JPH0462002B2 - - Google Patents

Info

Publication number
JPH0462002B2
JPH0462002B2 JP18617284A JP18617284A JPH0462002B2 JP H0462002 B2 JPH0462002 B2 JP H0462002B2 JP 18617284 A JP18617284 A JP 18617284A JP 18617284 A JP18617284 A JP 18617284A JP H0462002 B2 JPH0462002 B2 JP H0462002B2
Authority
JP
Japan
Prior art keywords
light
radiation grating
grating
radiation
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18617284A
Other languages
Japanese (ja)
Other versions
JPS6165115A (en
Inventor
Tetsuji Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18617284A priority Critical patent/JPS6165115A/en
Publication of JPS6165115A publication Critical patent/JPS6165115A/en
Priority to US07/481,684 priority patent/US4967072A/en
Publication of JPH0462002B2 publication Critical patent/JPH0462002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • G01P13/045Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement with speed indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • G01P3/366Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light by using diffraction of light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】 本発明はロータリーエンコーダーに関し、特に
円周上に例えば透光部と反射部の格子模様を複数
個、周期的に刻んだ放射格子を回転物体に取付
け、該放射格子に例えばレーザーからの光束を照
射し、該放射格子からの回折光を利用して、放射
格子若しくは回転物体の回転角度を光電的に検出
するロータリーエンコーダーに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary encoder, and more particularly, a radiation grating in which a plurality of grid patterns of transparent parts and reflective parts are periodically carved on the circumference is attached to a rotating object, and the radiation grating is attached to the radiation grating. For example, the present invention relates to a rotary encoder that irradiates a beam of light from a laser and uses diffracted light from the radiation grating to photoelectrically detect the rotation angle of a radiation grating or a rotating object.

従来よりフロツピーデスクの駆動等のコンピユ
ーター機器、プリンター等の事務機器、あるいは
NC工作機械さらにはVTRのキヤプステンモータ
ーや回転ドラム等の回転機構の回転角度を検出す
る為の手段としてロータリーエンコーダーが利用
されてきている。
Conventionally, computer equipment such as driving floppy desks, office equipment such as printers, or
Rotary encoders have been used as a means to detect the rotation angle of rotating mechanisms such as NC machine tools and VTR capsten motors and rotating drums.

光電的なロータリーエンコーダーを用いる方法
は回転軸に連絡した円板の周囲に透光部と遮光部
を等間隔に設けた、所謂メインスケールとこれに
対応してメインスケールと等しい間隔で透光部と
遮光部とを設けた所謂固定のインデツクススケー
ルとの双方のスケールを投光手段と受光手段で挾
んで対向配置した所謂インデツクススケール方式
の構成を採つている。この方法はメインスケール
の回転に伴つて双方のスケールの透光部と遮光部
の間隔に同期した信号が得られ、この信号を波形
整形後、積算することにより回転角度を検出して
いる。
The method using a photoelectric rotary encoder is to create a so-called main scale in which transparent parts and light-shielding parts are provided at equal intervals around a disc connected to the rotation axis, and corresponding transparent parts are provided at equal intervals to the main scale. A so-called fixed index scale having a light-shielding section and a light-shielding section are arranged in a so-called index scale system in which both scales are placed facing each other with a light emitting means and a light receiving means sandwiched between the two scales. In this method, as the main scale rotates, a signal is obtained that is synchronized with the interval between the light-transmitting part and the light-blocking part of both scales, and the rotation angle is detected by integrating this signal after waveform shaping.

ロータリーエンコーダーでは双方のスケールの
透光部と遮光部とのスケール間隔を細かくすれば
する程、検出精度を高めることができる。しかし
ながらスケール間隔を細かくすると回折光の影響
で受光手段からの出力信号のS/N比が低下し検
出精度が低下してしまう欠点があつた。この為メ
インスケールの透光部と遮光部の格子の総本数を
固定させ、透光部と遮光部の間隔を回折光の影響
を受けない程度まで拡大することが考えられる。
しかしこれはメインスケールの円板の直径が増大
し更に厚さも増大し装置全体が大型化し、この結
果被検回転物体への負荷が大きくなつてくる等の
欠点があつた。
In a rotary encoder, the finer the scale interval between the light-transmitting part and the light-blocking part of both scales, the higher the detection accuracy can be. However, when the scale interval is made finer, the S/N ratio of the output signal from the light receiving means decreases due to the influence of the diffracted light, resulting in a decrease in detection accuracy. For this reason, it is conceivable to fix the total number of gratings in the light-transmitting part and the light-blocking part of the main scale, and widening the interval between the light-transmitting part and the light-blocking part to the extent that it is not affected by the diffracted light.
However, this has the disadvantage that the diameter and thickness of the main scale disc increases, making the entire device larger, and as a result, the load on the rotating object to be tested increases.

