JPS61212728A - Rotary encoder - Google Patents

Rotary encoder

Info

Publication number
JPS61212728A
JPS61212728A JP5401785A JP5401785A JPS61212728A JP S61212728 A JPS61212728 A JP S61212728A JP 5401785 A JP5401785 A JP 5401785A JP 5401785 A JP5401785 A JP 5401785A JP S61212728 A JPS61212728 A JP S61212728A
Authority
JP
Japan
Prior art keywords
light
grating
rotation
flux
rotating object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5401785A
Other languages
Japanese (ja)
Other versions
JPH07117426B2 (en
Inventor
Tetsuji Nishimura
西村 哲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60054017A priority Critical patent/JPH07117426B2/en
Publication of JPS61212728A publication Critical patent/JPS61212728A/en
Publication of JPH07117426B2 publication Critical patent/JPH07117426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To enable highly accurate measurement while reducing the load of a rotating object to be inspected, by introducing light to a light receiving means after overlapped by a specified order of reproduced diffraction lights among those from a radial grating. CONSTITUTION:A polarized beam splitter 3 a luminous flux from a laser 1 is divided into the reflected flux and the transmission flux almost equal in the quantity of light. These two luminous fluxes turn to circularly polarized lights after passing through respective 1/4 wavelength plates 41 and 42. The transmission luminous flux thereof is irradiated linearly at the position M1 on a radial grating 8 through a cylindrical lens 61 while the reflected flux is done so at the position M2 on the radial grating 8 through a reflecting mirror 5 and a cylindrical lens 61'. Reirradiation thereof is done at the positions M1 and M2 with reflecting mirrors 7 and 72' through cylindrical lenses 62 and 62'. In this manner, after overlapped by a specified order of diffraction light, these light are introduced to light receiving elements 12 and 12', output signals of which are shaped in the waveform to detect the direction of rotation which is integrated and displayed with a counter to determine the angle of rotation. This can reduce the load on an rotating object to be inspected thereby enabling accurate measurement.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はロータリーエンコーダーに関し、特に円周上に
例えば透光部と反射部の格子模様を複数個、周期的に刻
んだ放射格子を回転物体に取付け、該放射格子に例えば
レーザーからの光束を照射し、該放射格子からの回折光
を利用して、放射格子若しくは回転物体の回転角度等の
回転状態全光電的に検出するロータリーエンコーダーに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rotary encoder, and particularly relates to a rotary encoder, in which a radiation grating in which a plurality of grid patterns of, for example, transparent parts and reflective parts are periodically carved on the circumference of a rotating object is used. A rotary encoder that is attached to the radiation grating, irradiates the radiation grating with a beam of light from a laser, and utilizes the diffracted light from the radiation grating to fully photoelectrically detect the rotational state of the radiation grating or rotating object, such as the rotation angle. It is.

(従来の技術) 従来よシフロッピーデスクの駆動等のコンピューター機
器、プリンター等の事務機器、あるIn ハNO工作機
械さらにはVTRの中ヤプステンモーターや回転ドラム
等の回転機構の回転速度や回転速度の変動量を検出する
為の手段として光電的なロータリーエンコーダーが利用
されてきている。
(Prior art) Conventionally, computer equipment such as the drive of a floppy desk, office equipment such as a printer, some industrial machine tools, and even the rotational speed and rotational speed of rotating mechanisms such as the Yapsutten motor and rotating drum in a VTR are used. A photoelectric rotary encoder has been used as a means to detect the amount of variation in

光電的なロータリーエンコーダーを用いる方法は、回転
軸に連結した円板の周囲に透光部と遮光部を等間隔に設
けた、所謂メインスケールとこれに対応してメインスケ
ールと等しい間隔で透光部と遮光部とを設は九所謂固定
のインデックススケールとの双方のスケール11.手I
Rと受光手段で挾んで対向配置した所謂インデックスス
ケール方式の構成を採っている。この方法はメインスケ
ールの回転に伴って双方のスケールの透光部と遮光部の
間隔に同期した信号が得られ、この信号全周波数解析し
て回転軸の回転速度の変動を検出している。この為双方
のスクールの透光部と遮光部とのスケール間隔を細かく
すればする程、検出精度を高めることができる。しかし
ながらスケール間隔を細かくすると回折光の影響で受光
手段からの出力信号のS/N 比が低下し検出精度が低
下してしまう欠点があった。この為メインスケールの透
光部と遮光部の格子の総本数を固定し、透光部と遮光部
の間隔を回折光の影響を受けない程度まで拡大しようと
するとメインスケールの円板の直径が増大し更に厚さも
増大し装置全体が大型化し、この結果被検回転物体への
負荷が大きくなってくる等の欠点があった。
The method using a photoelectric rotary encoder consists of a so-called main scale, which has light-transmitting parts and light-shielding parts arranged at equal intervals around a disc connected to a rotating shaft, and corresponding light-transmitting parts and light-shielding parts arranged at equal intervals to the main scale. The section and the light-shielding section are set at 9 so-called fixed index scales and both scales 11. Hand I
It adopts a so-called index scale structure in which the light receiving means and the light receiving means are arranged opposite to each other. In this method, as the main scale rotates, a signal synchronized with the interval between the light-transmitting part and the light-blocking part of both scales is obtained, and the full frequency of this signal is analyzed to detect fluctuations in the rotational speed of the rotating shaft. Therefore, the finer the scale interval between the light-transmitting part and the light-blocking part of both schools, the higher the detection accuracy can be. However, when the scale interval is made smaller, the S/N ratio of the output signal from the light receiving means decreases due to the influence of diffracted light, resulting in a decrease in detection accuracy. For this reason, if the total number of gratings in the light-transmitting and light-blocking parts of the main scale is fixed and the distance between the light-transmitting and light-blocking parts is increased to the extent that it is not affected by diffracted light, the diameter of the main scale disc will increase. This increases the size and thickness of the device, resulting in an increase in the size of the entire device, which has the disadvantage of increasing the load on the rotating object to be tested.

