JP2005307303A - Method for operating blast furnace - Google Patents

Method for operating blast furnace Download PDF

Info

Publication number
JP2005307303A
JP2005307303A JP2004128087A JP2004128087A JP2005307303A JP 2005307303 A JP2005307303 A JP 2005307303A JP 2004128087 A JP2004128087 A JP 2004128087A JP 2004128087 A JP2004128087 A JP 2004128087A JP 2005307303 A JP2005307303 A JP 2005307303A
Authority
JP
Japan
Prior art keywords
pulverized coal
agent
blast furnace
particle size
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004128087A
Other languages
Japanese (ja)
Inventor
Yusuke Kashiwabara
佑介 柏原
Ryota Murai
亮太 村井
Michitaka Sato
道貴 佐藤
Tatsuro Ariyama
達郎 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004128087A priority Critical patent/JP2005307303A/en
Publication of JP2005307303A publication Critical patent/JP2005307303A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace by which the aggravation of gas permeability at the lower part of the furnace generated at blowing time of a large quantity of fine powdery coals can effectively be eliminated. <P>SOLUTION: When the blast furnace is operated by injecting the fine powdery coals from a tuyere 2 in the blast furnace 1, material under state of mixing slag-making agent and the fine powdery coal is injected into the blast furnace 1 from the tuyere 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微粉炭多量吹き込みによる炉下部の通気性悪化を改善する高炉操業方法に関する。   The present invention relates to a blast furnace operating method for improving deterioration of air permeability in the lower part of a furnace due to a large amount of pulverized coal.

高炉への微粉炭吹き込みは、コークス比低減によるコスト削減を目的として多くの高炉で行われており、近年では溶銑トン当たり微粉炭比200kg/thmを超える微粉炭多量吹き込み操業を行う高炉も見られる。   Pulverized coal injection into blast furnaces is carried out in many blast furnaces for the purpose of reducing costs by reducing the coke ratio. In recent years, blast furnaces that perform a large amount of pulverized coal injection exceeding 200 kg / thm of pulverized coal per ton of hot metal are also seen. .

しかしながら微粉炭吹き込み量の増加に伴い、炉下部のコークス粉化が促進され、発生した粉が炉芯部に蓄積し、通気性悪化が顕著となり、安定操業を維持することが困難となる場合もある。さらに微粉炭吹き込み操業において炉下部通気性を悪化させる要因として、レースウェイシェルの成長が指摘される。このレ―スウェイシェルは、レースウェイ内で微粉炭の燃焼によって生じたSiO−Alを主成分とする灰分が、高融点スラグとなってレースウェイ端に固着し、通気不良層を形成することによって生じる。レースウェイシェルによる通気性の悪化は、溶銑トン当たりの微粉炭比が100kg/thm程度まででは問題とならないが、150kg/thm以上の場合に顕著となる。 However, as the amount of pulverized coal is increased, coke pulverization at the bottom of the furnace is promoted, and the generated powder accumulates in the furnace core, resulting in significant deterioration in air permeability, making it difficult to maintain stable operation. is there. Furthermore, the growth of the raceway shell is pointed out as a factor that deteriorates the furnace bottom air permeability in the operation of blowing pulverized coal. In this raceway shell, the ash content mainly composed of SiO 2 —Al 2 O 3 produced by the combustion of pulverized coal in the raceway becomes a high melting point slag and adheres to the end of the raceway, and a poorly vented layer is formed. Caused by forming. The deterioration of the air permeability due to the raceway shell is not a problem when the ratio of the pulverized coal per ton of hot metal is about 100 kg / thm, but becomes remarkable when the ratio is 150 kg / thm or more.

このレースウェイシェルの生成・成長を抑制するためには、羽口からCaO分を供給し、微粉炭の灰分に由来する高融点スラグと同化させることで、図8の状態図に示すようにレースウェイシェルの融点を低下させ、融解・除去することが有効であると考えられる。   In order to suppress the formation and growth of this raceway shell, the CaO content is supplied from the tuyere and assimilated with the high melting point slag derived from the ash content of the pulverized coal, as shown in the state diagram of FIG. It is considered effective to lower the melting point of the way shell to melt and remove it.

従来、羽口からのCaO分の供給方法については、例えば灰分組成を考慮した微粉炭吹き込み、あるいはフラックス吹き込みが提案されている。   Conventionally, as a method for supplying CaO from a tuyere, for example, pulverized coal blowing or flux blowing considering an ash composition has been proposed.

例えば、特許文献1には、溶銑トン当たり100kg/thm以上の微粉炭多量吹き込み操業において、灰分の成分組成として(CaO+MgO)/SiOの平均値が0.3を超え、かつ揮発分の含有量が20%以上である微粉炭を吹き込む技術が開示されている。 For example, in Patent Document 1, in a large quantity of pulverized coal injection operation of 100 kg / thm or more per ton of molten iron, the average value of (CaO + MgO) / SiO 2 exceeds 0.3 as the component composition of ash, and the volatile content Has disclosed a technique of blowing pulverized coal whose content is 20% or more.

特許文献2には、微粉ドロマイト、蛇紋岩、カンラン石、石灰石等を高塩基度微粉媒溶剤として吹き込み、吹き込み量を塩基性媒溶剤と微粉炭中の灰分とを混合したときの塩基度が0.5〜1.3の範囲内とする技術が開示されている。   In Patent Document 2, fine dolomite, serpentine, olivine, limestone, etc. are blown as a high basicity fine powder solvent, and the basicity when the basic medium solvent and the ash content in pulverized coal are mixed is 0. The technique which makes it in the range of 0.5-1.3 is disclosed.

特許文献3には、粒度が1mm以上2mm以下である微粉ドロマイト、蛇紋岩、カンラン石、石灰石等の粉状造洋剤として吹き込むことにより、レースウェイ外部への飛散することなくレ―スウェイ端に到達し、レースウェイ端部に形成されるシェルを効果的に融解・除去する技術が開示されている。   In Patent Document 3, by blowing it as a powdery orienting agent such as fine dolomite, serpentinite, olivine, limestone, etc. with a particle size of 1 mm or more and 2 mm or less, it is possible to reach the end of the raceway without scattering to the outside of the raceway. A technique for reaching and effectively melting and removing the shell formed at the end of the raceway is disclosed.

