JPS62199706A - Blast furnace operating method by powder blowing - Google Patents

Blast furnace operating method by powder blowing

Info

Publication number
JPS62199706A
JPS62199706A JP4068786A JP4068786A JPS62199706A JP S62199706 A JPS62199706 A JP S62199706A JP 4068786 A JP4068786 A JP 4068786A JP 4068786 A JP4068786 A JP 4068786A JP S62199706 A JPS62199706 A JP S62199706A
Authority
JP
Japan
Prior art keywords
pulverized coal
raceway
blast furnace
pulverized
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4068786A
Other languages
Japanese (ja)
Other versions
JPH0689382B2 (en
Inventor
Masashi Kitamura
雅司 北村
Takefumi Saito
斉藤 武文
Tsunao Kamijo
上條 綱雄
Haruhisa Iwakiri
岩切 治久
Tsutomu Nakamura
力 中村
Shinya Okamoto
晋也 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61040687A priority Critical patent/JPH0689382B2/en
Publication of JPS62199706A publication Critical patent/JPS62199706A/en
Publication of JPH0689382B2 publication Critical patent/JPH0689382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To prevent the growth of a bird nest around a raceway and to prevent the degraded air permeability in the lower part of a blast furnace by blowing a basic pulverized fluxing agent simultaneously with blowing of pulverized coal into the blast furnace. CONSTITUTION:The basic pulverized fluxing agent such as pulverized dolomite is blown simultaneously with blowing of the pulverized coal into the blast furnace from tuyeres 1 thereof. As a result, cope, ash of pulverized coal and dolomite are assimilated in the raceway 2, by which low-viscosity slag is formed and smoothly dropped. The thickness of the bird nest 3 is thereby decreased and the stable raceway shape is maintained and therefore, the effect of improving the air permeability is expected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は粉体吹込み高炉操業法に係り、特に高炉への微
粉炭吹込み操業法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a powder injection blast furnace operation method, and more particularly to an improvement in a pulverized coal injection operation method into a blast furnace.

(従来の技術及び解決しようとする問題点)高炉内スラ
グの生成は高炉の安定操業にとって重要であり、焼結鉱
から生成した滴下スラグはレースウェイで発生するコー
クス灰分からのスラグと同化して安定な最終スラグへと
変化させる必要がある。
(Prior art and problems to be solved) The generation of slag in the blast furnace is important for the stable operation of the blast furnace, and the dripping slag generated from the sintered ore is assimilated with the slag from the coke ash generated in the raceway. It is necessary to transform it into a stable final slag.

ところで、最近、高炉への粉体吹込み操業技術の1つと
して微粉炭吹込み操業が確立されるに至り、微粉炭の吹
込み量50〜80kg/hrでの安定操業が実施される
ようになった。しかし、微粉炭の吹込み量を上記量より
も多くすると、レースウェイ周辺で鳥の巣と称される現
象が発生、成長して高炉下部でのガス流れを不良にする
場合が往々にして起こるという問題がある。
By the way, recently, pulverized coal injection operation has been established as one of the operation techniques for blowing powder into blast furnaces, and stable operation has been carried out at a pulverized coal injection rate of 50 to 80 kg/hr. became. However, if the amount of pulverized coal injected is greater than the above amount, a phenomenon known as a bird's nest will occur around the raceway and grow, often resulting in poor gas flow in the lower part of the blast furnace. There is a problem.

一方、高炉内反応因子を制御するべく、送風ガスと共に
単独に、酸化鉄等の発熱性粉体を吹き込む方法(特開昭
60−43410号公報)、或いは媒溶剤を吹込む方法
(特開昭60−43412号公報)などが提案されてい
る。
On the other hand, in order to control the reaction factors in the blast furnace, there is a method of blowing exothermic powder such as iron oxide alone together with the blast gas (Japanese Unexamined Patent Publication No. 60-43410), or a method of blowing a solvent (Japanese Patent Laid-Open No. 60-43410). 60-43412) and the like have been proposed.

しかし乍ら、上記方法はデツトマンの偏り防止やスラグ
性状の改善等の炉況安定化を図る手段にすぎず、微粉炭
吹込みに伴う高炉下部通気の悪化を防止することは全く
考慮されていない。
However, the above method is only a means of stabilizing the furnace condition by preventing unevenness of the dettman and improving slag properties, and does not take into account at all how to prevent the deterioration of ventilation in the lower part of the blast furnace due to the injection of pulverized coal. .

