JPH0517810A - Refining method for high-mn steel - Google Patents
Refining method for high-mn steelInfo
- Publication number
- JPH0517810A JPH0517810A JP17284491A JP17284491A JPH0517810A JP H0517810 A JPH0517810 A JP H0517810A JP 17284491 A JP17284491 A JP 17284491A JP 17284491 A JP17284491 A JP 17284491A JP H0517810 A JPH0517810 A JP H0517810A
- Authority
- JP
- Japan
- Prior art keywords
- refining
- sintered ore
- cao
- slag
- period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、溶銑予備処理にて成品
規格〔P〕以下に脱燐処理した溶銑に、特定の気孔率と
CaOを有するMn焼結鉱を用いて、高Mn歩留を得る
ための上底吹転炉精錬方法である。BACKGROUND OF THE INVENTION The present invention uses a Mn sinter having a specific porosity and CaO for hot metal that has been dephosphorized to a product grade [P] or lower in hot metal pretreatment and has a high Mn yield. It is a method of refining upper and lower blown converter to obtain
【0002】[0002]
【従来の技術】近年、溶銑予備処理技術の発展に伴い、
転炉における精錬はレススラグ精錬が主流となってい
る。この中で、溶鋼へのMn添加方法は、従来行われて
いた精錬後に高価なFe−Mn系合金を使う方法に代わ
って、安価なMn鉱石を当該精錬中に投入して溶融還元
を行う方法が一般的となってきた。この転炉におけるM
n鉱石を用いた吹止Mn向上対策としては、例えば特開
昭60−9813号公報に記載のように、Mn鉱石を精
錬初期に投入し、レススラグ下で精錬する方法におい
て、精錬末期に粉コークスを添加して溶鋼中のMnの再
酸化を抑制し、スラグ中の(MnO)の還元促進を主体
とするものである。しかし、Mn鉱石は融点が高く、精
錬初期から中期にかけての低温領域では溶解が困難なた
め、限られた精錬時間内では完全に溶解せず、精錬終了
時に未溶解の状態でスラグ中に残留し、Mn歩留が悪
く、図1中点線に示すように平衡値(理論値)との比較
から見てもかなりの解離が見られた。このMn歩留向上
対策の一例として、特開昭62−33709号公報に記
載のような、Mn鉱石を事前に焼結して転炉に投入する
方法が提案されている。2. Description of the Related Art In recent years, with the development of hot metal pretreatment technology,
Less slag refining is the mainstream of refining in converters. Among them, the method of adding Mn to molten steel is a method of performing a smelting reduction by feeding an inexpensive Mn ore into the refining instead of the method of using an expensive Fe-Mn-based alloy after the refining which is conventionally performed. Has become commonplace. M in this converter
As a measure for improving blown Mn using n ore, for example, as described in JP-A-60-9813, a method of introducing Mn ore at the initial stage of refining and refining under less slag, powder coke at the final stage of refining Is added to suppress the reoxidation of Mn in the molten steel and mainly promote the reduction of (MnO) in the slag. However, since Mn ore has a high melting point and is difficult to dissolve in the low temperature region from the early stage to the middle stage of refining, it does not completely dissolve within the limited refining time, and remains in the slag in an undissolved state at the end of refining. , Mn yield was poor, and considerable dissociation was observed in comparison with the equilibrium value (theoretical value) as shown by the dotted line in FIG. As one example of measures for improving the Mn yield, a method of sintering Mn ore in advance and charging it in a converter has been proposed, as described in JP-A-62-33709.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記特開昭6
2−33709号公報に記載のように単にMn焼結鉱を
用いただけでは、充分な溶解促進効果が得られず、Mn
歩留の大幅な向上は望めなかった。また、スラグ中のM
n分を有効に活用するためMnOを含有した前回精錬ス
ラグを残留させる方法もあるが充分でない。However, the above-mentioned Japanese Unexamined Patent Application Publication No.
As described in JP-A-2-33709, if only Mn sintered ore is used, a sufficient dissolution promoting effect cannot be obtained, and Mn cannot be obtained.
We could not expect a significant improvement in yield. Also, M in the slag
There is also a method of leaving the previous refining slag containing MnO in order to effectively utilize n minutes, but it is not sufficient.