本発明は被検回転物体の負荷を小さくし、被検
回転物体への取付け偏心の影響を軽減した小型で
しかも高精度に回転角度の検出ができるロータリ
ーエンコーダーの提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a small rotary encoder that reduces the load on a rotating object to be tested, reduces the influence of eccentricity of attachment to the rotating object, and is capable of detecting a rotation angle with high precision.

本発明の目的を達成する為のロータリーエンコ
ーダーの主たる特徴は円板の周囲上に格子模様を
複数個等角度に配置した放射格子と前記放射格子
と連結した回転物体と前記放射格子に光束を入射
させる為の第1の照明手段と前記放射格子に入射
した前記光束からの回折光のうち特定の次数の2
つの回折光を前記第1の照明手段による光束の前
記放射格子上の入射位置に対する前記回転物体の
回転中心と略点対称の位置に各々1/4波長板を介
して再度入射させる為の第2の照明手段と前記放
射格子により再度回折された特定の次数の2つの
回折光を重ね合わせた後、前記重ね合わせた光束
を2つの光束に分割する為の光分割手段と前記光
分割手段により分割された2つの光束を各々偏光
板を介して受光する為の2つの受光手段とを有
し、前記2つの受光手段からの出力信号を利用し
て前記回転物体の回転角度を求めたことである。
The main features of the rotary encoder for achieving the object of the present invention are a radiation grating in which a plurality of grid patterns are arranged at equal angles around the circumference of a disk, a rotating object connected to the radiation grating, and a luminous flux incident on the radiation grating. of the diffracted light from the luminous flux incident on the radiation grating, and
A second diffracted light beam is re-injected into a position approximately symmetrical to the rotation center of the rotating object with respect to the incident position on the radiation grating of the light beam by the first illumination means, via each quarter-wave plate. After superimposing the two diffracted lights of a specific order diffracted again by the illumination means and the radiation grating, the superimposed light beam is split by a light splitting means and the light splitting means for splitting the superimposed light beam into two light beams. and two light-receiving means for receiving the two light beams, respectively, through polarizing plates, and the rotation angle of the rotating object is determined using output signals from the two light-receiving means. .

次に本発明の一実施例を各図と共に説明する。 Next, one embodiment of the present invention will be described with reference to each drawing.

第1図は本発明の一実施例の概略図である。同
図において1はレーザー等の光源、2はコリーメ
ーターレンズ、31〜33,31′〜33′はシリンド
リカルレンズ、41,42,41′,42′は反射鏡、
5は円板上に例えば透光部と反射部の格子模様を
等角度で設けた放射格子、6は被検回転物体の回
転軸、7,7′は1/4波長板でレーザー1からの光
束の直線偏光に対してその軸が45度と−45度とな
るように配置されている。8はビームスプリツタ
ー、9,9′は偏光板で偏光板9,9′とは互いに
偏光方位が45度になるように配置されている。1
0,10′は受光素子である。
FIG. 1 is a schematic diagram of an embodiment of the present invention. In the figure, 1 is a light source such as a laser, 2 is a collimator lens, 3 1 to 3 3 , 3 1 ′ to 3 3 ′ are cylindrical lenses, 4 1 , 4 2 , 4 1 ′, 4 2 ′ are reflecting mirrors,
5 is a radiation grating with a grid pattern of transparent parts and reflective parts arranged at equal angles on a disk, 6 is the rotation axis of the rotating object to be tested, and 7 and 7' are 1/4 wavelength plates, which are used to measure the radiation from the laser 1. They are arranged so that their axes are at 45 degrees and -45 degrees with respect to the linearly polarized light beam. 8 is a beam splitter, and 9 and 9' are polarizing plates, which are arranged so that the polarization direction of the polarizing plates 9 and 9' is 45 degrees with respect to each other. 1
0 and 10' are light receiving elements.