本発明は上記従来技術の欠点を解消し、高炉への微粉炭
吹込み操業において、微粉炭吹込み量を増加してもレー
スウェイ周辺での鳥の巣の成長を効果的に阻止し、高炉
下部通気性の悪化の現象を未然に防止でき、安定操業を
可能とする方法を提供することを目的とするものである
The present invention solves the above-mentioned drawbacks of the prior art, and effectively prevents the growth of bird's nests around the raceway even when the amount of pulverized coal is increased during pulverized coal injection into the blast furnace. The object of the present invention is to provide a method that can prevent the phenomenon of deterioration of lower air permeability and enable stable operation.

(問題点を解決するための手段) 上記目的を達成するため、本発明者は、まず微粉炭吹込
み時の鳥の巣の発生、成長の原因解明に努めた。
(Means for Solving the Problems) In order to achieve the above object, the inventor first endeavored to clarify the cause of the occurrence and growth of bird's nests during pulverized coal injection.

高炉に吹き込まれる微粉炭には約10%程度の灰分量が
含まれ、この灰分は5i0250〜60%、AQ20,
20〜30%、その他Fe、O,、CaOなどからなり
、主に酸性成分で構成されている。
The pulverized coal injected into the blast furnace contains about 10% ash, and this ash content is 5i0250~60%, AQ20,
20 to 30%, and other components such as Fe, O, CaO, etc., and is mainly composed of acidic components.

したがって、レースウェイ内の滓化状況は、微粉炭吹込
み量が多くなると、コークス及び微粉炭の灰分からSi
n、−AQ20.主体の酸性成分スラグが増加し、粘性
、融点が上昇し、上部から降下する滴下スラグと同化せ
ず、灰分のレースウェイ内での適正な滓化が遅れること
になり、その結果。
Therefore, as the amount of pulverized coal injected increases, the sludge formation inside the raceway becomes more difficult as the ash of coke and pulverized coal becomes Si.
n, -AQ20. The main acid component of slag increases, its viscosity and melting point rise, and it is not assimilated with the dripping slag falling from the top, resulting in a delay in proper slag formation in the ash raceway.

レースウェイ周辺にコークス粉が厚く蓄積して厚い鳥の
巣が形成され、通気性を阻害する。
A thick build-up of coke powder around the raceway forms a thick bird's nest, impeding ventilation.

第1図はこの状況を模式図的に示したもので、吹込み管
(羽口)1から多量の微粉炭を高炉内に吹込んだ場合、
コークス、微粉炭からの滓化スラグSiO□−AQ、○
、がレースウェイ2内に形成され、その周辺に厚く鳥の
巣3が形成されている。
Figure 1 schematically shows this situation. When a large amount of pulverized coal is injected into the blast furnace from the blowing pipe (tuyere) 1,
Coke, slag slag from pulverized coal SiO□-AQ, ○
, is formed within the raceway 2, and a thick bird's nest 3 is formed around it.

そこで、本発明者は、その対策として、微粉炭吹込み時
にレースウェイ内で微粉炭の灰分の滓化を促進するには
、コークス、微粉炭からの酸性成分スラグ5in2−A
QzO3の粘性、融点を下げる必要があることに想到し
、CaO,MgOの塩基性成分からなるドロマイトを微
粉状で吹込むことを試みた。その結果、コークス、微粉
炭の灰分とドロマイトがレースウェイ内で同化して低粘
性のスラグが形成され、この滓化した溶融スラブはレー
スウェイ周辺で上部から降下する滴下スラグとスムーズ
に同化し、レースウェイの下方へ滴下していくことが判
明した。
Therefore, as a countermeasure to this problem, the present inventor proposed that in order to promote the ash content of pulverized coal to become dregs in the raceway during injection of pulverized coal, 5in2-A of acidic component slag from coke and pulverized coal is
Recognizing the need to lower the viscosity and melting point of QzO3, we attempted to inject dolomite, which consists of basic components such as CaO and MgO, in the form of fine powder. As a result, coke, pulverized coal ash, and dolomite are assimilated within the raceway to form a low-viscosity slag, and this sludge-formed molten slab is smoothly assimilated with the dripping slag that descends from above around the raceway. It turned out that it was dripping down the raceway.

第2図はこの状況を示すもので、吹込み管1から微粉炭
と微粉ドロマイトを同時に吹込んだ場合。
Figure 2 shows this situation, where pulverized coal and pulverized dolomite are simultaneously blown into the blowing pipe 1.

