecting the sine waveform at this time.

例えば回折格子のピッチが3.2μm、回折光として1
次及び−1次を利用したとすれば回転物体がピッチの3
.2μm分だけ回転したとき受光素子からは4個の正弦
波形が得られる。即ち正弦波形1個当りの分解能として
回折格子の1ピツチの%の”2/4−0.8μmが得ら
れる。
For example, if the pitch of the diffraction grating is 3.2 μm, the diffracted light is 1
If we use the next and -1st orders, the rotating object will have a pitch of 3
.. When rotated by 2 μm, four sine waveforms are obtained from the light receiving element. That is, the resolution per sine waveform is 2/4-0.8 .mu.m, which is % of 1 pitch of the diffraction grating.

本実施例では光分割器11により光束を2分割し各々の
光束間に90度の位相差をつけることにより回転物体の
回転方向も判別出来るようにしている。
In this embodiment, the light beam is divided into two by the light splitter 11, and a phase difference of 90 degrees is created between each beam, so that the direction of rotation of the rotating object can also be determined.

尚、回転量のみを測定するのであれば光分割器11、偏
光板1.2.13及び一方の受光手段は不要である。
Note that if only the amount of rotation is to be measured, the light splitter 11, the polarizing plates 1, 2, and 13, and one of the light receiving means are unnecessary.

本実施例では光学部材18.19を用いて光束を回折格
子7に入射させる際、回折格子7からの特定次数の回折
光が回折格子7に対して略垂直に射出するようにして装
置全体の簡素化及び組立精度の向上を図っているが必ず
しも放射格子7より略垂直に射出させる必要はなく、光
学部材18.19を省略し、ある角度を有して射出させ
るようにしても良い。
In this embodiment, when the optical members 18 and 19 are used to make the light beam incident on the diffraction grating 7, the diffraction light of a specific order from the diffraction grating 7 is emitted approximately perpendicularly to the diffraction grating 7, so that the entire apparatus is Although the aim is to simplify and improve assembly accuracy, it is not always necessary to emit the light substantially perpendicularly from the radiation grating 7, and the optical members 18 and 19 may be omitted and the light may be emitted at a certain angle.

本実施例では回転中心に対して略点対称の2つの位置M
、、M2からの回折光を利用することにより回転物体の
回転中心と回折格子の中心との偏心による測定誤差を軽
減させている。
In this embodiment, there are two positions M that are approximately symmetrical about the center of rotation.
, , M2 is used to reduce measurement errors due to eccentricity between the center of rotation of the rotating object and the center of the diffraction grating.

尚、本実施例に於る構成は略点対称な2点からの回折光
を利用しているわけであるが、略点対称に限らす複数の
位置からの回折光を用いることにより略同等の効果を得
ることが出来る。例えば、互いに120°の角度を成す
3点からの回折光を利用したり、近接しない任意の2点
からの回折光を利用するのも有効である。
The configuration in this example uses diffracted light from two points that are approximately symmetrical, but by using diffracted light from a plurality of positions that are limited to approximately point symmetrical, it is possible to obtain approximately the same You can get the effect. For example, it is also effective to use diffracted light from three points that are at an angle of 120 degrees to each other, or to use diffracted light from arbitrary two points that are not close to each other.

更に一方の光束の回転軸中心寄りの光束要素と略点対称
な位置に入射させた他方の光束の回転軸中心寄りの光束
要素とを互いに重なり合わせ、同様に回転中心の外側寄
りの光束要素同志を重ね合わせることにより、回折格子
の外側と内側のピッチの違いより生じる波面収差の影響
を除去している。
Furthermore, the luminous flux elements of one luminous flux near the center of the rotation axis and the luminous flux elements of the other luminous flux incident at a substantially point-symmetrical position near the center of the rotation axis are overlapped with each other, and similarly the luminous flux elements near the outside of the rotation center are overlapped with each other. By overlapping them, the influence of wavefront aberration caused by the difference in pitch between the outside and inside of the diffraction grating is removed.

本実施例では偏光ビームスプリッタ−3から反射手段8
,9に至る特定次数の回折光の往復の光路を同一とする
ことにより、偏光ビームスプリッタ−3における2つの
回折光束の重なり具合を容易にし、装置全体の組立精度
を向上させている。
In this embodiment, from the polarizing beam splitter 3 to the reflecting means 8
.

第4.第5.第6図は各々第2図に示した本発明の光学
手段の他の実施例の説明図である。
4th. Fifth. 6A and 6B are explanatory diagrams of other embodiments of the optical means of the present invention shown in FIG. 2, respectively.