レーザー1より放射された光束は、コリーメー
ターレンズ2により略平行光束となり、シリンド
リカルレンズ31によつて放射格子5上の位置M1
に線状に照射される。このように線状照射するこ
とにより放射格子5上での光束の照射部分に相当
する透光部と反射部の格子模様のピツチ誤差を軽
減することができる。
The light beam emitted from the laser 1 is turned into a substantially parallel light beam by the collimator lens 2, and is moved to a position M1 on the radiation grating 5 by the cylindrical lens 31.
is irradiated in a linear manner. By irradiating in a linear manner in this manner, it is possible to reduce the pitch error in the grid pattern between the transparent portion and the reflective portion corresponding to the irradiated portion of the light beam on the radiation grating 5.

尚シリンドリカルレンズの代わりにスリツト若
しくはレンズとスリツトを用いて線状照射するよ
うにしても良い。
Incidentally, instead of the cylindrical lens, a slit or a lens and a slit may be used for linear irradiation.

レーザー1からの光束は放射格子5の格子模様
によつて反射回折される。いま光束の照射位置
M1における格子模様のピツチをpとすれば±m
次の反射回折光L1,L2の回折角度θnは sinθn=±mλ/p ……(1) で表わされる。ここでλは光束の波長である。
The light beam from the laser 1 is reflected and diffracted by the grating pattern of the radiation grating 5. The current irradiation position of the luminous flux
If the pitch of the checkered pattern in M 1 is p, ±m
The diffraction angle θ n of the next reflected diffraction lights L 1 and L 2 is expressed as sin θ n =±mλ/p (1). Here, λ is the wavelength of the luminous flux.

いま、放射格子5が、角速度ωで回転している
とする。放射格子の回転中心から、照射位置M1
までの距離をrとすると、照射点M1での周速度
は、v=rωとなる。このとき、±m次の反射回折
光の周波数は、次式で表わされる量だけ、いわゆ
るドツプラーシフトを受ける。
Assume now that the radiation grating 5 is rotating at an angular velocity ω. From the rotation center of the radiation grating, the irradiation position M 1
If the distance to the irradiation point M1 is r, the circumferential velocity at the irradiation point M1 is v=rω. At this time, the frequency of the ±m-order reflected diffraction light undergoes a so-called Doppler shift by an amount expressed by the following equation.