【0004】そこで本発明は精錬初期から中期にかけて
のMn焼結鉱の溶解を促進し、かつスラグ量を最小限に
抑えて精錬することにより、Mn歩留を大幅に向上させ
ることを課題としたものである。Therefore, the present invention has an object to significantly improve the Mn yield by promoting the dissolution of Mn sintered ore from the initial stage to the middle stage of refining and refining with the amount of slag minimized. It is a thing.
【0005】[0005]
【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであり、その要旨とするところ
は、MnO含有の前回精錬スラグを残留させた上底吹転
炉に、成品規格〔P〕以下に脱燐処理した溶銑を装入し
て、当該精錬初期にMn焼結鉱を添加する精錬方法にお
いて、前記Mn焼結鉱の気孔率=30〜50%、含有C
aO=6〜30wt%とすると共に、精錬初期から中期
にかけて下記式で求めた値W以下のCaO量を含む副材
のみを投入し、ランス送酸によるL/L0 を精錬初期か
ら中期は0.20〜0.32、精錬末期は0.37〜
0.50として精錬し、〔C〕≧0.10%で吹止める
ことを特徴とする高Mn鋼の精錬方法にある。The present invention has been made in order to solve the above-mentioned problems, and the gist of the present invention is to provide an upper-bottom blowing converter in which the previous refining slag containing MnO was left as a product. In a refining method in which hot metal dephosphorized to the standard [P] or less is charged and Mn sintered ore is added in the initial stage of the refining, the Mn sintered ore has a porosity of 30 to 50% and a content C.
While making aO = 6 to 30 wt%, from the initial stage to the middle stage of refining, only the auxiliary material containing the CaO amount equal to or less than the value W calculated by the following formula was added, and L / L 0 by lance feeding was 0 from the initial stage to the middle stage of refining. 20 ~ 0.32, the final stage of refining is 0.37 ~
A refining method for high-Mn steel is characterized by refining to 0.50 and stopping at [C] ≧ 0.10%.
【0006】 W=(WM ×(%SiO2 )/100+1.0)×5−WM ×(%CaO)/100 (1) 但し、W:Mn焼結鉱以外からの必要投入CaO量(k
g/T) WM :Mn焼結鉱投入量(kg/T) (%SiO2):Mn焼結鉱中のSiO2 含有量(%) (%CaO):Mn焼結鉱中のCaO含有量(%) L:鋼浴へこみ深さ、L0 :鋼浴深さW = (W M × (% SiO 2 ) /100+1.0) × 5-W M × (% CaO) / 100 (1) However, W: the required CaO amount input from other than the Mn sintered ore ( k
g / T) W M : Mn sinter input (kg / T) (% SiO 2 ): SiO 2 content in Mn sinter (%) (% CaO): CaO content in Mn sinter Amount (%) L: Depth of steel bath depression, L 0 : Depth of steel bath
【0007】[0007]
【作用】Mn歩留向上を図るためには、まず上述のよう
に精錬初期の段階からMn焼結鉱を溶解させることが重
要であり、このため本発明者等は種々実験検討の結果、
Mn焼結鉱の気孔率を30〜50%、含有CaOを6〜
30wt%として精錬初期に投入し、その投入直後から
中期(溶鋼〔C〕=2%)にランスでの精錬パターンを
ソフトブローで精錬することにより、図1の実線に示す
ように平衡値に大幅に近づくことが判明した。その理由
を以下に説明する。In order to improve the Mn yield, it is important to dissolve the Mn sintered ore from the initial stage of refining as described above.
The porosity of the Mn sintered ore is 30 to 50%, the content of CaO is 6 to
It was added as 30 wt% in the initial stage of refining, and the refining pattern in the lance was refined by soft blow in the middle period (molten steel [C] = 2%) immediately after the introduction, and the equilibrium value was significantly increased as shown by the solid line in FIG. Turned out to approach. The reason will be described below.
【0008】第一にMn焼結鉱の気孔率を30%以上に
すると、図2に示すようにMn歩留が顕著に向上する。
これは、Mn焼結鉱とスラグとの接触界面積が広がり溶
解が促進されることに起因すると思われる。しかし、気
孔率が50%を超えると逆に強度が低下し、輸送時の粉
化が生じ、転炉装入時に排ガス回収設備に吸引されるた
め、実機使用は不可能となる。ここで言う気孔率とは真
空パック法での測定値である。First, when the porosity of the Mn sintered ore is set to 30% or more, the Mn yield is remarkably improved as shown in FIG.