上記特許文献1では微粉炭を使用しており、また上記特許文献2では媒溶剤は200メッシュ以下の粒度の使用が望ましいとされているが、このような微粉体では、羽口から吹き込まれた粉体のほとんどはガス流れに追随してレースウェイ外部に飛散してしまい、効果的にレースウェイシェルとの同化に利用されない。そこで多量に吹き込むことで効果を得ようとすると、微粉炭の燃焼性が悪化し、さらにコ―クス粉化が促進され、粉の蓄積により通気性悪化につながることが懸念される。   In the above-mentioned Patent Document 1, pulverized coal is used, and in the above-mentioned Patent Document 2, it is desirable to use a medium solvent having a particle size of 200 mesh or less. However, in such a fine powder, it was blown from the tuyere. Most of the powder follows the gas flow and scatters outside the raceway and is not effectively used for assimilation with the raceway shell. Therefore, if it is attempted to obtain an effect by blowing a large amount, there is a concern that the combustibility of pulverized coal deteriorates, coke pulverization is further promoted, and accumulation of powder leads to deterioration of air permeability.

これに対して、特許文献3では、造滓剤として粒度が1mm以上2mm以下の粉体を使用することで、ガス流れに追随して飛散することなく、効果的にレースウェイシェルとの同化に利用されるとしているが、実際には、より有効に造滓剤をレースウェイ端に到達させるためには2mm超の造滓剤が好ましい。しかしながら、特許文献3に示された技術において粒度が2mmを超えると、造滓剤が溶融温度に昇温される前に火炎温度よりはるかに低温のレースウェイシェルに到達してしまい、造滓剤が未溶融のままレースウェイシェルに蓄積して通気性の悪化を招く結果となり、いまだ不十分である。したがって、微粉炭多量吹き込み時に発生する炉下部の通気性悪化を有効に解消することができる技術が望まれている。
特開2002−206106号公報 特公平6−89382号公報 特開2002−302708号公報
On the other hand, in Patent Document 3, by using a powder having a particle size of 1 mm or more and 2 mm or less as a slagging agent, it is effectively assimilated with the raceway shell without following the gas flow and scattering. Although it is said that it is used, in practice, in order to more effectively reach the edge of the raceway with the anti-fake agent, an anti-fouling agent of more than 2 mm is preferable. However, if the particle size exceeds 2 mm in the technique disclosed in Patent Document 3, the slag-forming agent reaches the raceway shell much lower than the flame temperature before the temperature is raised to the melting temperature, and the slag-making agent Is still unsatisfactory because it accumulates in the raceway shell as it is unmelted, resulting in poor air permeability. Therefore, there is a demand for a technique that can effectively eliminate the deterioration of air permeability in the lower part of the furnace that occurs when a large amount of pulverized coal is blown.
JP 2002-206106 A Japanese Patent Publication No. 6-89382 JP 2002-302708 A

本発明はかかる事情に鑑みてなされたものであって、微粉炭多量吹き込み時に発生する炉下部の通気性悪化を有効に解消することができる高炉操業方法を提供することを目的とする。   This invention is made | formed in view of this situation, Comprising: It aims at providing the blast furnace operating method which can eliminate effectively the deterioration of the air permeability of the lower part of a furnace generate | occur | produced at the time of a large amount of pulverized coal blowing.

上記課題を解決するため、本発明は、高炉の羽口から微粉炭を吹き込む高炉操業方法であって、造滓剤と微粉炭とを混合した状態で羽口から高炉内に吹き込むことを特徴とする高炉操業方法を提供する。   In order to solve the above problems, the present invention is a blast furnace operating method in which pulverized coal is blown from the tuyere of the blast furnace, and the blast furnace is blown into the blast furnace from the tuyere in a mixed state. Provide blast furnace operation method.

また、本発明は、上記高炉操業方法において、前記造滓剤と微粉炭とは前記微粉炭の燃焼熱で前記造滓剤が溶融可能なように混合されていることを特徴とする高炉操業方法を提供する。   In the blast furnace operation method according to the present invention, the blast furnace operation method is characterized in that the slagging agent and pulverized coal are mixed so that the slagging agent can be melted by combustion heat of the pulverized coal. I will provide a.

さらに、本発明は、上記いずれかの高炉操業方法において、前記造滓剤の粒度は、造滓剤が前記羽口へ吹き込まれてからレースウェイ端に到達するまでの滞留時間と溶融温度に達する時間が等しくなる粒度以下であることを特徴とする高炉操業方法を提供する。   Furthermore, the present invention provides the blast furnace operating method according to any one of the above, wherein the particle size of the slagging agent reaches a residence time and a melting temperature until the slagging agent is blown into the tuyere and reaches the end of the raceway. Provided is a method for operating a blast furnace, characterized in that the time is equal to or less than the same particle size.

レースウェイ内に滞留し、レースウェイシェルとの同化が生じるという見地からは、吹き込む造滓剤は、ガス流れに追随して飛散することなくレースウェイシェルに到達する粗粒の方が好ましいが、過度に粗粒の造滓剤は、溶融前にレースウェイシェルに到達してしまい、通気性の悪化を招くことから、吹き込む造滓剤の粒度には限界がある。   From the standpoint of staying in the raceway and causing assimilation with the raceway shell, the blowing agent to be blown in is preferably coarse particles that reach the raceway shell without being scattered following the gas flow. An excessively coarse grain-forming agent reaches the raceway shell before melting and causes deterioration of air permeability, so that there is a limit to the particle size of the molding agent to be blown.