Δ=±vsinθn/λ=±ωsinθn/λ……(2) そして、シリンドリカルレンズ32,33を介し
て、反射鏡41,42で、±m次の反射回折光を、
回転中心に略点対称な位置M2に、反射鏡41′,
2′,1/4波長板7及び7′、シリンドリカルレン
ズ32′,33′を介して、再び線状に照射する。こ
こで、1/4波長板7と7′とは、入射するレーザー
の直線偏光方位に対して、各々の軸が、45゜及び
−45゜となるように配置されている。また、照射
位置M2への入射角は、各々の回折光に対して、
照射位置M1における反射回折角度θnと等しく、
しかも放射格子5の周速度方向との角度も等しく
なるように反射鏡41′,42′が配置されている。
すると、照射位置M2において、±m次の反射回折
光は、重なり合い、シリンドリカルレンズ31′を
透過し再び平行光束となり、ビームスプリツター
8で2光束に分割され、偏光板9,9′を透過し
て、受光素子10,10′に入射する。照射位置
M2で反射され、重なり合つた±m次の回折光は、
放射格子5の回転に伴つて、再び(2)式のドツプラ
ー周波数シフトΔを受けるので、照射位置M1
反射したときの周波数シフトと合わせて、結局、
照射位置M2で反射される±m次の回折光の周波
数シフト量は±2Δとなる。このように、±m次
の回折を2回受けた光が重なり合うため、受光素
子10,10′の出力信号の周波数は、2Δ−(−
2Δ)=4Δとなる。つまり、受光素子10,1
0′の出力信号の周波数は、=4Δ=
4rωsinθn/λとなり、(1)式の回折条件の式から、
=4mrω/pとなる。放射格子5の格子模様の
総本数をN、等角度ピツチをΔとすれば、p=
rΔ、Δ=2π/Nより =2mNω/π ……(3) である。いま、時間Δtの間での受光素子の出力
信号の波数をn、Δtの間での放射格子5の回転
角をθとすれば、n=Δt、θ=ωΔtより n=2mNθ/π ……(4) となり、受光素子の出力信号波形の波数をカウン
トすることによつて、放射格子5の回転角θを、
(4)式によつて求めることができる。ところで回転
角度を検出する際回転方向が検出出来れば更に好
ましい。その為本実施例においては、従来の光電
式ロータリーエンコーダーなどにおいて公知のよ
うに、複数個の受光素子を用意して、互いの信号
の位相が90゜ずれるように配置し、回転に伴う90゜
位相差信号から、回転方向を示す信号を取り出す
方式を用いている。
Δ=±vsinθ n /λ=±ωsinθ n /λ...(2) Then, the reflected diffracted light of order ±m is reflected by the reflecting mirrors 4 1 and 4 2 via the cylindrical lenses 3 2 and 3 3 ,
At a position M 2 approximately symmetrical about the center of rotation, a reflecting mirror 4 1 ′,
4 2 ′, quarter wavelength plates 7 and 7 ′, and cylindrical lenses 3 2 ′ and 3 3 ′, the light is irradiated linearly again. Here, the quarter-wave plates 7 and 7' are arranged so that their respective axes are at 45 degrees and -45 degrees with respect to the linear polarization direction of the incident laser. In addition, the angle of incidence to the irradiation position M2 is as follows for each diffracted light:
equal to the reflection diffraction angle θ n at the irradiation position M 1 ,
Moreover, the reflecting mirrors 4 1 ′ and 4 2 ′ are arranged so that the angles with respect to the circumferential velocity direction of the radiation grating 5 are equal.
Then, at the irradiation position M 2 , the ±m-order reflected and diffracted lights overlap, pass through the cylindrical lens 3 1 ', become a parallel beam of light again, are split into two beams by the beam splitter 8, and pass through the polarizing plates 9 and 9'. The light passes through and enters the light receiving elements 10, 10'. Irradiation position
The overlapping ±m-order diffracted light reflected by M 2 is
As the radiation grating 5 rotates, the Doppler frequency shift Δ of equation (2) is again applied, so in addition to the frequency shift when reflected at the irradiation position M 1 , eventually,
The frequency shift amount of the ±m-order diffracted light reflected at the irradiation position M 2 is ±2Δ. In this way, since the light that has undergone ±m-order diffraction twice overlaps, the frequency of the output signal from the light receiving elements 10 and 10' is 2Δ-(-
2Δ) = 4Δ. In other words, the light receiving elements 10,1
The frequency of the output signal at 0' is =4Δ=
4rωsinθ n /λ, and from the diffraction condition equation (1),
=4mrω/p. If the total number of grid patterns of the radiation grid 5 is N, and the equiangular pitch is Δ, then p=
From rΔ, Δ=2π/N, =2mNω/π...(3). Now, if the wave number of the output signal of the light receiving element during time Δt is n, and the rotation angle of the radiation grating 5 during Δt is θ, then from n=Δt and θ=ωΔt, n=2mNθ/π... (4) By counting the wave number of the output signal waveform of the light receiving element, the rotation angle θ of the radiation grating 5 can be calculated as
It can be obtained using equation (4). By the way, it is more preferable if the direction of rotation can be detected when detecting the rotation angle. Therefore, in this embodiment, as is well known in conventional photoelectric rotary encoders, a plurality of light receiving elements are prepared and arranged so that the phases of their signals are shifted by 90 degrees, and the 90 degrees caused by rotation are A method is used to extract a signal indicating the rotation direction from the phase difference signal.