レースウェイ2内で低粘性スラグCaO−3io2A 
Q z○、−MgOが形成され、スムーズに滴下し、鳥
の巣の厚みが薄くなる。
Low viscosity slag CaO-3io2A in raceway 2
Q z○, -MgO is formed and drips smoothly, reducing the thickness of the bird's nest.

本発明者は、上記知見に基づき、更に詳細に実験を重ね
た結果、ニーに本発明をなしたものである。
Based on the above knowledge, the present inventor has conducted more detailed experiments and has finally accomplished the present invention.

すなわち、本発明は、高炉羽口から送風ガスと共に微粉
炭を吹込むに際し、該微粉炭の吹込みと同時に塩基性微
粉媒溶剤を吹込むことを特徴とする粉体吹込み高炉操業
法を要旨とするものである。
That is, the present invention provides a powder injection blast furnace operating method characterized in that when pulverized coal is injected together with blast gas from the blast furnace tuyere, a basic pulverized powder solvent is injected at the same time as the pulverized coal is injected. That is.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

本発明法に用いる塩基性微粉媒溶剤としては、例えば、
前述のドロマイトのほか、蛇紋岩、カンラン岩1石灰石
、転炉滓などを挙げることができる。媒溶剤は微粉状で
、200メツシユ以下の粒度であるのが好ましい。塊状
では作用が遅く、望ましくない。また、媒溶剤の吹込み
量は、コークス、微粉炭由来のスラグを考慮して、塩基
度が0.5〜1.3の範囲、好ましくは0.5〜1.1
となる量とする。なお、粘性の低下は塩基度が0゜5以
下では効果が期待できず、塩基度を1.3以上にしても
殆どより以上の粘性低下が生じない。
Examples of the basic fine powder solvent used in the method of the present invention include:
In addition to the aforementioned dolomite, examples include serpentinite, peridotite 1 limestone, and converter slag. Preferably, the solvent is in the form of a fine powder, with a particle size of 200 mesh or less. In lumpy form, the action is slow and undesirable. In addition, the amount of solvent blown should be within the range of basicity 0.5 to 1.3, preferably 0.5 to 1.1, taking coke and pulverized coal-derived slag into consideration.
Let the amount be . Note that no effect can be expected in reducing the viscosity if the basicity is less than 0.5, and even if the basicity is increased to 1.3 or more, no further reduction in viscosity occurs.

上記塩基性微粉媒溶剤の吹込みfrfA様としては、予
め微粉炭と媒溶剤を混合微粉にして使用したり。
For the above-mentioned method of blowing the basic fine powder solvent frfA, pulverized coal and the solvent may be mixed in advance and used as a fine powder.

或いは別々の吹込み口から同時に高炉内に吹込むことも
可能である。
Alternatively, it is also possible to simultaneously blow into the blast furnace from separate blowing ports.

なお1本発明においては、微粉炭の吹込み条件は特に制
限されないことは云うまでもない。
Note that in the present invention, it goes without saying that the conditions for blowing pulverized coal are not particularly limited.

(実施例) 第3図に示す竪型コークス燃焼炉(700+nmφX 
1600+amH)を用いて微粉炭とドロマイトの同時
吹込み実験を行った。なお、図中、4はコークスを収容
した炉本体であり、炉壁に設けた吹込み管(羽口)1に
は、プロパンガスを燃料としたホットストーブ5から燃
焼ガスを吹込むと共にエアをキャリアガスとしてフィー
ダ6から供給した微粉炭を吹込む構成を有し、炉壁には
ガスアナライザ7、炉内圧力測定器8、ダストコレクタ
ー9が設けられている。
(Example) Vertical coke combustion furnace (700+nmφX
A simultaneous injection experiment of pulverized coal and dolomite was conducted using 1600+amH). In the figure, numeral 4 is a furnace body containing coke, and combustion gas is blown into the blowing pipe (tuyere) 1 provided on the furnace wall from a hot stove 5 using propane gas as fuel, and air is also blown into it. It has a configuration in which pulverized coal supplied from a feeder 6 is injected as a carrier gas, and a gas analyzer 7, an in-furnace pressure measuring device 8, and a dust collector 9 are provided on the furnace wall.