It is considered that this is because the contact interface area between the Mn sintered ore and the slag is expanded and the melting is promoted. However, when the porosity exceeds 50%, the strength is decreased, powder is generated during transportation, and the powder is sucked into the exhaust gas recovery equipment when charging the converter, so that it cannot be used in an actual machine. The porosity referred to here is a value measured by the vacuum packing method.
【0009】第二にCaOを添加するとMn焼結鉱の融
点を低下することが可能となるが、その量を6%未満に
すると、融点低下効果が充分でなく、逆に30%を超え
るとMn焼結鉱自体の強度が低下するためである。第三
に精錬初期から中期にかけてランス送酸によるL/L0
(L:鋼浴へこみ深さ、L0 :鋼浴深さ)を0.20〜
0.32のソフトブローとするのは、ランスから噴射さ
れた酸素が主としてスラグと溶鋼の境界部分(この部分
に未溶解のMn焼結鉱が浮遊している)に当たるように
して、スラグの熱裕度を確保し、前記スラグと溶鋼の境
界部分に存在するMn焼結鉱のスラグへの溶解を促進さ
せるためである。Secondly, the addition of CaO makes it possible to lower the melting point of Mn sinter, but if the amount is less than 6%, the melting point lowering effect is not sufficient, and conversely if it exceeds 30%. This is because the strength of the Mn sintered ore itself is reduced. Third, L / L 0 by lance acid transfer from the early stage to the middle stage of refining
(L: depth of indentation of steel bath, L 0 : depth of steel bath) is 0.20
The soft blow of 0.32 is carried out so that the oxygen injected from the lance hits mainly the boundary part between the slag and the molten steel (the unmelted Mn sintered ore floats in this part), and the heat of the slag This is to secure a margin and promote the dissolution of the Mn sintered ore existing at the boundary between the slag and the molten steel into the slag.
【0010】次に、精錬末期の溶鋼中の〔Mn〕の再酸
化抑制がMn歩留向上には重要であり、このため精錬末
期(溶鋼〔C〕≦1%)の精錬パターンをハードブロー
とし、溶鋼〔C〕≧0.10%で吹止めることが必要で
ある。第一に前記精錬末期にかけてランス送酸によるL
/L0 を0.37〜0.50のハードブローとするの
は、前記ランスから噴射された酸素が主として溶鋼に当
たるようにすることにより、精錬末期に起こるスラグ中
の酸化度の急激な増加による溶鋼中の〔Mn〕の再酸化
を抑制するためである。Next, suppression of reoxidation of [Mn] in the molten steel at the final stage of refining is important for improving the Mn yield. Therefore, the refining pattern at the final stage of refining (molten steel [C] ≤1%) is used as a hard blow. , It is necessary to stop with molten steel [C] ≧ 0.10%. Firstly, L by lance acid transfer toward the final stage of refining
The reason why / L 0 is set to 0.37 to 0.50 as a hard blow is that the oxygen injected from the lance hits the molten steel mainly, so that the oxidation degree in the slag at the end of refining increases sharply. This is to suppress reoxidation of [Mn] in the molten steel.
【0011】また吹止〔C〕については、〔C〕<0.
10%で急激にスラグ中の酸化度の指標となるFeOが
上昇し、溶鋼中の〔Mn〕と該スラグ中のFeOの反応
による〔Mn〕の再酸化が発生するためである。更に上
記溶解促進と再酸化抑制に加えて、スラグ量を極限まで
低減させることにより、スラグ中に含有されるMn量の
低減が可能となり、一層のMn歩留向上を図るものであ
る。このためには予め溶銑中の〔P〕を成品規格以下と
し、これに加えて、精錬中に投入するCaO系副材をM
n分配(溶鋼中のMn分に対するスラグ中のMn分の割
合)が最小となるためのスラグの吹止塩基度=4とする
塩基度調整用のみとし、かつ上記(1)式で求めた値W
以下のCaO量を得るに必要な量とするものである。Regarding the blow stop [C], [C] <0.
This is because FeO, which is an index of the degree of oxidation in the slag, rapidly increases at 10% and reoxidation of [Mn] occurs due to the reaction between [Mn] in the molten steel and FeO in the slag. Further, in addition to the promotion of dissolution and the suppression of reoxidation, the amount of Mn contained in the slag can be reduced by reducing the amount of slag to the limit, thereby further improving the Mn yield. For this purpose, the content of [P] in the hot metal is set below the product specification in advance, and in addition to this, the CaO-based auxiliary material to be added during refining is added
n distribution (the ratio of Mn content in slag to Mn content in molten steel) is minimized so that blow-stop basicity of slag is 4 and only for basicity adjustment, and the value obtained by the above formula (1) W
It is the amount necessary to obtain the following CaO amount.