上記特許文献3のように微粉炭と造滓剤を個々に吹き込む方法では、図1に波線で示すように、造滓剤の粒度が2mmを超えると造滓剤が溶融温度に昇温される前にレースウェイシェルに到達してしまうため、造滓剤の粒度は2mmが限界である。これに対して、本発明では、造滓剤と微粉炭とを混合した状態で羽口から高炉内に吹き込むので、造滓剤は吹き込まれた直後から微粉炭の燃焼熱により高温雰囲気にさらされる。このため、単独吹き込みの場合に比べて造滓剤が効果的に昇温され、溶融しやすくなるので、より粗粒の造滓剤を利用することができ、造滓剤の飛散によるロスを一層効果的に低減することができる。したがって、微粉炭多量吹き込み時に発生する炉下部の通気性悪化を有効に改善することができる。   In the method of individually blowing pulverized coal and the slagging agent as in Patent Document 3, the slagging agent is heated to the melting temperature when the particle size of the slagging agent exceeds 2 mm as shown by the wavy line in FIG. Since the raceway shell is reached before, the particle size of the slagging agent is limited to 2 mm. On the other hand, in the present invention, since the pouring agent and pulverized coal are mixed and blown into the blast furnace from the tuyere, the pouring agent is exposed to a high temperature atmosphere by the combustion heat of the pulverized coal immediately after being blown. . For this reason, compared to the case of single blowing, the slagging agent is effectively heated and melts easily, so that a coarser slagging agent can be used, and the loss due to scattering of the stalking agent is further increased. It can be effectively reduced. Therefore, it is possible to effectively improve the deterioration of the air permeability in the lower part of the furnace that occurs when a large amount of pulverized coal is blown.

その理由について以下に説明する。
羽ロヘ供給された造滓剤は、高炉内へ吹き込まれる高温ガスに追随して加速する。ここでガスに追随する粒子の速度Uは以下の(1)式で表される。

Figure 2005307303
ただし、
ρ:ガス密度(kg/m)
:抵抗係数(−)
:ガス速度(m/s)
t:時間(s)
ρ:粒子密度(kg/m
:粒子径(m)
:カニンガムの補正係数(―)
上記(1)式を数値計算により解くと、粒子速度と経過時間の関係が得られる。これを積分することで粒子の移動距離と時間の関係が得られる。 The reason will be described below.
The slagging agent supplied to the wing is accelerated following the hot gas blown into the blast furnace. Here, the velocity U p of the particles following the gas is expressed by the following equation (1).
Figure 2005307303
However,
ρ f : gas density (kg / m 3 )
C D : Resistance coefficient (−)
U f : Gas velocity (m / s)
t: Time (s)
ρ p : Particle density (kg / m 3 )
d p : particle diameter (m)
C c : Cunningham correction coefficient (-)
When the above equation (1) is solved by numerical calculation, the relationship between particle velocity and elapsed time is obtained. By integrating this, the relationship between the moving distance of the particles and time can be obtained.

ここで羽ロヘ吹き込まれた造滓剤粒子の移動距離Dは、ランス先端からレースウェイ端までであり、下記(2)式で表される。

Figure 2005307303
ただし、
:羽口内径(m)
L:ランス先端から羽日先までの距離(m)
また、上記(2)式のRFは、以下の(3)式で表される。
Figure 2005307303
ただし、
ρf0:標準状態におけるボッシュガス密度(kg/m
:ボッシュガス量(Nm/s)
ft:羽口先ガス温度(℃)
:大気圧(kg/cm)
g:重力加速度(m/s
S:羽口断面積(m
:大気温度(℃)
P:送風圧力(kg/cm
pt:羽口前コークス粒度(m)
ρpt:羽口前コークス密度(kg/m) Here, the moving distance D of the faux agent particles blown into the blades is from the tip of the lance to the end of the raceway and is expressed by the following equation (2).
Figure 2005307303
However,
D t : inner diameter of tuyere (m)
L: Distance from the tip of the lance to the wing tip (m)
Further, the RF of the above formula (2) is represented by the following formula (3).
Figure 2005307303
However,
ρ f0 : Bosch gas density in standard state (kg / m 3 )
V f : Bosch gas amount (Nm 3 / s)
T ft : tuyere gas temperature (° C)
P 0 : Atmospheric pressure (kg / cm 2 )
g: Gravity acceleration (m / s 2 )
S: tuyere cross-sectional area (m 2 )
T 0 : Atmospheric temperature (° C)
P: Air blowing pressure (kg / cm 2 )
d pt : Coal particle size in front of tuyere (m)
ρ pt : coke density in front of tuyere (kg / m 3 )

これらの計算結果から、図1に示す造洋剤が羽ロヘ吹き込まれてからレースウェイ端に到達するまでの滞留時間と粒度の関係を得ることができる。   From these calculation results, it is possible to obtain the relationship between the residence time and the particle size from when the western additive shown in FIG. 1 is blown to the end of the raceway.

また、微粉炭と同時にランスから吹き込まれた造滓剤は、吹き込まれた直後から微粉炭の燃焼熱による外部からの熱供給によって昇温される。この場合、粒子の伝熱形態は熱伝達であり、昇温速度は以下の(4)式で表される。

Figure 2005307303
ただし、
:粒子比熱(kJ/kg/℃)
V:粒子体積(m
:粒子温度(℃)
A:粒子表面積(m
:ガス温度(℃)
h:熱伝達係数
ここで、ガス温度Tは後述の図2で示され、上記(4)式の熱伝達係数hは以下の(5)式で表される。
Figure 2005307303
ただし、
μ:ガス粘度(kg・s/m)
λ:ガス熱伝導度(W/m/℃) Further, the slagging agent blown from the lance simultaneously with the pulverized coal is heated by an external heat supply by the combustion heat of the pulverized coal immediately after being blown. In this case, the heat transfer mode of the particles is heat transfer, and the rate of temperature rise is expressed by the following equation (4).
Figure 2005307303
However,
c p : Particle specific heat (kJ / kg / ° C.)
V: Particle volume (m 3 )
T p : Particle temperature (° C)
A: Particle surface area (m 2 )
T f : gas temperature (° C.)
h: Heat transfer coefficient Here, the gas temperature T f is shown in FIG. 2 to be described later, and the heat transfer coefficient h in the above equation (4) is expressed by the following equation (5).
Figure 2005307303
However,
μ: Gas viscosity (kg · s / m 3 )
λ f : gas thermal conductivity (W / m / ° C.)