実験としては、上記燃焼炉に10〜15mmの小塊コー
クスを充填して、以下に示す基準送風条件でレースウェ
イ2を形成させ、燃焼実験を実施した。
As an experiment, a combustion experiment was carried out by filling the combustion furnace with small coke of 10 to 15 mm and forming a raceway 2 under the standard blowing conditions shown below.

送風量  : 160 Nrn’/hr送風温度 : 
1100℃ 羽口前風速: 210m/s 羽口径  : 35mmφ 燃焼時間 : 120m1n 微粉炭吹込み量 :  13kg/hrドロマイト  
tl   :  5kg/hrなお、ドロマイト吹込み
量は、コークス燃焼量と微粉炭吹込み量とから塩基度1
.1になるように最大量を決定した。これは、第4図に
示すように、形成されるスラグの粘性が塩基度1.1で
低くなり、これ以下では急激に高くなり、逆にこれ以上
では殆ど変化がないためである。
Airflow amount: 160 Nrn'/hr Airflow temperature:
1100℃ Wind speed in front of tuyere: 210m/s Tuyere diameter: 35mmφ Combustion time: 120mln Pulverized coal injection amount: 13kg/hr Dolomite
tl: 5kg/hrThe dolomite injection amount is based on the coke combustion amount and the pulverized coal injection amount when the basicity is 1.
.. The maximum amount was determined to be 1. This is because, as shown in FIG. 4, the viscosity of the slag that is formed becomes low when the basicity is 1.1, increases rapidly below this, and on the contrary, there is almost no change above this.

燃焼実験中はレースウェイ直上300mmの高さの所で
奥行方向にガス流れに対する炉内圧損を測定した。また
、燃焼実験の終了後は炉内を解体してレースウェイ近傍
の鳥の巣を取出し、内部の滓化スラグの分析を実施した
ゆ 第5図は、微粉炭13kg/hrの吹込み時と、この微
粉炭(13kg/hr)にドロマイト(5kg / h
r)を同時に吹込んだ時のレースウェイ直上の炉内圧損
の測定結果である。これにより、ドロマイトの同時吹込
みによって明らかに圧損が低下して、ガス流れがスムー
ズになる現象が認められた。この理由は、微粉炭の灰分
の滓化時にドロマイトが同化してスラグの融点の低下、
粘性の低下が起こり、鳥の巣の形成が軽減され、スラグ
がレースウェイの下部へと滴下し、この結果、レースウ
ェイ周辺の通気性が改善されたためである。
During the combustion experiment, the in-furnace pressure drop with respect to the gas flow in the depth direction was measured at a height of 300 mm directly above the raceway. In addition, after the combustion experiment was completed, the inside of the furnace was dismantled, the bird's nest near the raceway was taken out, and the slag inside was analyzed. , Dolomite (5kg/h) is added to this pulverized coal (13kg/hr).
This is the measurement result of the pressure drop in the furnace just above the raceway when the fuel and gas (r) were injected at the same time. As a result, it was observed that the simultaneous injection of dolomite clearly lowered the pressure drop and made the gas flow smoother. The reason for this is that when the ash content of pulverized coal becomes slag, dolomite is assimilated and the melting point of the slag decreases.
This is because a reduction in viscosity occurred, the formation of bird's nests was reduced, and the slag dripped to the bottom of the raceway, resulting in improved air permeability around the raceway.

次に、同じ燃焼炉による別の実験で、コークス灰分の融
点とレースウェイ形状の関係を調べた。
Next, in another experiment using the same combustion furnace, the relationship between the melting point of coke ash and raceway shape was investigated.

その結果を第6図に示す。同図より、融点が高いとレー
スウェイ深さは浅く、縦長の形状を呈することがわかる
。これは、レースウェイ臭に厚い鳥の巣が形成され、ガ
ス流れが炉壁側へ偏流することを示している。これに対
し、ドロマイトのような塩基性成分を吹込んで、コーク
スや微粉炭由来の酸性成分を同化させ、融点を下げるこ
とにより、安定なレースウェイ形状を維持でき1通気性
の改善効果が期待できることが確認された。
The results are shown in FIG. From the figure, it can be seen that when the melting point is high, the raceway depth is shallow and the raceway takes on a vertically elongated shape. This indicates that a thick bird's nest is formed in the raceway odor, and the gas flow is biased toward the furnace wall. On the other hand, by injecting basic components such as dolomite to assimilate acidic components derived from coke and pulverized coal and lowering the melting point, a stable raceway shape can be maintained and an improvement in air permeability can be expected. was confirmed.