【0012】[0012]
【実施例】表1に実施例1〜3を、表2に比較例1〜3
を示す。実施例1〜3は共に約70%の高Mn歩留が得
られていることがわかる。比較例1は気孔率が27%と
低いMn焼結鉱を用いた場合であり、Mn歩留は65%
に留まっている。EXAMPLES Examples 1 to 3 are shown in Table 1, and Comparative Examples 1 to 3 are shown in Table 2.
Indicates. It can be seen that in Examples 1 to 3, a high Mn yield of about 70% is obtained. Comparative Example 1 is a case where Mn sinter having a low porosity of 27% is used, and the Mn yield is 65%.
Stays in.
【0013】比較例2は精錬パターンを精錬初期から中
期にかけてランス送酸によるL(鋼浴へこみ深さ)/L
0 (鋼浴深さ)を0.375のハードブローとした例で
あり、Mn歩留は65%程度に留まっている。比較例3
は、Mn焼結鉱以外からの必要投入CaO量を前記
(1)式で算出した値(W計算値)を超える量とした例
であり、Mn歩留は65%に留まっている。In Comparative Example 2, the refining pattern was L (depth of steel bath dent) / L due to lance acid transfer from the initial stage to the middle stage of refining.
This is an example of a hard blow of 0 (steel bath depth) of 0.375, and the Mn yield is about 65%. Comparative Example 3
Is an example in which the amount of CaO required from other than the Mn sintered ore is set to an amount exceeding the value calculated by the above formula (1) (W calculated value), and the Mn yield remains at 65%.
【0014】[0014]
【表1】 [Table 1]
【0015】[0015]
【表2】 [Table 2]
【0016】[0016]
【発明の効果】以上説明したように本発明によれば、溶
銑予備処理にて成品規格〔P〕以下に脱燐した溶銑に、
気孔率、CaO含有量を規制し事前に焼結したMn鉱石
を用い、精錬パターンの適正化を図り、Mn焼結鉱以外
の副材投入量をミニマムに制約することにより、Mn歩
留が従来方法と比較して、約5%上昇することができる
と共に転炉使用生石灰量低減のメリットも享受できその
効果は極めて大きい。As described above, according to the present invention, the hot metal dephosphorized to the product specification [P] or less by the hot metal pretreatment is used.
By using Mn ore that has been pre-sintered with regulated porosity and CaO content, the refining pattern is optimized, and the amount of auxiliary materials other than Mn sintered ore is limited to a minimum, resulting in a conventional Mn yield. Compared with the method, it can be increased by about 5%, and the merit of reducing the amount of quick lime used in the converter can be enjoyed, and the effect is extremely large.
【図1】精錬開始から精錬終了までの鋼浴中の〔Mn〕
の挙動を示す図である。[Figure 1] [Mn] in the steel bath from the start of refining to the end of refining
It is a figure which shows the behavior of.
【図2】Mn鉱石の気孔率とMn歩留の関係を示す図で
ある。FIG. 2 is a diagram showing a relationship between porosity of Mn ore and Mn yield.