(本発明の目的) 本発明は被検回転物体の負荷を小さくシ、被検回転物体
への回転速成検出用の放射格子の取付は偏心の影響を軽
減した小型でしかも高精度のロータリーエンコーダーの
提供を目的とする。
(Objective of the present invention) The present invention reduces the load on the rotating object to be tested, and the installation of a radiation grating for detecting rotational speed formation on the rotating object to be tested is a compact and highly accurate rotary encoder that reduces the influence of eccentricity. For the purpose of providing.

(本発明の主たる特徴) 可干渉性の光源からの光束t−ll1光束分割手段によ
りi−ポ喝づヒト       (日し転分割した後分
割した光束を回転物体に配置しぇ放射状格子の前記回転
物体の回転中心と略点対称の位置に各々入射させ、前記
放射状格子からの回折光のうち特定次数の回折光を再度
前記放射状格子の略同一位置に入射させ前記放射状格子
からの再回折光のうち特定次数の回折光を重ね合わせた
後受光手段罠導光し、前記受光手段からの出力信号を利
用して前記回転物体の回転状態を求めたことである。
(Main feature of the present invention) A light beam from a coherent light source is divided into i-polymerized beams by means of a beam splitting means. The diffracted light of a specific order among the diffracted lights from the radial grating is made to enter approximately the same position of the radial grating, and the re-diffracted light from the radial grating is After the diffracted lights of a specific order are superimposed, the light is guided through a light receiving means, and the rotational state of the rotating object is determined using an output signal from the light receiving means.

その他の本発明の特徴は実施例において記載されている
Other features of the invention are described in the examples.

(実施例) 同図において、1はレーザー等の―工干渉性の光源、2
はコリメーターレンズ、3は偏光ビームスプリッタ−で
、レーザーlからの直線偏光に対して、その偏光軸が4
ぎとなるように配置されている。4□、4□、43  
は各々純波長板で、各々、偏光ビームスプリッタ−3の
、反射及び透過光束の直線偏光に対して、各々の偏光軸
が4ぎ となるように配置されている。すなわち、磁波
長板4□ は・−光ビームスプリッタ−3の反射光束の
直線偏光方位に対してその偏光軸が4ぎ となるように
配置され、1/Iv長板4□ は偏光ビームスプリッタ
−3の透過光束の直線偏光方位に対してその偏光軸が4
5′ となるように配置されている。またA波長板43
  は、偏光ビームスプリッタ−3の透過あるいは反射
光束のい゛ずれかの偏光方位に対してその偏光軸が 4
5度となるように配置されている。5は反射鏡である。
(Example) In the figure, 1 is an interferometric light source such as a laser, and 2
is a collimator lens, and 3 is a polarizing beam splitter, whose polarization axis is 4 for linearly polarized light from laser l.
It is arranged so that it is close to each other. 4□, 4□, 43
are pure wavelength plates, and are arranged so that their respective polarization axes are at the 4th angle with respect to the linearly polarized light beams reflected and transmitted by the polarizing beam splitter 3. That is, the magnetic wave plate 4□ is arranged so that its polarization axis is at the 4th angle with respect to the linear polarization direction of the reflected light beam from the optical beam splitter 3, and the 1/Iv long plate 4□ is arranged as a polarizing beam splitter. The polarization axis is 4 for the linear polarization direction of the transmitted light beam of 3.
5'. In addition, the A wavelength plate 43
The polarization axis is 4 with respect to either the polarization direction of the transmitted or reflected light beam of the polarization beam splitter 3.
They are arranged at 5 degrees. 5 is a reflecting mirror.

6□、62.6□′、6□′は各々シリンドリカルレン
ズ、7 、7’は反射鏡である。8は円板上に例えば透
光部と反射部の格子模様を等角度で設けた放射格子、9
は不図示の被検回転物体の回転軸である。lOはビーム
スプリッタ−111、11’は偏光板で、偏光方位が互
いに 45度になるように配置されている。12 、1
2’は受光素子である。
6□, 62.6□', and 6□' are cylindrical lenses, and 7 and 7' are reflecting mirrors. 8 is a radiation grating in which, for example, a grid pattern of transparent parts and reflective parts is provided at equal angles on a disk; 9
is the rotation axis of the rotating object to be tested (not shown). IO is a beam splitter 111, and 11' is a polarizing plate, which are arranged so that the polarization directions are at 45 degrees to each other. 12, 1
2' is a light receiving element.