(発明の効果) 以上詳述したように1本発明によれば、高炉への微粉炭
吹込み操業において、微粉炭吹込みと同時にドロマイト
等の塩基性媒溶剤を、しかも微粉状で吹込みを行うもの
であるから、コークス、微粉炭がレースウェイで燃焼し
て生成するスラグの粘性を制御、改善することができ、
レースウェイでの鳥の巣の形成が著減し、したがって、
スラグがレースウェイの下部へとスムーズに滴下してレ
ースウェイ周辺の通気性を改善することができる6特に
微粉炭吹込み量を増加しても、上記効果により安定した
操業が可能とする。
(Effects of the Invention) As detailed above, according to the present invention, in the operation of injecting pulverized coal into a blast furnace, a basic solvent such as dolomite can be injected in the form of fine powder at the same time as the pulverized coal is being injected. Because it is a process that can control and improve the viscosity of the slag produced when coke and pulverized coal burn in the raceway,
The formation of bird nests on the raceway has been significantly reduced and therefore
The slag drips smoothly to the lower part of the raceway, improving air permeability around the raceway.6 In particular, even if the amount of pulverized coal injected is increased, stable operation is possible due to the above effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法による微粉炭単味吹込み時のレースウェ
イ状況を示す図、 第2図は本発明法による微粉炭、塩基性微粉媒溶剤同時
吹込み時のレースウェイ状況を示す図、第3図は本発明
の一実施例において使用した竪型コークス燃焼炉を示す
図、 第4図はスラブの塩基度と粘性の関係を示す図。 第5図は上記燃焼炉実験による微粉炭単味吹込み時とド
ロマイト添加吹込み時の炉内圧の変化を示す図。 第6図はコークス灰分の融点とレースウェイ形状の関係
を示す図である。 1・・・吹込み管(羽口)  2・・・レースウェイ。 3・・・鳥の巣、     4・・・燃焼炉。 5・・・ホットストーブ、 6・・・微粉炭フィーダ。 7・・・ガスアナライザー、8・・・炉内圧力測定器。 9・・・ダストコレクター。 特許出願人   株式会社神戸製鋼所 代理人弁理士  中  村   尚 第1図   第2図 第3図 第4図   第6図
Figure 1 is a diagram showing the raceway situation when pulverized coal is injected solely by the conventional method. Figure 2 is a diagram showing the raceway situation when pulverized coal and basic fine powder solvent are simultaneously injected by the method of the present invention. FIG. 3 is a diagram showing a vertical coke combustion furnace used in an embodiment of the present invention, and FIG. 4 is a diagram showing the relationship between slab basicity and viscosity. FIG. 5 is a diagram showing changes in furnace pressure during the above-mentioned combustion furnace experiment when pulverized coal alone is injected and when dolomite is added. FIG. 6 is a diagram showing the relationship between the melting point of coke ash and raceway shape. 1... Blowing pipe (tuyere) 2... Raceway. 3...bird's nest, 4...combustion furnace. 5...Hot stove, 6...Pulverized coal feeder. 7... Gas analyzer, 8... Furnace pressure measuring device. 9...Dust collector. Patent applicant Takashi Nakamura, Patent attorney representing Kobe Steel, Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 高炉羽口から送風ガスと共に微粉炭を吹込むに際し、該
微粉炭の吹込みと同時に塩基性微粉媒溶剤を吹込むこと
を特徴とする粉体吹込み高炉操業法。
A powder injection blast furnace operating method characterized in that when pulverized coal is injected together with blast gas from a blast furnace tuyere, a basic pulverized powder solvent is injected at the same time as the pulverized coal is injected.
JP61040687A 1986-02-26 1986-02-26 Powder injection blast furnace operation method Expired - Lifetime JPH0689382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61040687A JPH0689382B2 (en) 1986-02-26 1986-02-26 Powder injection blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040687A JPH0689382B2 (en) 1986-02-26 1986-02-26 Powder injection blast furnace operation method

Publications (2)

Publication Number Publication Date
JPS62199706A true JPS62199706A (en) 1987-09-03
JPH0689382B2 JPH0689382B2 (en) 1994-11-09

Family

ID=12587459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040687A Expired - Lifetime JPH0689382B2 (en) 1986-02-26 1986-02-26 Powder injection blast furnace operation method

Country Status (1)