上記(4)式に造滓剤粒子の物性値を代入すると、図1に示すような造滓剤粒子が溶融温度に達するまでの時間と粒度の関係が得られる。吹き込まれた造滓剤がレースウェイ端で溶融するためには、滞留時間内に溶融温度に達する必要があり、典型例を示す図1の例では、最大粒径は3mmとなる。すなわち、造滓剤の粒度は、造滓剤が羽口へ吹き込まれてからレースウェイ端に到達するまでの滞留時間と溶融温度に達する時間が等しくなる粒度以下であれば滞留時間内に溶融する。この滞留時間と溶融温度に達す時間が等しくなる流度が造滓剤の最大粒径であり、様々な条件下において得られる最大粒径と滞留時間との関係から以下の(6)式が得られる。
MAX=0.0135t 0.496 ‥‥(6)
ただし、
MAX=:最大粒径(m)
:滞留時間(s)
本発明を適用することにより、図1の典型例では最大粒径は3mmと従来よりも粗粒の造滓剤を使用することが可能となる。もちろん、レースウェイを滞留時間がより長い構造とすることにより、最大粒径をより大きくすることが可能である。
Substituting the physical property values of the glaze-forming agent particles into the above formula (4), the relationship between the time until the glaze-making agent particles reach the melting temperature and the particle size as shown in FIG. In order for the blown-in molding agent to melt at the end of the raceway, it is necessary to reach the melting temperature within the residence time. In the example of FIG. 1 showing a typical example, the maximum particle size is 3 mm. In other words, if the particle size of the glaze-making agent is equal to or less than the particle size at which the residence time from when the glaze-making agent is blown into the tuyere to reach the end of the raceway and the time to reach the melting temperature are equal to or less, the melt will be melted within the residence time. . The flow rate at which the residence time and the time to reach the melting temperature are equal is the maximum particle size of the slagging agent, and the following equation (6) is obtained from the relationship between the maximum particle size obtained under various conditions and the residence time. It is done.
d MAX = 0.0135t r 0.496 ‥‥ ( 6)
However,
d MAX =: Maximum particle size (m)
tr : Residence time (s)
By applying the present invention, in the typical example shown in FIG. 1, the maximum particle size is 3 mm, and it is possible to use a coarser grain forming agent than the conventional one. Of course, it is possible to increase the maximum particle size by making the raceway have a longer residence time.

一方、溶融性の観点からは、造滓剤の粒度は細かい方が好ましいが、上述したように粉体輸送面から吹き込み粒子の粒径に制限が与えられる。すなわち、その粒径が小さくなるほど輸送性が悪くなる。そこで検討したところ粒径が2mm超えると輸送性にはあまり問題ないことがわかった。したがって、造滓剤の粒径は2mm以上であることが好ましいと考えられる。   On the other hand, from the viewpoint of meltability, a finer particle size is preferable, but as described above, the particle size of the blown particles is limited from the powder transport surface. That is, the smaller the particle size, the worse the transportability. As a result, it was found that when the particle size exceeds 2 mm, there is not much problem in transportability. Therefore, it is considered that the particle size of the slagging agent is preferably 2 mm or more.

以上のことから、本発明では、微粉炭多量吹き込み時に生成されるレースウェイシェルを融解・除去し、炉下部通気性の問題を有効に解消するために、造滓剤と微粉炭とを混合した状態で羽口から高炉内に吹き込むようにして、微粉炭の燃焼熱で造滓剤が溶融可能なようにし、より粗粒の造滓剤を適用可能とした。つまり、図2に示すように、羽口先端に達するまでのガス温度は、従来技術よりも本発明のほうが高くなり、本発明のほうが粗粒の造滓剤を溶融しやすくなる。この際の造滓剤の粒度は、羽口へ吹き込まれてからレースウェイ端に到達するまでの滞留時間と溶融温度に達する時間が等しくなる粒度以下である必要があり、また、輸送性が良好な粒径であることも必要である。このような観点から造滓剤の好ましい粒径は2mm超3mm以下である。   From the above, in the present invention, in order to melt and remove the raceway shell that is generated when a large amount of pulverized coal is blown, the slagging agent and pulverized coal are mixed in order to effectively eliminate the problem of air permeability in the lower part of the furnace. In the state, it was blown into the blast furnace from the tuyere so that the heat of combustion of the pulverized coal could be melted, so that a coarser particle-forming material could be applied. That is, as shown in FIG. 2, the gas temperature until reaching the tip of the tuyere is higher in the present invention than in the prior art, and the present invention facilitates melting of the coarse-grained slagging agent. At this time, the particle size of the slagging agent needs to be equal to or less than the particle size at which the residence time from when blown into the tuyere to reach the end of the raceway and the time to reach the melting temperature are equal, and transportability is good. It is also necessary that the particle size be large. From such a viewpoint, the preferable particle size of the slagging agent is more than 2 mm and 3 mm or less.

本発明によれば、造滓剤と微粉炭とを混合した状態で羽口から高炉内に吹き込むので、造滓剤の粒径が多少大きくても微粉炭の燃焼熱で溶融可能であり、造滓剤を溶融した状態の造滓剤を有効にレースウェイ端に供給することができる。このため、レースウェイシェルの成長抑制、および融解・除去が促進され、炉下部通気性悪化を有効に解消することができ、良好な状態を維持することが可能となる。   According to the present invention, since the mixture of the coal making agent and the pulverized coal is blown into the blast furnace from the tuyere, it can be melted by the combustion heat of the pulverized coal even if the particle size of the coal making agent is somewhat large, It is possible to effectively supply the faux agent in a state where the glaze is melted to the end of the raceway. For this reason, the growth suppression and melting / removal of the raceway shell are promoted, and the deterioration of the furnace bottom air permeability can be effectively eliminated, and a good state can be maintained.