レーザー1より放射された光束は、コリメーターレンズ
2によって略平行光束となり、偏光ビームスプリッタ−
3に入射する。偏光ビームスプリッタ−3は、その方位
が、レーザーlの直線偏光方位に対して4ぎ となるよ
うに配置されてお9レーザー1からの光束を略等しい光
量の反射光束と透過光束に分割する。分割された2つの
光束は各々A波長板4□ 及び4□ を通過後円偏光と
なる。このうち、透過光束はシリンドリカルレンズ6□
 を介して、放射格子8上の位置M0 上に線状照射さ
れる。一方、反射光束は、反射鏡5及びシリンドリカル
レンズ6□′を介して、放射格子8上の位置M2 上に
線状照射される。ここで、シリ/トリカルレンズ 61
゜6□′は光束を放射格子8の放射方向と直交する方向
に線状照射するように必要に応じて配置さハでいる。こ
のように線状照射することによ〕、放射格子8上での光
束の照射部分に相当する透光部と反射部の格子模様のピ
ッチ誤差を軽減することができる。また、放射格子8上
の照射位置M0  とM2  は、不図示の被検回転物
体の回転中心に対して略点対称な位置関係となるように
設定されている。
The light beam emitted from the laser 1 is turned into a substantially parallel light beam by the collimator lens 2, and is then sent to the polarizing beam splitter.
3. The polarizing beam splitter 3 is disposed so that its direction is at the fourth angle with respect to the linearly polarized direction of the laser 1, and splits the light beam from the laser 1 into a reflected light beam and a transmitted light beam of substantially equal amounts. The two divided beams become circularly polarized light after passing through the A wavelength plates 4□ and 4□, respectively. Of these, the transmitted light flux is the cylindrical lens 6□
A linear beam is irradiated onto the position M0 on the radiation grating 8 through the beam. On the other hand, the reflected light flux is linearly irradiated onto position M2 on the radiation grating 8 via the reflecting mirror 5 and the cylindrical lens 6□'. Here, silicate/trical lens 61
6□' are arranged as necessary so as to linearly irradiate the light beam in a direction perpendicular to the radiation direction of the radiation grating 8. By performing linear irradiation in this manner, it is possible to reduce the pitch error in the grid pattern between the transparent portion and the reflective portion corresponding to the irradiated portion of the luminous flux on the radiation grating 8. Furthermore, the irradiation positions M0 and M2 on the radiation grating 8 are set to have a positional relationship that is approximately symmetrical with respect to the rotation center of a rotating object to be detected (not shown).

放射格子8に入射した光束は、放射格子8の格子模様に
よって反射回折される。いま、光束の照射位置における
格子模様のピッチ’tPとすれば、m次の反射回折光L
 、 L’の回折角度 −は、次の(1)式で表わされ
る。
The light beam incident on the radiation grating 8 is reflected and diffracted by the lattice pattern of the radiation grating 8. Now, if the pitch of the lattice pattern at the irradiation position of the light beam is 'tP, then the m-th order reflected diffraction light L
, L' diffraction angle - is expressed by the following equation (1).

曲□。−0λ/、           ・・・・曲・
(1)ここで、λは光束の波長である。
Song □. -0λ/, ・・・・Song・
(1) Here, λ is the wavelength of the luminous flux.

いま、放射格子8が、角速度ωで回転してい    −
るとし、放射格子の回転中心から、照射位置M、 、 
M2までの距離t−rとすると、照射位置M工9M2で
の周速度はマーrat  となる。
Now, the radiation grating 8 is rotating with an angular velocity ω.
From the rotation center of the radiation grating, the irradiation position M, ,
If the distance to M2 is tr, the circumferential speed at the irradiation position M 9M2 will be MAR rat.

ここで、M□9M2への入射光束を、波数ベクトル表示
でに1  と表わし、反射回折光り及びL′七波数ベク
トル表示でkm  及びkk  と表わし、位置M、、
M2における放射格子80周速度をベクトル表示でVと
表わし、その関係を示すと第2図のようになる。そして
反射回折光り及びL′の周波数は、次式で表わされる量
Δf及び Δf′だけ、所謂ドツプラーシフトを受ける
Here, the incident light flux to M□9M2 is expressed as 1 in wave number vector expression, the reflected diffracted light and L' are expressed as km and kk in wave number vector expression, and the position M, ,
The circumferential velocity of the radiation grating 80 at M2 is expressed as V in vector representation, and the relationship is shown in FIG. 2. The frequencies of the reflected diffracted light and L' undergo a so-called Doppler shift by amounts Δf and Δf' expressed by the following equations.

ここで・はベクトルの内積を表わす。Here, . represents the inner product of vectors.