本実施例においては受光素子10,10′の出
力信号間の90゜位相ずれを、レーザーの直線偏光
と、1/4波長板及び偏光板を組み合わせて作り出
している。すなわち、一般に、レーザーは直線偏
光になつているが、この偏光方位に対して、2枚
の1/4波長板7,7′を、その軸が±45゜方向にな
るように配置する。すると、1/4波長板7,7′を
透過した光束は、互いに逆回りの円偏光となり、
照射位置M2で反射回折して重なり合うと、再び
直線偏光となるが、その偏光方位が、放射格子5
の回転に伴つて変化する。そして、受光素子1
0,10′の前面に設けた偏光板9,9′の偏光方
位を互いに45゜ずらすことによつて、受光素子1
0,10′の出力信号間に90゜の位相差を与えるこ
とができる。そして第1図に示すように例えば受
光素子10,10′の出力信号を波形整形し、回
転方向を検出した後、カウンターにて積算すれば
回転角度を求めることができる。
In this embodiment, a 90° phase shift between the output signals of the light receiving elements 10 and 10' is created by combining linearly polarized laser light, a quarter wavelength plate, and a polarizing plate. That is, although a laser is generally a linearly polarized light, the two quarter-wave plates 7 and 7' are arranged so that their axes are in the direction of ±45° with respect to this polarization direction. Then, the light beams transmitted through the quarter-wave plates 7 and 7' become circularly polarized light in opposite directions,
When the light is reflected and diffracted at the irradiation position M2 and overlaps, it becomes linearly polarized light again, but the polarization direction is different from the radiation grating 5.
It changes with the rotation of. Then, the light receiving element 1
By shifting the polarization directions of the polarizing plates 9 and 9' provided on the front surfaces of the light receiving elements 1 and 10' by 45 degrees, the light receiving element 1
A phase difference of 90° can be provided between the 0 and 10' output signals. As shown in FIG. 1, for example, the output signals of the light-receiving elements 10, 10' are waveform-shaped, the rotation direction is detected, and then the rotation angle is determined by integrating the signals with a counter.

ところで、従来から使用されているインデツク
ススケール方式の光電式のロータリーエンコーダ
ーでは、(4)式に対応する、受光素子からの出力信
号の波数nと、メインスケールの総本数Nと、回
転角θとの関係は、 n=Nθ/2π ……(5) であるから、波数1個あたりの回転角Δθは、 Δθ=2π/N(ラジアン) ……(6) である。これに対して、本実施例では、(4)式か
ら、 Δθ=π/2mN(ラジアン) ……(7) である。
By the way, in the conventionally used index scale type photoelectric rotary encoder, the wave number n of the output signal from the light receiving element, the total number N of the main scale, and the rotation angle θ correspond to equation (4). The relationship is n=Nθ/2π...(5), so the rotation angle Δθ per wave number is Δθ=2π/N (radians)...(6). On the other hand, in this embodiment, from equation (4), Δθ=π/2mN (radian) (7).

従つて本実施例によれば同じ分割数のスケール
を用いても従来例に比べて4m倍の精度で回転角
度の検出が出来ることになる。
Therefore, according to this embodiment, even if a scale with the same number of divisions is used, the rotation angle can be detected with an accuracy 4 m times higher than in the conventional example.

また、従来の光電式ロータリーエンコーダーに
おいては、透光部と遮光部の間隔は、光の回折の
影響を考慮すると、10μm程度が限度である。
Further, in a conventional photoelectric rotary encoder, the distance between the light-transmitting part and the light-blocking part is limited to about 10 μm, considering the influence of light diffraction.