第4図では集光性部材41の射出瞳に曲率中心が位置す
るように凹面鏡45を配置し、集光性部材41に任意の
角度で入射してくる特定次数の回折光のうち主光線44
が入射光路と略同一光路を逆行するように構成している
。これにより組立上の誤差を軽減し測定精度の向上を図
っている。
In FIG. 4, a concave mirror 45 is arranged so that the center of curvature is located at the exit pupil of the condensing member 41, and a principal ray 44 of the diffracted light of a specific order that enters the condensing member 41 at an arbitrary angle
is constructed so that it travels in substantially the same optical path as the incident optical path. This reduces assembly errors and improves measurement accuracy.

第5図は第1図に示す集光レンズ41.マスク42そし
て反射鏡40を一体化して構成し、光学手段8全体の簡
素化を図った実施例である。同図において51は集光用
レンズ面、52は反射面、53はマスクである。
FIG. 5 shows the condenser lens 41 shown in FIG. This is an embodiment in which the mask 42 and the reflecting mirror 40 are integrated to simplify the optical means 8 as a whole. In the figure, 51 is a condensing lens surface, 52 is a reflective surface, and 53 is a mask.

第6図は集光性部材として屈折率分布型レンズ例えばセ
ルフォックレンズ61(日本板硝子■製)を用い、その
両端が平面でることを利用し、集束面である片面に反射
膜を施して反射fi62を構成し、入射回折光のうち主
光線44が入射光路と同一光路を逆行するように構成し
ている。
Figure 6 shows a gradient index lens such as Selfoc Lens 61 (manufactured by Nippon Sheet Glass) used as a light-converging member.Using the fact that both ends of the lens are flat, a reflective film is applied to one of the converging surfaces to reflect the light. fi 62 is configured such that the principal ray 44 of the incident diffracted light travels in the same optical path as the incident optical path.

本発明における光学手段としては以上に示す実施例の他
回折格子から射出する回折光の主光線に相当する回折光
線が入射光路と略同一光路を逆行するものであればどの
ような構成のものでも良い。
In addition to the embodiments shown above, the optical means in the present invention may be of any configuration as long as the diffracted light beam corresponding to the principal ray of the diffracted light emitted from the diffraction grating travels in substantially the same optical path as the incident optical path. good.

このような光学手段を用いれば、例えばレーザーの発振
波長が変化し、回折角が多少変化しても略同じ光路で戻
すことができる特徴がある。
If such an optical means is used, even if the oscillation wavelength of the laser changes and the diffraction angle changes somewhat, the light can be returned along substantially the same optical path.

以上は本発明をロータリーエンコーダーに適用した場合
について示したが本発明の光学手段を利用し、特定次数
の回折光の主光線に相当する回折光線を入射光路と略同
一光路に逆行させ、装置全体の小型化及び組立精度の向
上を図る技術的思想はそのままリニアエンコーダーにも
良好に適用することができる。
The above describes a case in which the present invention is applied to a rotary encoder. However, by using the optical means of the present invention, the diffracted light beam corresponding to the principal ray of the diffracted light of a specific order is made to go back to the optical path that is substantially the same as the incident optical path, and the whole device is The technical idea of reducing the size and improving assembly accuracy can be applied to linear encoders as is.

尚、以上の各実施例において属波長板4.5は偏光ビー
ムスプリッタ−3と反射手段との間であればどこに配置
しても良い。
In each of the above embodiments, the wavelength plate 4.5 may be placed anywhere between the polarizing beam splitter 3 and the reflecting means.

又、各実施例においては透過回折光の代わりに反射回折
光を利用しても良い。
Further, in each embodiment, reflected diffraction light may be used instead of transmitted diffraction light.

更に本発明によれば回転角度のみならず回転速度をも検
出することができる。
Furthermore, according to the present invention, not only the rotation angle but also the rotation speed can be detected.

尚、本発明において使用する回折格子は、透光部と遮光
部から成る所謂振幅型の回折格子、互いに異なる屈折率
を有する部分から成る位相型の回折格子である。特に位
相型の回折格子は、例えば透明円盤の円周上に凹凸のレ
リーフパターンを形成することにより作成出来、エンボ
ス、スタンバ等のプロセスにより量産が可能である。
The diffraction grating used in the present invention is a so-called amplitude type diffraction grating consisting of a light transmitting part and a light shielding part, and a phase type diffraction grating consisting of parts having mutually different refractive indexes. In particular, phase-type diffraction gratings can be created, for example, by forming an uneven relief pattern on the circumference of a transparent disk, and can be mass-produced by processes such as embossing and stunburring.