そして、シリンドリカルレンズ62,6ルヲ介して、反
射鏡7,7′で位@Mよ、 M2t−再照射する。そう
すると位置M工9M2で再び回折されこのときのm次の
反射回折光束は、元の光路を戻るが、再回折時に再び(
2)式で表わされる量のドツプラーシフトを受ける。こ
の為位置M□ で再回折されて元の光路を戻る光束は、
周波数2Δfのドツプラーシフトを受け、位置M2  
で再回折されて元の光路を戻る光束は周波数−2Δfの
ドツプラーシフトを受ける。
Then, through the cylindrical lenses 62 and 6, the reflecting mirrors 7 and 7' re-irradiate the area @M2t-. Then, it is diffracted again at position M 9M2, and the m-th reflected diffracted light beam returns to the original optical path, but upon re-diffraction, it returns to (
2) undergoes a Doppler shift of the amount expressed by Eq. Therefore, the light beam that is re-diffracted at the position M□ and returns to the original optical path is
After undergoing a Doppler shift with a frequency of 2Δf, the position M2
The light beam that is re-diffracted at , and returns to the original optical path undergoes a Doppler shift of frequency -2Δf.

ここで位置町 で再回折されて元の光路を戻る光束は、
磁波長板4□ を再び透過すると、その方位が入射時と
は回度回転した直線偏光となシ、偏光ビームスプリッタ
−3で反射される。
The light beam that is re-diffracted at this point and returns to its original optical path is
When the light passes through the magnetic wave plate 4□ again, it is reflected by the polarization beam splitter 3 as a linearly polarized light whose orientation has been rotated by a number of degrees from that at the time of incidence.

また位置M2  で再回折されて元の光路を戻る光束も
、磁波長板4□ を再び透過すると、そのガミが入射時
とは回度回転した直線偏光となシ、偏光ビームスプリッ
タ−3ft透過する。位置M□9M2で再回折された光
束は、重なり合い、磁波長板43  を過って、ビーム
スプリッタ−10で2光束に分割され偏光板ti 、 
u’を透過して受光素子12 、12’に入射する。こ
のように周波数2Δf及び周波数−2Δfのドツプラー
シフトを受は喪2つの光束が重な力合うため、受光素子
12 。
In addition, when the light beam that is re-diffracted at position M2 and returns to the original optical path passes through the magnetic wave plate 4□ again, it becomes linearly polarized light that has been rotated by a number of degrees from the time of incidence, and is transmitted through the polarizing beam splitter -3ft. . The light beams re-diffracted at the position M□9M2 overlap, pass through the magnetic wave plate 43, and are split into two light beams by the beam splitter 10, and then the polarizers ti,
The light passes through u' and enters the light receiving elements 12 and 12'. In this way, when receiving the Doppler shift of frequency 2Δf and frequency -2Δf, the light receiving element 12 suffers from the overlapping force of the two light fluxes.

12’の出力信号の周波数は、2Δ/−(−2Δ/)−
4Δfとなる。つまり、受光素子12 、12’の出力
信号の周波数Fは、F−4Δf −4rω81−/λ 
となリ、(1)式の回折条件の式から、F −4mrω
/pとなる。放射格子8の格子模様の総本数をN1等角
度ピッチをΔψ とすれば、p−rΔψ、Δψ−2π/
Nより、 F −2mNω/ t          =−−(3
)となる。いま、時間Δt の間での受光素子の出力信
号の波数knsΔt の間での放射格子80回転角to
とすれば、n−FΔt、θ−ωΔtよシ、n−2mNθ
/π         ・・−・・・・・・(4)とな
り、受光素子の出力信号波形の波数をカウクし ン卜することによって、放射格子8の回転角−を、(4
)式によって求めることができる。
The frequency of the output signal of 12' is 2Δ/−(−2Δ/)−
4Δf. In other words, the frequency F of the output signal of the light receiving elements 12 and 12' is F-4Δf-4rω81-/λ
From the diffraction condition equation (1), F −4mrω
/p. If the total number of grid patterns of the radiation grating 8 is N1 and the equal angular pitch is Δψ, then p−rΔψ, Δψ−2π/
From N, F −2mNω/t =−−(3
). Now, the rotation angle to of the radiation grating 80 between the wave number ksΔt of the output signal of the light receiving element during the time Δt
Then, n-FΔt, θ-ωΔt, n-2mNθ
/π ...... (4), and by calculating the wave number of the output signal waveform of the light receiving element, the rotation angle of the radiation grating 8 can be calculated as (4).
) can be obtained using the formula.

ところで、回転角度を検出する際、回転方向が検出出来
れば更に好ましい。そのため本実施例においては、従来
の光電式ロータリーエンコーダーなどにおいて公知のよ
うに、複数個の受光素子全用意して、互いの信号の位相
が90度ずれるように配置し、回転に伴う回度位相差信
号から、回転方向を示す信号を取シ出す方式を用いてい
る。
By the way, when detecting the rotation angle, it is more preferable if the rotation direction can be detected. Therefore, in this embodiment, as is well known in conventional photoelectric rotary encoders, all of the plurality of light receiving elements are prepared and arranged so that the phases of their signals are shifted by 90 degrees, and the degree of rotation due to rotation is A method is used to extract a signal indicating the rotation direction from the phase difference signal.