いま、回転角検出精度として、たとえば30秒を
得るためには、従来例では、メインスケールの分
割数として、(6)式から、N=360×60×60/30=
43200だけ必要である。そこで、メインスケール
最外周での透光部、遮光部の間隔を10μmとすれ
ば、メインスケールの直径は、0.01mm×43200/
π=137.5mm必要になる。しかるに、本実施例に
よれば、従来例と同じ回転角の検出精度を得るた
めには、放射格子の分割数は1/4mでよい。±
1次の回折光を用いたm=1の場合、30秒の回転
角度検出精度を得るための放射格子5の格子の分
割数は、43200/4=10800でよい。そして、本実
施例においてレーザーの回折光を用いれば透光部
と反射部の間隔は狭くてよいので、たとえば、こ
れを4μmとすると、放射格子の直径は、0.004mm
×10800/π=13.75mmでよいことになる。すなわ
と、本実施例によれば、従来のインデツクススケ
ール方式の光電式ロータリーエンコーダーと同等
の回転角検出精度を得る形状としては、1/10以下
の大きさでよい。従つて、被検回転物体への負荷
も、従来例とくらべて、はるかに小さくなり、正
確な測定が行えることになる。
Now, in order to obtain a rotation angle detection accuracy of, for example, 30 seconds, in the conventional example, the number of divisions of the main scale is calculated from equation (6), N = 360 × 60 × 60 / 30 =
Only 43200 is needed. Therefore, if the interval between the light-transmitting part and the light-blocking part at the outermost circumference of the main scale is 10 μm, the diameter of the main scale is 0.01 mm x 43200/
π=137.5mm is required. However, according to this embodiment, in order to obtain the same rotation angle detection accuracy as in the conventional example, the number of divisions of the radiation grating may be 1/4 m. ±
In the case of m=1 using first-order diffracted light, the number of grating divisions of the radiation grating 5 to obtain rotation angle detection accuracy of 30 seconds may be 43200/4=10800. In this example, if laser diffraction light is used, the distance between the transparent part and the reflective part can be narrow, so for example, if this is 4 μm, the diameter of the radiation grating is 0.004 mm.
×10800/π=13.75mm is sufficient. In other words, according to this embodiment, the shape can be 1/10 or less in size to obtain rotational angle detection accuracy equivalent to that of a conventional index scale type photoelectric rotary encoder. Therefore, the load on the rotating object to be tested is much smaller than in the conventional example, and accurate measurements can be performed.

第2図は第1図の一部分の放射格子5上の光束
の照射位置M1,M2と放射格子5の中心と被検回
転物体の回転中心との偏心の説明図である。
FIG. 2 is an explanatory diagram of the irradiation positions M 1 and M 2 of the light beam on the radiation grating 5 of a part of FIG. 1 and the eccentricity between the center of the radiation grating 5 and the rotation center of the rotating object to be detected.

さて、本実施例においては放射格子5上の、回
転中心に関して点対称な2点M1,M2を照射点、
つまり測定点とし、放射格子5の中心と、被検回
転体の回転中心との偏心の影響を軽減している。
すなわち、放射格子5の中心と、回転中心とを完
全に一致させることは困難であり、両者の偏心は
避けられない。たとえば、第2図に示すように、
放射格子5の中心Oと、回転中心O′との間に、
偏心量がaだけあつたとき、回転中心から距離r
の位置にある測定点M1でのドツプラー周波数シ
フトは、偏心がないときにくらべて、r/(r+
a)から、r/(r−a)まで変化する。一方、
このとき位置M1と、回転中心に対して点対称な
位置にある測定点M2での周波数シフトは、位置
M1での変化とは逆に、r/(r−a)からr/
(r+a)まで変化するから、位置M1とM2と同
時に2点を測定点とすることによつて、偏心の影
響を軽減することができ、この結果高精度に回転
速度を検出することができる。
Now, in this embodiment, two points M 1 and M 2 on the radiation grating 5, which are symmetrical with respect to the center of rotation, are the irradiation points.
In other words, the measurement point is used to reduce the influence of eccentricity between the center of the radiation grating 5 and the rotation center of the rotating body to be tested.
That is, it is difficult to make the center of the radiation grating 5 and the center of rotation completely coincide with each other, and eccentricity between the two is unavoidable. For example, as shown in Figure 2,
Between the center O of the radiation grating 5 and the rotation center O',
When the amount of eccentricity is a, the distance r from the center of rotation
The Doppler frequency shift at the measurement point M 1 located at the position is r/(r+
a) to r/(ra-a). on the other hand,
At this time, the frequency shift at position M 1 and measurement point M 2 , which is symmetrical with respect to the center of rotation, is
Contrary to the change in M 1 , from r/(ra-a) to r/
(r+a), so by using two measurement points at the same time as positions M1 and M2 , the influence of eccentricity can be reduced, and as a result, the rotational speed can be detected with high accuracy. can.