Claims (1)
た上底吹転炉に、成品規格〔P〕以下に脱燐処理した溶
銑を装入して、当該精錬初期にMn焼結鉱を添加する精
錬方法において、前記Mn焼結鉱の気孔率=30〜50
%、含有CaO=6〜30wt%とすると共に、精錬初
期から中期にかけて下記式で求めた値W以下のCaO量
を含む副材のみを投入し、ランス送酸によるL/L0 を
精錬初期から中期は0.20〜0.32、精錬末期は
0.37〜0.50として精錬し、〔C〕≧0.10%
で吹止めることを特徴とする高Mn鋼の精錬方法。 W=(WM ×(%SiO2 )/100+1.0)×5−WM ×(%CaO)/100 (1) 但し、W:Mn焼結鉱以外からの必要投入CaO量(k
g/T)、 WM :Mn焼結鉱投入量(kg/T) (%SiO2):Mn焼結鉱中のSiO2 含有量(%) (%CaO):Mn焼結鉱中のCaO含有量(%) L:鋼浴へこみ深さ、L0 :鋼浴深さClaims: 1. At the beginning of the refining process, the upper and bottom blowing converter in which the previous refining slag containing MnO is left, is charged with dephosphorized hot metal below the product specification [P]. In the refining method of adding Mn sinter, the porosity of the Mn sinter = 30-50
%, CaO content = 6 to 30 wt%, and from the initial stage of smelting, L / L 0 by lance acid transfer from the initial stage of smelting from the initial stage of smelting Refining with 0.20 to 0.32 in the middle stage and 0.37 to 0.50 in the final stage of refining, [C] ≧ 0.10%
A method for refining high-Mn steel, characterized in that W = (W M × (% SiO 2) /100+1.0) × 5-W M × (% CaO) / 100 (1) where, W: must put the amount of CaO from non Mn sinter (k
g / T), W M : Mn sintered ore input amount (kg / T) (% SiO 2 ): Mn sintered ore SiO 2 content (%) (% CaO): Mn sintered ore CaO Content (%) L: Depth of steel bath dent, L 0 : Depth of steel bath
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17284491A JPH0826383B2 (en) | 1991-07-12 | 1991-07-12 | Refining method for high Mn steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17284491A JPH0826383B2 (en) | 1991-07-12 | 1991-07-12 | Refining method for high Mn steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0517810A true JPH0517810A (en) | 1993-01-26 |
JPH0826383B2 JPH0826383B2 (en) | 1996-03-13 |
Family
ID=15949374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17284491A Expired - Lifetime JPH0826383B2 (en) | 1991-07-12 | 1991-07-12 | Refining method for high Mn steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0826383B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013036055A (en) * | 2011-08-03 | 2013-02-21 | Nippon Steel & Sumitomo Metal Corp | Method of decarburizing molten iron |
CN109055649A (en) * | 2018-09-30 | 2018-12-21 | 武钢集团昆明钢铁股份有限公司 | A kind of high manganese high-silicon high ferrophosphorus water of converter smelting proposes the preparation method of carbon guarantor's manganese |
-
1991
- 1991-07-12 JP JP17284491A patent/JPH0826383B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013036055A (en) * | 2011-08-03 | 2013-02-21 | Nippon Steel & Sumitomo Metal Corp | Method of decarburizing molten iron |
CN109055649A (en) * | 2018-09-30 | 2018-12-21 | 武钢集团昆明钢铁股份有限公司 | A kind of high manganese high-silicon high ferrophosphorus water of converter smelting proposes the preparation method of carbon guarantor's manganese |
CN109055649B (en) * | 2018-09-30 | 2020-02-07 | 武钢集团昆明钢铁股份有限公司 | Preparation method for extracting carbon and preserving manganese by converter smelting high-manganese high-silicon high-phosphorus iron water |
Also Published As
Publication number | Publication date |
---|---|
JPH0826383B2 (en) | 1996-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6984731B2 (en) | How to remove phosphorus from hot metal | |
JP4977870B2 (en) | Steel making method | |
JP5983492B2 (en) | Hot metal pretreatment method | |
JP3607767B2 (en) | Molten steel desulfurization and dehydrogenation method with small refractory melting loss | |
JP4507429B2 (en) | Melting method of low phosphorus cake | |
JP3854482B2 (en) | Hot metal pretreatment method and refining method | |
JPH0517810A (en) | Refining method for high-mn steel | |
JP4695312B2 (en) | Hot metal pretreatment method | |
JP4461495B2 (en) | Dephosphorization method of hot metal | |
JPH0477046B2 (en) | ||
JP3486886B2 (en) | Steelmaking method using two or more converters | |
JPH07179920A (en) | Production of molten steel | |
JP3158912B2 (en) | Stainless steel refining method | |
JP3233304B2 (en) | Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore | |
SU1330168A1 (en) | Method of melting steel in oxygen converter | |
JP7180367B2 (en) | Hot metal dephosphorization method | |
JP2587286B2 (en) | Steelmaking method | |
JP3297997B2 (en) | Hot metal removal method | |
SU1071645A1 (en) | Method for making steel | |
JP4084527B2 (en) | Converter blowing method | |
JPH01312020A (en) | Method for dephosphorizing molten iron by heating | |
SU821501A1 (en) | Method of steel production | |
JP3680385B2 (en) | Demanganese process for hot metal | |
KR20040013225A (en) | Method for Refining Molten Steel Using Converter | |
JP2899993B2 (en) | Converter refining method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960910 |