本実施例においては、受光素子12 、12’の出力信
号間の9σ位相ずれを、偏光ビームスプリッタ−と、A
波長板及び偏光板を組み合わせて作シ出している。すな
わち、位置M□9M2で再回折されて元の光路を戻る光
束は偏光ビームスプリッタ−3で、各々反射及び透過さ
れて重なり合い、礪波長板43t−透過することによっ
て、直線偏光となるが、その偏光方位・が放射格子80
回転に伴って変化する。そして、受光素子12 。
In this embodiment, the 9σ phase shift between the output signals of the light receiving elements 12 and 12' is determined by the polarization beam splitter and the A
It is produced by combining a wavelength plate and a polarizing plate. That is, the light beams that are re-diffracted at the position M□9M2 and return to the original optical path are reflected and transmitted by the polarizing beam splitter 3, overlap each other, and become linearly polarized light by passing through the wavelength plate 43t. Polarization direction/radiation grating 80
Changes with rotation. And a light receiving element 12.

12′の前面に設けた偏光板11 、11’の偏光方位
を互いiC4S″ずらすことによって、受光素子12,
12′の出力信号間に90” の位相差を与えている。
By shifting the polarization directions of the polarizing plates 11 and 11' provided on the front surface of the light receiving elements 12 and 12' from each other by iC4S'',
A phase difference of 90'' is provided between the output signals of 12'.

そして、第1図に示すように例えば受光素子12 。As shown in FIG. 1, for example, a light receiving element 12.

12′の出力信号を波形整形し、回転方向を検出した後
、カラ/ターにて積算し、回転角度t−求めている。
After shaping the output signal of 12' and detecting the rotation direction, the rotation angle t is calculated by integrating the output signal with color/tar.

尚本実施例において単に回転速度のみを求める回転速度
計として用いるならば第1図において3は単なるハーフ
ミラ−でよく、又純波長板4□、 42.43、偏光板
11 、11’、ビームスプリッタ−10、そして受光
素子12は不要である。
In this embodiment, if the tachometer is used to simply measure the rotational speed, 3 in FIG. 1 may be a simple half mirror, and pure wave plates 4□, 42.43, polarizing plates 11 and 11', and a beam splitter may be used. -10, and the light receiving element 12 is unnecessary.

第3図は第1図の放射格子8と2つの光束の放射格子8
上の照射位置M、、M2と被検回転物体の回転中心との
説明図である。
Figure 3 shows the radiation grating 8 of Figure 1 and the radiation grating 8 of the two beams.
FIG. 3 is an explanatory diagram of the upper irradiation positions M, , M2 and the rotation center of the rotating object to be tested.

本実施例においては放射格子8の中心と被検回転物体の
回転中心に対して略点対称の2点M1.M2を測定点と
することによシ放射格子8の中心と、被検回転体の回転
中心との偏心の影響ヲ軽減している。すなわち、放射格
子8の中心と、回転中心とを完全に一致させることは機
構上困難であり、両者の偏心は避けられない。
In this embodiment, two points M1. By using M2 as the measurement point, the influence of eccentricity between the center of the radiation grating 8 and the rotation center of the rotating body to be tested is reduced. That is, it is mechanically difficult to completely align the center of the radiation grating 8 with the center of rotation, and eccentricity between the two is unavoidable.

たとえば、第3図に示すように、放射格子8の中心0と
、回転中心0′との間に、偏心量がaだけあつ九とき、
回転中心から距離rの位置にある測定点M□ でのドツ
プラー周波数シフトは、偏心がないときとくらべて、r
/(r+a)  から、r/(r−a)tで変化する。
For example, as shown in FIG. 3, when there is an amount of eccentricity a between the center 0 of the radiation grating 8 and the rotation center 0',
The Doppler frequency shift at the measurement point M□ located at a distance r from the rotation center is r
/(r+a), it changes by r/(ra)t.

一方、このとき位置M1  と、回転中心に対して点対
称な位置にある測定点M2  での周波数シフトは、位
置M0  での変化とは逆に、r/r−aからr / 
r +mまで変化するから、位置M工とM2の2点を同
時に測定することによって、偏心の影響を軽減している
On the other hand, at this time, the frequency shift at the measurement point M2, which is symmetrical to the position M1 with respect to the center of rotation, changes from r/ra to r/ra, contrary to the change at the position M0.
Since it changes up to r + m, the influence of eccentricity is reduced by measuring two points, M and M2, at the same time.

第4図は、本発明の他の実施例の一部分の概略図であり
、第1図の放射格子8に光束が入射する付近部分を示し
ている。同図において各要素に付され九番号は第1図で
示したものと同じ要素を示す。放射格子8の位置Mエ 
及びM2 に入射した光束の±m次の透過回折光をシリ
ンドリカルレンズ6□ 66、反射鏡7 、7”を介し
テ、放射格子8に再度入射させ、元の光路に戻すことに
より第1図に示し几実施例と同様の効果を得ている。
FIG. 4 is a schematic diagram of a portion of another embodiment of the invention, showing the vicinity of where the light beam is incident on the radiation grating 8 of FIG. In the figure, the number 9 attached to each element indicates the same element as shown in FIG. Position M of radiation grating 8
The transmitted diffracted light of order ±m of the luminous flux incident on M2 is made to enter the radiation grating 8 again through the cylindrical lens 6□ 66 and the reflecting mirrors 7 and 7'', and is returned to the original optical path, resulting in the result shown in Fig. 1. The same effect as the example shown is obtained.

第5図は、本発明の更に別の実施例の第4図と同様の概
略図である。
FIG. 5 is a schematic diagram similar to FIG. 4 of yet another embodiment of the invention.