第3図は本発明の他の実施例の一部分の概略図
であり第1図の放射格子5に光束が入射する付近
を示している。同図において各要素に付された番
号は第1図で示したものと同じ要素を示す。放射
格子5の位置M1に入射した光束の±m次の透過
回折光をシリンドリカルレンズ32,33,32′,
3′、反射鏡41,42,41′,42′を介して回転軸
6の中心と略点対称の位置M2に再度入射させ第
1図に示した実施例と同様の効果を得ている。
FIG. 3 is a schematic diagram of a portion of another embodiment of the present invention, showing the vicinity where the light beam is incident on the radiation grating 5 of FIG. In the figure, the numbers assigned to each element indicate the same elements as shown in FIG. The ±m-order transmitted diffracted light of the light beam incident on the position M 1 of the radiation grating 5 is transmitted through the cylindrical lenses 3 2 , 3 3 , 3 2 ',
3 3 ', and through the reflecting mirrors 4 1 , 4 2 , 4 1 ', and 4 2 ', the light is again incident on a position M 2 that is approximately symmetrical to the center of the rotation axis 6, and is similar to the embodiment shown in FIG. It's getting an effect.

前述した各実施例では±m次の2つの回折光を
用いた場合を示したが±m次の回折光のかわりに
次数の異つた2つの回折光を用いても良い。又放
射格子上の格子模様を透過部のみ又は反射部のみ
で構成し透過回折光又は反射回折光のみを用いる
ようにしても良い。
In each of the embodiments described above, two diffracted lights of order ±m were used, but two diffracted lights of different orders may be used instead of diffracted lights of order ±m. Alternatively, the lattice pattern on the radiation grating may be composed of only transmitting portions or only reflecting portions, and only transmitted diffracted light or reflected diffracted light may be used.

尚本発明において回転角度の回転方向の検出を
しなく単に回転角度のみの測定を行うようにして
も良い。この場合は第1図に示したビームスプリ
ツター8、偏光板9,9′、1/4波長板7,7′及
び受光素子10′等は不要となる。
In the present invention, only the rotation angle may be measured without detecting the rotation direction of the rotation angle. In this case, the beam splitter 8, polarizing plates 9, 9', quarter wavelength plates 7, 7', light receiving element 10', etc. shown in FIG. 1 are not necessary.

又本発明における光源はレーザーに限らず単一
の波長を放射する光源であれば使用可能である。
Further, the light source in the present invention is not limited to a laser, but any light source that emits a single wavelength can be used.

以上のように本発明によれば被検回転物体の負
荷の小さい、放射格子の中心と回転物体の回転中
心との偏心誤差を軽減した小型でしかも高精度の
ロータリーエンコーダーを達成することができ
る。
As described above, according to the present invention, it is possible to achieve a small, high-precision rotary encoder that has a small load on the rotating object to be tested and reduces the eccentricity error between the center of the radiation grating and the rotation center of the rotating object.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す構成図、第2図
は放射格子の中心と、回転中心との偏心を表わす
説明図、第3図は本発明の別の実施例を示す部分
構成図である。 1はレーザー、2はコリーメーターレンズ、3
〜33,31′〜33′はシリンドリカルレンズ、41
2,41′,42′は反射鏡、5は放射格子、6は被
検回転物体の回転軸、7,7′は1/4波長板、8は
ビームスプリツター、9,9′は偏光板、10,
10′は受光素子である。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the eccentricity between the center of the radiation grating and the center of rotation, and Fig. 3 is a partial block diagram showing another embodiment of the present invention. It is. 1 is a laser, 2 is a collimator lens, 3
1 to 3 3 , 3 1 ′ to 3 3 ′ are cylindrical lenses, 4 1 ,
4 2 , 4 1 ', 4 2 ' are reflecting mirrors, 5 is a radiation grating, 6 is the rotation axis of the rotating object to be tested, 7, 7' are 1/4 wavelength plates, 8 is a beam splitter, 9, 9' is a polarizing plate, 10,
10' is a light receiving element.