(発明の効果) 本発明によれば回折格子からの特定次数の回折光を光学
手段を用い、往復光路を同一とすることにより被検回転
物体の回転状態を高精度に測定することのでき、しかも
装置全体の小型化を図ったロータリーエンコーダーを達
成することができる。
(Effects of the Invention) According to the present invention, the rotational state of a rotating object to be tested can be measured with high precision by using optical means for diffracted light of a specific order from a diffraction grating and making the round trip optical path the same. Moreover, it is possible to achieve a rotary encoder whose entire device is miniaturized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(八) 、 (B)は本発明の一実施例の光学系
の概略図、第2図は第1図の一部分の説明図、第4図、
第5図、第6図は各々本発明に係る光学手段の他の実施
例の光学系の概略図、第3図は従来の光電的ロータリー
エンコーダーの説明図である。図中1はレーザー、2は
コリメーターレンズ、3は偏光ビームスプリッタ−14
,5,10は嵐波長板、6は円板、7は回折格子、8,
9は各々光学手段、12.13は各々偏光板、14.1
5は各々受光手段である。
1(8) and (B) are schematic diagrams of an optical system according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of a portion of FIG. 1, and FIG.
5 and 6 are schematic diagrams of optical systems of other embodiments of the optical means according to the present invention, and FIG. 3 is an explanatory diagram of a conventional photoelectric rotary encoder. In the figure, 1 is a laser, 2 is a collimator lens, and 3 is a polarizing beam splitter 14
, 5, 10 are storm wave plates, 6 is a disk, 7 is a diffraction grating, 8,
9 are optical means, 12.13 are polarizing plates, 14.1
5 are light receiving means.

Claims (1)

【特許請求の範囲】[Claims] 可干渉性の光束を回転物体に連結した円板上の回折格子
上であって該回転物体の少なくとも1つの位置に入射さ
せ、前記回折格子からの特定次数の回折光を該回折光の
主光線が入射光路と略同一光路を逆行するような光学手
段を介した後、前記回折格子の略同一位置に再度入射さ
せると共に該回折格子からの特定次数の回折光を光束重
ね合わせ手段に導光させた後、該特定次数の回折光を重
ね合わせ、そして受光手段に導光し、該受光手段からの
出力信号を利用して前記回転物体の回転状態を求めたこ
とを特徴とするロータリーエンコーダー。
A coherent light beam is made incident on a diffraction grating on a disc connected to a rotating object at at least one position of the rotating object, and diffracted light of a specific order from the diffraction grating is made into a chief ray of the diffracted light. After passing through an optical means such that the light travels in a reverse direction along substantially the same optical path as the incident light path, the light is made to enter the diffraction grating at substantially the same position again, and the diffracted light of a specific order from the diffraction grating is guided to the light beam superimposing means. After that, the diffracted lights of the specific order are superimposed and guided to a light receiving means, and the rotational state of the rotating object is determined using an output signal from the light receiving means.
JP4267386A 1986-01-14 1986-02-27 Rotary encoder Pending JPS62200220A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4267386A JPS62200220A (en) 1986-02-27 1986-02-27 Rotary encoder
DE3700906A DE3700906C2 (en) 1986-01-14 1987-01-14 Encryptor
GB8700784A GB2185314B (en) 1986-01-14 1987-01-14 Encoder
US07/608,629 US5036192A (en) 1986-01-14 1990-11-06 Rotary encoder using reflected light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4267386A JPS62200220A (en) 1986-02-27 1986-02-27 Rotary encoder

Publications (1)

Publication Number Publication Date
JPS62200220A true JPS62200220A (en) 1987-09-03

Family

ID=12642546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4267386A Pending JPS62200220A (en) 1986-01-14 1986-02-27 Rotary encoder

Country Status (1)

Country Link
JP (1) JPS62200220A (en)

Similar Documents

Publication Publication Date Title
US4868385A (en) Rotating state detection apparatus using a plurality of light beams
JPS626119A (en) Rotary encoder
JPS62200225A (en) Rotary encoder
JPS62200224A (en) Rotary encoder
JPH0781883B2 (en) encoder
JPS62200226A (en) Rotary encoder
JPS62163919A (en) Rotary encoder
JPH0462003B2 (en)
JPS62200220A (en) Rotary encoder
JPS61212728A (en) Rotary encoder
JPH0462004B2 (en)
JPS62163921A (en) Rotary encoder
JPH045142B2 (en)
JPS62200222A (en) Rotary encoder
JPS62163918A (en) Rotary encoder
JPS62204126A (en) Encoder
JPS62200221A (en) Rotary encoder
JPS62163920A (en) Rotary encoder
JPS62200223A (en) Encoder
JPS62163924A (en) Encoder
JPH0462002B2 (en)
JPS62163922A (en) Rotary encoder
JPS62201313A (en) Rotary encoder
JPH03115809A (en) Encoder
JPS62200219A (en) Encoder