第5図において13及び13′は各々コーナーキューブ
反射鏡である。放射格子8の位置M工及びM2  に入
射した光束の±m次の反射(あるいは第4図のように透
過でもよい。)回折光に1シIJ 7ドリカルレンズ6
2,6it介して、コーナーキューブ反射鏡で元の光路
に戻し、第1図に示した実施例と同様の効果を得ている
。放射格子8の中心と、被検回転物体の回転中心とが偏
心している場合、場所によって、放射格子8の透光部及
び反射部の間隔が変化するため、回折光り及びL′の回
折角が変化することになる。また、第1図の実施例にお
いて、光源1としては、半導体レーザーが、その小型・
低価格・高出力という点で、最も望ましい。
In FIG. 5, 13 and 13' are corner cube reflecting mirrors, respectively. Positions M and M2 of the radiation grating 8 The +/-m-order reflection of the light beam incident on the radiation grating 8 (or it may be transmitted as shown in Fig. 4) is applied to the diffracted light by a single IJ7 doric lens 6.
The light is returned to the original optical path by a corner cube reflector after 2.6 bits, and the same effect as in the embodiment shown in FIG. 1 is obtained. When the center of the radiation grating 8 and the center of rotation of the rotating object to be tested are eccentric, the distance between the transparent part and the reflective part of the radiation grating 8 changes depending on the location, so the diffracted light and the diffraction angle of L'It's going to change. In the embodiment shown in FIG. 1, a semiconductor laser is used as the light source 1 due to its small size.
Most desirable in terms of low price and high output.

しかるに、半導体レーザーは、周囲の温度変化によって
、その発振波長が変化することが知られている。第1図
の実施例において、光源10波長が変化すると、回折光
り及びL′の回折角が変化する。このとき、回折光り及
びL′の反射鏡として第1図の7及び7′の如く平面鏡
を用いると、反射鏡は所謂ティルト状態になって、受光
素子12 、12’の前面には、干渉縞が多数発生し、
受光素子12 、12’の出力信号のS/Nが低下する
場合がある。そこで第5図の如く、反射鏡としてコーナ
ーキュープ反射鏡13及び13′を用いることKより、
放射格子8で回折された回折光り及びL′の回折角が上
記理由で変化しても、コーナーキューブ反射*13及び
13′で反射された光束を元の光路を戻すことができる
。これにょシ受光素子12 、12’の前面で干渉縞が
多数発生するのを防止し、受光素子12 、12’の出
力信号のS/N比の向上を図っている。
However, it is known that the oscillation wavelength of a semiconductor laser changes depending on changes in the surrounding temperature. In the embodiment of FIG. 1, as the wavelength of the light source 10 changes, the diffracted light and the diffraction angle of L' change. At this time, if plane mirrors such as 7 and 7' in FIG. 1 are used as reflecting mirrors for the diffracted light and L', the reflecting mirrors will be in a so-called tilted state, and interference fringes will appear in front of the light receiving elements 12 and 12'. occurs in large numbers,
The S/N ratio of the output signals of the light receiving elements 12 and 12' may decrease. Therefore, as shown in FIG. 5, by using corner cup reflectors 13 and 13' as reflectors,
Even if the diffracted light diffracted by the radiation grating 8 and the diffraction angle of L' change for the above reasons, the light beams reflected by the corner cube reflections *13 and 13' can be returned to their original optical paths. This prevents the occurrence of a large number of interference fringes on the front surface of the light receiving elements 12, 12', and improves the S/N ratio of the output signals of the light receiving elements 12, 12'.

尚前述し九各実施例ではm次の2つの回折光を用いた場
合を示したが±m次の回折光であっても又次数の異った
2つの回折光を用いても良い。父本実施例において放射
格子の中心と被検回転物体の回転中心との偏心誤差が無
視出来、回転速度計として用いるならば放射格子への照
射点t−1箇所とし、受光素子を1つ設ければ良いO (本発明の効果) 本発明によれば被検回転物体の負荷の小さい放射格子の
中心と回転物体の回転中心との偏心誤差t−軽減しな小
型でしかも高精度のロータリーエンコーダーを達成する
ことができる。
In each of the nine embodiments described above, two m-order diffracted lights are used, but ±m-order diffracted lights or two diffracted lights of different orders may be used. In this embodiment, the eccentricity error between the center of the radiation grating and the center of rotation of the rotating object to be tested can be ignored, and if used as a tachometer, the radiation grating will be irradiated at the t-1 location and one light receiving element will be provided. (Effect of the present invention) According to the present invention, a small and highly accurate rotary encoder that does not reduce the eccentricity error t between the center of the radiation grating with a small load on the rotating object to be tested and the center of rotation of the rotating object. can be achieved.