Country Link
JP (1) JPH0689382B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015277A1 (en) * 1994-11-09 1996-05-23 Kawasaki Steel Corporation Method of operating blast furnace
KR100442638B1 (en) * 2000-10-09 2004-08-02 주식회사 포스코 Fabrication method of fines cleaning substance and Fines cleaning method in blast furnace
JP2005307303A (en) * 2004-04-23 2005-11-04 Jfe Steel Kk Method for operating blast furnace
JP2014162938A (en) * 2013-02-22 2014-09-08 Kobe Steel Ltd Blast furnace operation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4181059B2 (en) * 2004-01-21 2008-11-12 新日本製鐵株式会社 Method for evaluating the transportability of pulverized coal
JP5862515B2 (en) * 2012-08-25 2016-02-16 新日鐵住金株式会社 Blast furnace operation method using oil palm core shell coal.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171507A (en) * 1982-03-31 1983-10-08 Nippon Steel Corp Method for operating blast furnace by blowing pulverized coal
JPS597327A (en) * 1982-06-22 1984-01-14 ツエ−・ライヘルト・オプテイツシエ・ウエルケ・ア−ゲ− Sign image controller for microscope
JPS6043412A (en) * 1983-08-15 1985-03-08 Kawasaki Steel Corp Method for operating blast furnace by blowing powder
JPS6123708A (en) * 1984-07-13 1986-02-01 Kawasaki Steel Corp Method for operating powder blow to blast furnace and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171507A (en) * 1982-03-31 1983-10-08 Nippon Steel Corp Method for operating blast furnace by blowing pulverized coal
JPS597327A (en) * 1982-06-22 1984-01-14 ツエ−・ライヘルト・オプテイツシエ・ウエルケ・ア−ゲ− Sign image controller for microscope
JPS6043412A (en) * 1983-08-15 1985-03-08 Kawasaki Steel Corp Method for operating blast furnace by blowing powder
JPS6123708A (en) * 1984-07-13 1986-02-01 Kawasaki Steel Corp Method for operating powder blow to blast furnace and device therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015277A1 (en) * 1994-11-09 1996-05-23 Kawasaki Steel Corporation Method of operating blast furnace
US6090181A (en) * 1994-11-09 2000-07-18 Kawasaki Steel Corporation Blast furnace operating method
KR100442638B1 (en) * 2000-10-09 2004-08-02 주식회사 포스코 Fabrication method of fines cleaning substance and Fines cleaning method in blast furnace
JP2005307303A (en) * 2004-04-23 2005-11-04 Jfe Steel Kk Method for operating blast furnace
JP2014162938A (en) * 2013-02-22 2014-09-08 Kobe Steel Ltd Blast furnace operation method

Also Published As

Publication number Publication date
JPH0689382B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
KR101634054B1 (en) Method for preparing blast furnace blow-in coal
JPS62199706A (en) Blast furnace operating method by powder blowing
JPS62202035A (en) Melting reduction method for chromium ore
JPH0913107A (en) Operation of blast furnace
JP3943831B2 (en) Reactor core heating method in pulverized coal injection operation.
JP5012138B2 (en) Blast furnace operation method
JP4768921B2 (en) High pulverized coal injection low Si blast furnace operation method
JP3533062B2 (en) Powder blowing blast furnace operation method
JPS61261408A (en) Operating method for blast furnace
JP4307696B2 (en) Reactor core heating method in pulverized coal injection operation.
JP3598084B2 (en) Furnace core heating method by injecting exothermic metal powder
KR100356156B1 (en) A method for promoting combustibility in balst furnace
KR101485530B1 (en) Method of refinig molten steel
JPH09157712A (en) Operation for simultaneously blowing pulverized coal and powdery iron source in blast furnace
JPH0240723B2 (en) FUNJOKOSEKIKARANOYOJUKINZOKUSEIZOHOHO
JP3617464B2 (en) Blast furnace operation method
JP2002060814A (en) Low-silicon blast furnace operation method in the case of blowing pulverized coal in high ratio
JPH03202408A (en) Method for blowing flux into blast furnace
JP4197396B2 (en) Blowing process management method
RU2395585C1 (en) Procedure for blast furnace melting
JP2004225140A (en) Method for keeping activity at furnace core part in pulverized fine coal blowing operation in blast furnace
JPH05311217A (en) Method for operating blast furnace
JPH06172830A (en) Operation of blast furnace
JPH0517810A (en) Refining method for high-mn steel
JPS63206418A (en) Smelting and reducing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term