以下、添付図面を参照して、本発明の一実施形態について説明する。図3は本実施形態に係る高炉操業方法を実施するための設備を示す概略構成図である。図において、符号1は高炉であり、高炉1の下部には羽口2が設けられている。羽口2には熱風4を吹き込むためのブローパイプ3が接続されている。ブローパイプ3には吹き込みランス5が接続されており、この吹き込みランス5には、造滓剤吹き込み設備10および微粉炭吹き込み設備20から、造滓剤および微粉炭が供給されるようになっている。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 3 is a schematic configuration diagram showing equipment for carrying out the blast furnace operating method according to the present embodiment. In the figure, reference numeral 1 denotes a blast furnace, and a tuyere 2 is provided at the bottom of the blast furnace 1. A blow pipe 3 for blowing hot air 4 is connected to the tuyere 2. A blow lance 5 is connected to the blow pipe 3, and to this blow lance 5, a fouling agent and pulverized coal are supplied from a fouling agent blowing facility 10 and a pulverized coal blowing facility 20. .

造滓剤吹き込み設備10は、造滓剤を貯留する造滓剤ホッパー11と、その下流側に設けられた加減圧切り替えホッパー12と、さらにその下流側に設けられた吹き込みホッパー13と、吹き込みホッパー13からの造滓剤を気送する気送配管14と、気送配管14に設けられた切り出し量調整フィーダー15と、気送配管14を流れる造滓剤粒を分配する分配器16と、分配器16から上記ランス5に至る気送配管17とを有している。   The antifouling agent blowing facility 10 includes an antimony agent hopper 11 for storing an antimony agent, a pressure-increasing / decreasing pressure switching hopper 12 provided downstream thereof, a blowing hopper 13 provided further downstream thereof, and a blowing hopper. 13, an air feed pipe 14 for air-feeding the fouling agent, a cutout amount adjusting feeder 15 provided in the air feed pipe 14, a distributor 16 for distributing the fouling agent particles flowing through the air feed pipe 14, and a distribution And an air supply pipe 17 extending from the vessel 16 to the lance 5.

一方、微粉炭吹き込み設備20は、微粉炭を貯留する微粉炭ホッパー21と、その下流側に設けられた加減圧切り替えホッパー22と、さらにその下流側に設けられた吹き込みホッパー23と、吹き込みホッパー23からの微粉炭を輸送する気送配管24と、気送配管24に設けられた切り出し量調整フィーダー25と、気送配管24を流れる微粉炭を分配する分配器26と、分配器26から上記気送配管17に至る気送配管27とを有している。すなわち、気送配管27を気送された微粉炭は、気送配管17内を気送されている造滓剤へ、合流点28で合流するようになっている。   On the other hand, the pulverized coal blowing facility 20 includes a pulverized coal hopper 21 for storing pulverized coal, a pressure-increasing / decreasing pressure switching hopper 22 provided on the downstream side thereof, a blowing hopper 23 provided on the further downstream side, and a blowing hopper 23. The air feed pipe 24 for transporting the pulverized coal from the air, the cutout amount adjusting feeder 25 provided in the air feed pipe 24, the distributor 26 for distributing the pulverized coal flowing through the air feed pipe 24, and the distributor 26 It has an air supply pipe 27 that reaches the supply pipe 17. In other words, the pulverized coal that has been fed through the pneumatic piping 27 joins the fretting agent that is fed through the pneumatic piping 17 at the junction 28.

すなわち、このような設備においては、気送配管17内の合流点28で造滓剤と微粉炭とが合流し、これらが混合した状態で吹き込みランス5からブローパイプ3に噴出され、これらは熱風4によって搬送されて羽口2から高炉1内へ吹き込まれる。   That is, in such a facility, the fossilizing agent and the pulverized coal merge at the confluence point 28 in the air feed pipe 17 and are jetted from the blow lance 5 to the blow pipe 3 in a mixed state. 4 is blown from the tuyere 2 into the blast furnace 1.

このように造滓剤と微粉炭とを混合した状態で羽口2から高炉1内に吹き込むので、造滓剤は吹き込まれた直後から微粉炭の燃焼熱により高温雰囲気にさらされる。このため、単独吹き込みの場合に比べて造滓剤が効果的に昇温され、溶融しやすくなるので、2mm超3mm以下といった、より粗粒造滓剤を利用することができ、造滓剤の飛散によるロスを一層効果的に低減することができる。したがって、微粉炭多量吹き込み時に発生する高炉1の下部の通気性悪化を有効に改善することができる。   In this way, the mixture is injected from the tuyere 2 into the blast furnace 1 in a state where the coal-forming agent and the pulverized coal are mixed, so that the coal-forming agent is exposed to a high temperature atmosphere by the combustion heat of the pulverized coal immediately after being injected. For this reason, compared with the case of single blowing, since the temperature-raising agent is effectively heated and melts easily, a coarse-grained weight-making agent such as more than 2 mm and 3 mm or less can be used. Loss due to scattering can be reduced more effectively. Therefore, it is possible to effectively improve the deterioration of the air permeability at the bottom of the blast furnace 1 that occurs when a large amount of pulverized coal is blown.

造滓剤の吹き込み量は、ある程度までは吹き込み量に応じて融点低下に効果的な作用を示すが、多量に吹き込み過ぎると、スラグの増加、蓄積によって逆に通気性悪化の原因となる。よって造滓剤の吹き込み量は、微粉炭から発生するスラグの量以下であることが望ましい。   The blowing amount of the slagging agent shows an effective action for lowering the melting point depending on the blowing amount to a certain extent, but if it is blown too much, the slag increases and accumulates to cause deterioration of air permeability. Therefore, it is desirable that the amount of blowing agent is not more than the amount of slag generated from pulverized coal.