例えば従来から使用されているインデックススケール方
式の光電式ロータリーエンコーダーテハ、前述の(4)
式に対応する、受光素子からの出力信号の波数nと、メ
インスケールの総本数Nと、回転角θとの関係は、 n −Nθ/2K          ・・・・・・・
・・(5)であるから、波数1蘭あたりの回転角Δθ 
は、Δθ−2π/N(ラジアン)        ・・
・・・・・・・(6)である。これに対して、本発明の
実施例では、(4)式から、 Δθ−π/ 2mN (ラジアン)       ・・
・・・・・・・(7)である。
For example, the index scale type photoelectric rotary encoder that has been used in the past, the above-mentioned (4)
The relationship between the wave number n of the output signal from the light-receiving element, the total number N of main scales, and the rotation angle θ, which corresponds to the formula, is n - Nθ/2K...
...(5), so the rotation angle Δθ per wave number is
is Δθ−2π/N (radian)...
......(6). On the other hand, in the embodiment of the present invention, from equation (4), Δθ−π/2mN (radian)...
......(7).

従って、本実施例によれば、同じ分割数のスケールを用
いても従来filに比べて4m 倍のf1度で回転角度
の検出が出来ることになる。
Therefore, according to this embodiment, even if a scale with the same number of divisions is used, the rotation angle can be detected at f1 degrees, which is 4m times as large as the conventional fil.

また、従来の光電式ロータリーエンコーターにおいては
、透光部と遮光部の間隔は、元の回折の影響を考慮する
と、10μm程度が限度である0 いま、回転角検出精度として、念とえば3o秒を得るた
めには、従来例では、メインスケールの分割数として前
述の(6)式から、N−360X60X 60/30−
43,200  だけ必要である。そこで、メインスケ
ール最外周での透光部、遮光部の間隔t−10μmとす
れば、メインスケールの直径は、α01■X 43,2
00/π−137,5調必要になる。
In addition, in conventional photoelectric rotary encoders, the interval between the light-transmitting part and the light-blocking part is limited to about 10 μm, considering the influence of original diffraction. In order to obtain seconds, in the conventional example, the number of divisions of the main scale is N-360X60X 60/30-
Only 43,200 is required. Therefore, if the distance between the light-transmitting part and the light-blocking part at the outermost circumference of the main scale is t-10 μm, the diameter of the main scale is α01×43,2
00/π-137, 5th key is required.

しかるに、本発明の実施例によれば、従来例と同じ回転
角の検出81度を得るためには、放射格子の分割数は1
/4mでよい。±1次の回折光を用いたm−1の場合、
30秒の回転角検出精度t−得るための放射格子8の格
子の分割数は、43200/4−10,800  でよ
い。そして本発明の実施例においてレーザーの回折光を
用いれば透光部と反射部の間隔は狭くてよいので、たと
えば、これ金4μmとすると、放射格子の直径は、0、
(104m X 10,800 /π−13.7511
1I11  でよいことになる。すなわち、本発明の実
施例によれば従来のインデックススケール方式の光電式
ロータリーエンコーダーと同等の回転角検出精度を得る
゛形状としては、鴇以下の大きさでよいことになる。
However, according to the embodiment of the present invention, in order to obtain the same rotation angle detection of 81 degrees as in the conventional example, the number of divisions of the radiation grating is 1.
/4m is sufficient. In the case of m-1 using ±1st order diffracted light,
The number of grating divisions of the radiation grating 8 to obtain a rotation angle detection accuracy t of 30 seconds may be 43200/4-10,800. In the embodiment of the present invention, if laser diffraction light is used, the distance between the transparent part and the reflective part can be narrow, so for example, if the gold is 4 μm, the diameter of the radiation grating is 0.
(104m x 10,800/π-13.7511
1I11 would be fine. In other words, according to the embodiment of the present invention, the shape that can obtain rotational angle detection accuracy equivalent to that of a conventional index scale type photoelectric rotary encoder may be smaller than the size of a tow.

従って、被検回転物体への負荷も、従来例とくらべて、
はるかに小さくな)、正確な測定が行える。
Therefore, the load on the rotating object to be tested is also lower than that of the conventional example.
(much smaller), allowing for more accurate measurements.

【図面の簡単な説明】 第1図は本発明の一実施例の概略図、第2図は本発明に
係る放射格子への入射光束と反射回折光のベクトル表示
の説明図、第3図は本発明の放射格子の中心と回転中心
との偏心を弐わす説明図、第4図、第5図は各々不発明
の他の実施例の一部分の説明図である。図中1は光源、
2はコリメーターレンズ、3は偏光ビームスプリッタ−
14□、4□、43は樽波長板、5,7゜7′は反射鏡
、 6□、6□、6シはシリンドリカルレンズ、8は放
射格子、9は被検回転書体の回転軸、10はビームスプ
リッタ−111、11’は偏光板、12 、12’は受
光素子、13 、13’はコーナーキューブ反射鏡であ
る。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a schematic diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of vector representation of the incident light flux and reflected diffracted light to the radiation grating according to the present invention, and Fig. 3 is a schematic diagram of an embodiment of the present invention. FIGS. 4 and 5 are explanatory diagrams illustrating eccentricity between the center of the radiation grating and the center of rotation of the present invention, and FIGS. 4 and 5 are explanatory diagrams of a part of other embodiments of the present invention, respectively. 1 in the figure is a light source,
2 is a collimator lens, 3 is a polarizing beam splitter
14□, 4□, 43 are barrel wave plates, 5, 7゜7' are reflectors, 6□, 6□, 6shi are cylindrical lenses, 8 is a radiation grating, 9 is the rotation axis of the rotating typeface to be tested, 10 Beam splitters 111 and 11' are polarizing plates, 12 and 12' are light receiving elements, and 13 and 13' are corner cube reflecting mirrors.