Claims (1)

【特許請求の範囲】 1 円板の周囲上に格子模様を複数個等角度に配
置した放射格子と前記放射格子と連結した回転物
体と前記放射格子に光束を入射させる為の第1の
照明手段と前記放射格子に入射した前記光束から
の回折光のうち特定の次数の2つの回折光を前記
第1の照明手段による光束の前記放射格子上の入
射位置に対する前記回転物体の回転中心と略点対
称の位置に各々1/4波長板を介して再度入射させ
る為の第2の照明手段と前記放射格子により再度
回折された特定の次数の2つの回折光を重ね合わ
せた後、前記重ね合わせた光束を2つの光束に分
割する為の光分割手段と前記光分割手段により分
割された2つの光束を各々偏光板を介して受光す
る為の2つの受光手段とを有し、前記2つの受光
手段からの出力信号を利用して前記回転物体の回
転角度を求めたことを特徴とするロータリーエン
コーダー。 2 前記第1及び第2の照明手段は前記放射格子
の格子の放射方向と直交する方向に線状に前記光
束を照射させたことを特徴とする特許請求の範囲
第1項記載のロータリーエンコーダー。
[Scope of Claims] 1. A radiation grating in which a plurality of grid patterns are arranged at equal angles on the periphery of a disk, a rotating object connected to the radiation grating, and a first illumination means for making a luminous flux incident on the radiation grating. and two diffracted lights of specific orders among the diffracted lights from the light flux that have entered the radiation grating, and the first illumination means generate a point approximately equal to the center of rotation of the rotating object with respect to the incident position of the light flux on the radiation grating. After superimposing the two diffracted lights of a specific order diffracted again by the second illumination means and the radiation grating for re-injecting them into symmetrical positions via the quarter-wave plate, the superimposed A light splitting means for splitting a luminous flux into two luminous fluxes, and two light receiving means for respectively receiving the two luminous fluxes split by the light splitting means via a polarizing plate, the two light receiving means A rotary encoder characterized in that the rotation angle of the rotating object is determined using an output signal from the rotary encoder. 2. The rotary encoder according to claim 1, wherein the first and second illumination means irradiate the luminous flux linearly in a direction perpendicular to the radiation direction of the grating of the radiation grating.
JP18617284A 1984-09-05 1984-09-05 Rotary encoder Granted JPS6165115A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18617284A JPS6165115A (en) 1984-09-05 1984-09-05 Rotary encoder
US07/481,684 US4967072A (en) 1984-09-05 1990-02-20 Interferometric rotating condition detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18617284A JPS6165115A (en) 1984-09-05 1984-09-05 Rotary encoder

Publications (2)

Publication Number Publication Date
JPS6165115A JPS6165115A (en) 1986-04-03
JPH0462002B2 true JPH0462002B2 (en) 1992-10-02

Family

ID=16183647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18617284A Granted JPS6165115A (en) 1984-09-05 1984-09-05 Rotary encoder

Country Status (1)

Country Link
JP (1) JPS6165115A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3633574A1 (en) * 1986-10-02 1988-04-14 Heidenhain Gmbh Dr Johannes LIGHT ELECTRIC ANGLE MEASURING DEVICE
JPH02147816A (en) * 1988-11-29 1990-06-06 Tokyo Seimitsu Co Ltd Scale reader
US5146085A (en) * 1989-05-12 1992-09-08 Canon Kabushiki Kaisha Encoder with high resolving power and accuracy
DE4007967A1 (en) * 1990-03-13 1991-09-19 Heidenhain Gmbh Dr Johannes LIGHT ELECTRICAL POSITION MEASURING DEVICE

Also Published As

Publication number Publication date
JPS6165115A (en) 1986-04-03

Similar Documents

Publication Publication Date Title
US4868385A (en) Rotating state detection apparatus using a plurality of light beams
JPH0621801B2 (en) Rotary Encoder
JPH0231111A (en) Rotary encoder
US5017777A (en) Diffracted beam encoder
JPS62200225A (en) Rotary encoder
JPH0462002B2 (en)
JPH0462003B2 (en)
JPH0462004B2 (en)
JPH0781883B2 (en) encoder
JPH045142B2 (en)
JPH07117426B2 (en) Optical encoder
JPS62200224A (en) Rotary encoder
JPS62200226A (en) Rotary encoder
JPH07119623B2 (en) Displacement measuring device
JPH045349B2 (en)
JPS62163920A (en) Rotary encoder
JPH045143B2 (en)
JP3517506B2 (en) Optical displacement measuring device
JPS62163919A (en) Rotary encoder
JPH07119625B2 (en) Displacement detection device
JPH0473732B2 (en)
JPS62200222A (en) Rotary encoder
JPS62163918A (en) Rotary encoder
JPH0466294B2 (en)
JPS62200219A (en) Encoder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term