以下、本発明の実施例について説明する。
[試験1]
高炉を模擬した図4に示すコークス充填層型試験燃焼炉を用い、炉内圧損に及ぼす吹き込み造滓剤粒度の影響を評価した。図4において、微粉炭燃焼炉31内にはコークス充填層32が形成され、この微粉炭燃焼炉31の下部には羽口33が設けられている。羽口33にはブローパイプ34が接続されており、熱風35がブローパイプ34を経て羽口33から微粉炭燃焼炉31内に吹き込まれるようになっている。微粉炭燃焼炉31の上方にはコークス切り出しホッパー36が設けられ、そこから微粉炭燃焼炉31内にコークスが供給されるようになっている。また、ブローパイプ35には吹き込みランス37、38が接続されており、本発明例の場合には、造滓剤切り出しホッパー39および微粉炭切り出しホッパー40からそれぞれ気送配管41および42を介して供給された造滓剤と微粉炭とを予め合流させて混合した状態で吹き込みランス37から噴出させ、従来例の場合には、気送配管41を吹き込みランス37に繋ぎ、気送配管42を吹き込みランス38に繋いで造滓剤と微粉炭とを別々に噴出するようにした。上記コークス充填層型試験燃焼炉において、高炉と同様の成分になるように調整した熱風35を微粉炭燃焼炉31内に吹き込んで、その中のコークスを燃焼させた。
Examples of the present invention will be described below.
[Test 1]
Using the coke packed bed type test combustion furnace shown in FIG. 4 simulating a blast furnace, the influence of the particle size of the blown glaze agent on the pressure loss in the furnace was evaluated. In FIG. 4, a coke packed bed 32 is formed in the pulverized coal combustion furnace 31, and tuyere 33 is provided in the lower part of the pulverized coal combustion furnace 31. A blow pipe 34 is connected to the tuyere 33, and hot air 35 is blown into the pulverized coal combustion furnace 31 from the tuyere 33 through the blow pipe 34. A coke cutting hopper 36 is provided above the pulverized coal combustion furnace 31, and coke is supplied into the pulverized coal combustion furnace 31 from there. In addition, blow lances 37 and 38 are connected to the blow pipe 35. In the case of the present invention, the blow lances 37 and 38 are supplied from the slagging agent cutting hopper 39 and the pulverized coal cutting hopper 40 through the air feed pipes 41 and 42, respectively. In the case of the conventional example, the air feeding pipe 41 is connected to the air blowing lance 37 and the air feeding pipe 42 is blown into the lance. 38, the slagging agent and pulverized coal were jetted separately. In the above coke packed bed type test combustion furnace, hot air 35 adjusted to have the same components as the blast furnace was blown into the pulverized coal combustion furnace 31 to burn the coke therein.

この試験においては造滓剤として石灰石を使用し、その粒度を変化させて炉内圧損および炉内歩留を測定した。主な試験条件は以下の通りである。
・熱風送風量:350Nm/hr
・送風温度:1200℃
・送風中酸素濃度:24vol%
・微粉炭吹き込み量:65kg/hr(高炉操業で200kg/thm相当)
・石灰石吹き込み量:1kg/hr(高炉操業で3kg/thm相当)
In this test, limestone was used as a slagging agent, and the pressure loss in the furnace and the yield in the furnace were measured by changing the particle size. The main test conditions are as follows.
・ Hot air blowing rate: 350 Nm 3 / hr
・ Blower temperature: 1200 ℃
・ Blowing oxygen concentration: 24 vol%
・ Pulverized coal injection amount: 65 kg / hr (equivalent to 200 kg / thm in blast furnace operation)
・ Limestone blowing rate: 1kg / hr (equivalent to 3kg / thm in blast furnace operation)

図5に造滓剤粒度と炉内圧損および炉内歩留との関係について示す。造滓剤の炉内への歩留は本発明例および従来例を問わず粒度とともに増加し、3mmではほぼ1となる。一方、炉内圧損は、従来例では粒度が2mm以上になると、高歩留にもかかわらず、造滓剤が溶融する前にレースウェイシェルに到達するため、それが蓄積することによって増加し始めるが、本発明例では、炉内圧損は粒度が3mmまで低下し、それ以上になると増加する。このことから、本発明では、高歩留となる粒度で吹き込むことができ、造滓剤を非常に効率良くレースウェイシェルの成長抑制、および融解・除去に利用できることが確認された。   FIG. 5 shows the relationship between the particle size of the slagging agent, the pressure loss in the furnace, and the yield in the furnace. The yield of the glaze-making agent in the furnace increases with the particle size regardless of the present invention example and the conventional example, and becomes approximately 1 at 3 mm. On the other hand, in the conventional example, when the particle size becomes 2 mm or more in the conventional example, the pressure loss in the furnace reaches the raceway shell before the smelting agent melts despite the high yield, and thus starts to increase due to accumulation. However, in the example of the present invention, the pressure loss in the furnace decreases to a particle size of 3 mm and increases when the particle size is more than that. From this, it was confirmed that in the present invention, it was possible to blow in with a particle size that yielded a high yield, and the slagging agent could be used very efficiently for the suppression of the growth of the raceway shell, and for the melting and removal.

次に、本発明に従って造滓剤と微粉炭とを混合した状態で吹き込みランス37から噴出させる場合について、造滓剤の粒度を変化させて、石灰石の吹き込み開始後の経過時間に対する炉内圧損の増加量を求めた。石灰石の粒度は、条件1では2mm超3mm以下、条件2では1mm未満、条件3では5mm超、条件4では1mm以上2mm以下とした。   Next, in the case of jetting from the blowing lance 37 in a state where the coal making agent and pulverized coal are mixed according to the present invention, the particle size of the iron making agent is changed, and the pressure loss in the furnace with respect to the elapsed time after the start of limestone blowing is changed. The increase was determined. The particle size of limestone was more than 2 mm and less than 3 mm in condition 1, less than 1 mm in condition 2, more than 5 mm in condition 3, and 1 mm or more and 2 mm or less in condition 4.