Claims (1)

【特許請求の範囲】[Claims] (1)可干渉性の光源からの光束を光束分割手段により
分割した後分割した光束を回転物体に配置した放射状格
子の前記回転物体の回転中心と略点対称の位置に各々入
射させ、前記放射状格子からの回折光のうち特定次数の
回折光を再度前記放射状格子の略同一位置に入射させ前
記放射状格子からの再回折光のうち特定次数の回折光を
重ね合わせた後受光手段に導光し、前記受光手段からの
出力信号を 利用して前記回転物体の回転状態を求めたことを特徴と
するロータリーエンコーダー。
(1) After splitting the light flux from a coherent light source by a light flux splitting means, the split light fluxes are made to respectively enter positions of a radial grating arranged on a rotating object that are approximately point symmetrical to the center of rotation of the rotating object, and Among the diffracted lights from the grating, the diffracted light of a specific order is made to enter the radial grating at substantially the same position again, and after the diffracted lights of the specific order among the re-diffracted lights from the radial grating are superimposed, the light is guided to the light receiving means. , A rotary encoder characterized in that the rotational state of the rotating object is determined using an output signal from the light receiving means.
JP60054017A 1985-03-18 1985-03-18 Optical encoder Expired - Lifetime JPH07117426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60054017A JPH07117426B2 (en) 1985-03-18 1985-03-18 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60054017A JPH07117426B2 (en) 1985-03-18 1985-03-18 Optical encoder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27298496A Division JP2650645B2 (en) 1996-09-24 1996-09-24 Optical device

Publications (2)

Publication Number Publication Date
JPS61212728A true JPS61212728A (en) 1986-09-20
JPH07117426B2 JPH07117426B2 (en) 1995-12-18

Family

ID=12958812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60054017A Expired - Lifetime JPH07117426B2 (en) 1985-03-18 1985-03-18 Optical encoder

Country Status (1)

Country Link
JP (1) JPH07117426B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361457A2 (en) * 1988-09-30 1990-04-04 Canon Kabushiki Kaisha Method and apparatus for detecting a reference position of a rotating scale
US4930895A (en) * 1987-06-15 1990-06-05 Canon Kabushiki Kaisha Encoder for forming interference fringes by re-diffracted lights from an optical type scale and photoelectrically converting the interference fringes to thereby detect the displacement of the scale
US5442172A (en) * 1994-05-27 1995-08-15 International Business Machines Corporation Wavefront reconstruction optics for use in a disk drive position measurement system
US5909333A (en) * 1994-05-27 1999-06-01 International Business Machines Corporation Servo-writing system for use in a data recording disk drive
CN104406545A (en) * 2014-12-01 2015-03-11 上海理工大学 Device for measuring and calculating rotating angle based on incremental rotary optical encoder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832391A (en) * 1971-09-01 1973-04-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832391A (en) * 1971-09-01 1973-04-28

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930895A (en) * 1987-06-15 1990-06-05 Canon Kabushiki Kaisha Encoder for forming interference fringes by re-diffracted lights from an optical type scale and photoelectrically converting the interference fringes to thereby detect the displacement of the scale
EP0361457A2 (en) * 1988-09-30 1990-04-04 Canon Kabushiki Kaisha Method and apparatus for detecting a reference position of a rotating scale
US5026985A (en) * 1988-09-30 1991-06-25 Canon Kabushiki Kaisha Method and apparatus for detecting a reference position of a rotating scale with two sensors
US5442172A (en) * 1994-05-27 1995-08-15 International Business Machines Corporation Wavefront reconstruction optics for use in a disk drive position measurement system
US5909333A (en) * 1994-05-27 1999-06-01 International Business Machines Corporation Servo-writing system for use in a data recording disk drive
CN104406545A (en) * 2014-12-01 2015-03-11 上海理工大学 Device for measuring and calculating rotating angle based on incremental rotary optical encoder

Also Published As

Publication number Publication date
JPH07117426B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
US4868385A (en) Rotating state detection apparatus using a plurality of light beams
US4829342A (en) Moving state detection apparatus
JPS61212728A (en) Rotary encoder
JPS62200225A (en) Rotary encoder
JP2650645B2 (en) Optical device
JPH0781883B2 (en) encoder
JPH0462003B2 (en)
JPH0462004B2 (en)
JPH045142B2 (en)
JPS62200224A (en) Rotary encoder
JPH0462002B2 (en)
JPH07119626B2 (en) Rotary encoder
JP3517506B2 (en) Optical displacement measuring device
JPH07119623B2 (en) Displacement measuring device
JPS62163919A (en) Rotary encoder
JPS62204126A (en) Encoder
JPS62163920A (en) Rotary encoder
JPS62200219A (en) Encoder
JPS62200218A (en) Encoder
JP2650645C (en)
JPS62200220A (en) Rotary encoder
JPH07119625B2 (en) Displacement detection device
JPS62163918A (en) Rotary encoder
JPS62201314A (en) Encoder
JPS62200221A (en) Rotary encoder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term