図6に上記試験結果を示す。同図より石灰石の吹き込み開始後の経過時間に対する炉内圧損の増加量は、石灰石の粒度が2mm超3mm以下の条件1の場合には小さくなるが、1mm未満の条件2の場合には大きくなり、5mm超の条件3の場合にはさらに大きくなった。1mm以上2mm以下の条件4の場合においては、炉内圧損の増加量は小さくなるがその効果は小さい。このことから、石灰石の粒度を1mm以上3mm以下にすると、微粉炭と混合されて吹き込まれた石灰石が、飛散することなくレースウェイシェルに到達し、また溶融することでレースウェイシェルと同化し、レースウェイシェルの成長抑制、および融解・除去が促進され、その効果は2mm超3mm以下の粒度で吹き込んだ場合に最大になると推定することができた。   FIG. 6 shows the test results. From the figure, the increase in the pressure loss in the furnace with respect to the elapsed time after the start of limestone blowing is small when the limestone particle size is greater than 2 mm and less than 3 mm, but larger when condition 2 is less than 1 mm. In the case of condition 3 exceeding 5 mm, it was further increased. In the case of the condition 4 of 1 mm or more and 2 mm or less, the increase amount in the furnace pressure loss is small, but the effect is small. From this, when the particle size of limestone is 1 mm or more and 3 mm or less, the limestone mixed and mixed with pulverized coal reaches the raceway shell without being scattered, and is assimilated with the raceway shell by melting, The growth suppression and melting / removal of the raceway shell were promoted, and the effect could be estimated to be maximized when blown at a particle size of more than 2 mm and not more than 3 mm.

[試験2]
微粉炭を200kg/thmの微粉炭比で羽口から吹込み中の高炉において、石灰石の割合を3kg/thmとして羽口から高炉内へ吹き込んだ。この際に、表1に示すように、石灰石の粒度を2.2mmとして本発明に従って石灰石と微粉炭とを混合状態で吹き込んだ本発明例1と、石灰石の粒度をそれぞれ1.8mm、2.2mmとし、石灰石と微粉炭とを別々に吹き込んだ比較例1,2について炉内圧損の推移を把握した。その結果を図7に示す。時刻t1から石灰石の吹き込みを開始したところ、炉内圧損は徐々に低下し安定した。そして時刻t2において石灰石の吹き込みを停止したところ、炉内圧損は再び上昇し、石灰石の吹き込み開始前と同等にまで戻った。この際の炉内圧損の低下量は、表1に示すように、本発明例1が0.12kgf/cmであったのに対し、比較例1では0.10kgf/cm、比較例2では微小量の低下に留まっていた。この結果から、
本発明例1は、微粉炭多量吹き込み時の炉下部通気性の改善効果が比較例1,2よりも大きく、効果的にレースウェイシェルの成長抑制、および融解・除去の促進が行われたと推定できた。
[Test 2]
In a blast furnace in which pulverized coal was being blown from the tuyere at a pulverized coal ratio of 200 kg / thm, the ratio of limestone was blown into the blast furnace from the tuyere at 3 kg / thm. At this time, as shown in Table 1, Example 1 in which limestone and pulverized coal were blown in a mixed state in accordance with the present invention with a limestone particle size of 2.2 mm, and the limestone particle size of 1.8 mm and 2. The transition of the pressure loss in the furnace was grasped for Comparative Examples 1 and 2 in which limestone and pulverized coal were blown separately. The result is shown in FIG. When limestone blowing was started from time t1, the pressure loss in the furnace gradually decreased and became stable. When the limestone blowing was stopped at time t2, the pressure loss in the furnace rose again and returned to the same level as before the limestone blowing start. Reduction of furnace pressure loss at this time, as shown in Table 1, while the present invention Example 1 was 0.12 kgf / cm 2, Comparative Example 1, 0.10kgf / cm 2, Comparative Example 2 Then, it was only a small amount of decline. from this result,
Inventive Example 1 is estimated that the effect of improving the furnace bottom air permeability at the time of blowing a large amount of pulverized coal is larger than Comparative Examples 1 and 2, effectively suppressing the growth of the raceway shell and promoting the melting / removal. did it.

Figure 2005307303
Figure 2005307303

造滓剤の粒度と昇温時間との関係、および造滓剤の粒度と造滓剤が羽口へ吹き込まれてからレースウェイ端に到達するまでの滞留時間との関係を、本発明と従来技術とで比較して示すグラフ。The relationship between the particle size of the glaze-making agent and the temperature rise time, and the relationship between the particle size of the glaze-making agent and the residence time from when the glaze-making agent is blown into the tuyere until it reaches the end of the raceway are shown in the present invention. Graph showing comparison with technology. 羽口付近の粒子移動距離とガス温度との関係を示すグラフ。The graph which shows the relationship between the particle movement distance near a tuyere and gas temperature. 本発明の一実施形態に係る高炉操業方法を実施するための設備を示す概略構成図。The schematic block diagram which shows the installation for enforcing the blast furnace operating method which concerns on one Embodiment of this invention. 高炉を模擬したコークス充填層型試験燃焼炉を示す概略構成図。The schematic block diagram which shows the coke packed bed type | mold test combustion furnace which simulated the blast furnace. コークス充填層型試験燃焼炉において、造滓剤粒度と炉内圧損および炉内歩留との関係を、本発明例と従来例とで比較して示すグラフ。The coke packed bed type test combustion furnace is a graph showing the relationship between the particle size of the slagging agent, the pressure loss in the furnace and the yield in the furnace in comparison with the present invention example and the conventional example. コークス充填層型試験燃焼炉において、造滓剤吹き込み開始後の炉内圧損の推移を、各造滓剤粒度で比較して示すグラフ。The coke packed bed type test combustion furnace is a graph showing the transition of the pressure loss in the furnace after the start of blowing the molding agent, by comparing the particle sizes of the various molding agents. 炉内圧損の推移を本発明例と比較例とで比較して示すグラフ。The graph which shows the transition of the pressure loss in a furnace by comparing with the example of this invention and a comparative example. CaOの供給によるレースウェイシェルの低融点化を示す3元状態図。The ternary phase diagram showing the low melting point of the raceway shell by supplying CaO.

符号の説明Explanation of symbols

1……高炉
2……羽口
3……ブローパイプ
4……熱風
5……吹き込みランス
10……造滓剤吹き込み設備
11……造滓剤ホッパー
12……加減圧切り替えホッパー
13……吹き込みホッパー
14……気送配管
15……切り出し量調整フィーダー
16……分配器
17……気送配管
20……微粉炭吹き込み設備
21……微粉炭ホッパー
22……加減圧切り替えホッパー
23……吹き込みホッパー
24……気送配管
25……切り出し量調整フィーダー
26……分配器
27……気送配管
28……合流点
DESCRIPTION OF SYMBOLS 1 ... Blast furnace 2 ... Tuyere 3 ... Blow pipe 4 ... Hot air 5 ... Blowing lance 10 ... Slagging agent blowing equipment 11 ... Slagging agent hopper 12 ... Pressurization switching pressure hopper 13 ... Blowing hopper 14 …… Pneumatic feed pipe 15 …… Cutting amount adjusting feeder 16 …… Distributor 17 …… Pneumatic feed pipe 20 …… Pulverized coal blowing equipment 21 …… Pulverized coal hopper 22 …… Pressure and pressure switching hopper 23 …… Blowing hopper 24 …… Pneumatic feed pipe 25 …… Cutting amount adjustment feeder 26 …… Distributor 27 …… Pneumatic feed pipe 28 …… Confluence

Claims (3)

高炉の羽口から微粉炭を吹き込む高炉操業方法であって、造滓剤と微粉炭とを混合した状態で羽口から高炉内に吹き込むことを特徴とする高炉操業方法。   A blast furnace operating method in which pulverized coal is blown from a tuyere of a blast furnace, the blast furnace being blown into the blast furnace from a tuyere in a state where a coal-forming agent and pulverized coal are mixed. 前記造滓剤と微粉炭とは前記微粉炭の燃焼熱で前記造滓剤が溶融可能なように混合されていることを特徴とする請求項1に記載の高炉操業方法。   The blast furnace operating method according to claim 1, wherein the slagging agent and pulverized coal are mixed so that the slagging agent can be melted by the heat of combustion of the pulverized coal. 前記造滓剤の粒度は、造滓剤が前記羽口へ吹き込まれてからレースウェイ端に到達するまでの滞留時間と溶融温度に達する時間が等しくなる粒度以下であることを特徴とする請求項1または請求項2に記載の高炉操業方法。

















The particle size of the faux agent is equal to or less than a particle size in which the residence time from when the faux agent is blown into the tuyere to reach the end of the raceway is equal to the time to reach the melting temperature. A blast furnace operating method according to claim 1 or claim 2.

















JP2004128087A 2004-04-23 2004-04-23 Method for operating blast furnace Pending JP2005307303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004128087A JP2005307303A (en) 2004-04-23 2004-04-23 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128087A JP2005307303A (en) 2004-04-23 2004-04-23 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JP2005307303A true JP2005307303A (en) 2005-11-04

Family

ID=35436397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128087A Pending JP2005307303A (en) 2004-04-23 2004-04-23 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JP2005307303A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199706A (en) * 1986-02-26 1987-09-03 Kobe Steel Ltd Blast furnace operating method by powder blowing
JPH01100212A (en) * 1987-10-12 1989-04-18 Sumitomo Metal Ind Ltd Operational method for blowing fine material in blast furnace
JPH10204511A (en) * 1997-01-14 1998-08-04 Kobe Steel Ltd Operation of blast furnace for powder blowing
JPH10219318A (en) * 1997-02-03 1998-08-18 Nkk Corp Operation of blast furnace
JP2001247908A (en) * 1999-12-28 2001-09-14 Nippon Steel Corp Heating method for furnace core in powder coal injection operation
JP2003183711A (en) * 2001-10-10 2003-07-03 Nippon Steel Corp METHOD FOR CONTROLLING Si OF MOLTEN PIG IRON IN OPERATION OF BLOWING PULVERIZED COAL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199706A (en) * 1986-02-26 1987-09-03 Kobe Steel Ltd Blast furnace operating method by powder blowing
JPH01100212A (en) * 1987-10-12 1989-04-18 Sumitomo Metal Ind Ltd Operational method for blowing fine material in blast furnace
JPH10204511A (en) * 1997-01-14 1998-08-04 Kobe Steel Ltd Operation of blast furnace for powder blowing
JPH10219318A (en) * 1997-02-03 1998-08-18 Nkk Corp Operation of blast furnace
JP2001247908A (en) * 1999-12-28 2001-09-14 Nippon Steel Corp Heating method for furnace core in powder coal injection operation
JP2003183711A (en) * 2001-10-10 2003-07-03 Nippon Steel Corp METHOD FOR CONTROLLING Si OF MOLTEN PIG IRON IN OPERATION OF BLOWING PULVERIZED COAL

Similar Documents

Publication Publication Date Title
KR20120023057A (en) Blast furnace operation method
US20080127778A1 (en) Process for producing molten iron
JP5273166B2 (en) Blast furnace operation method by large amount of pulverized coal injection
KR101188518B1 (en) Process for producing molten iron
JP6686974B2 (en) Sintered ore manufacturing method
KR101188546B1 (en) Process for producing molten iron
KR20150059784A (en) Oxygen-gas fuel supply device for sintering machine
JP4711735B2 (en) Method of melting fly ash mixed powder into molten slag
JP2005307303A (en) Method for operating blast furnace
JP2003247008A (en) Method for operating blast furnace injecting a large amount of pulverized fine coal
JP2002121609A (en) Method for operating blast furnace by injecting large quantity of pulverized coal
KR101675711B1 (en) Blast furnace operation method
JP4069837B2 (en) Hot phosphorus dephosphorization method
JP2011099150A (en) Blast furnace operation method
JP3533062B2 (en) Powder blowing blast furnace operation method
JP2004035278A (en) Process for treating fly ash
KR101598362B1 (en) Method and apparatus for operating blast furnace
JP2008150668A (en) Method for producing molten pig iron with the use of vertical scrap-melting furnace
JP5262354B2 (en) Hot metal production method using vertical melting furnace
CN113957261B (en) Method for improving energy efficiency and metal recovery rate of plasma ash slag melting furnace
JPH10219318A (en) Operation of blast furnace
JP5803454B2 (en) Oxygen-gas fuel supply device for sintering machine
JP6682932B2 (en) Metal melting method in electric arc furnace
WO1997012066A1 (en) Chromium ore smelting reduction process
JP4415690B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608