JPS62198160A - Insulated gate field effect transistor - Google Patents

Insulated gate field effect transistor

Info

Publication number
JPS62198160A
JPS62198160A JP3978586A JP3978586A JPS62198160A JP S62198160 A JPS62198160 A JP S62198160A JP 3978586 A JP3978586 A JP 3978586A JP 3978586 A JP3978586 A JP 3978586A JP S62198160 A JPS62198160 A JP S62198160A
Authority
JP
Japan
Prior art keywords
region
conductivity modulation
type
conductivity
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3978586A
Other languages
Japanese (ja)
Other versions
JPH0476498B2 (en
Inventor
Kazuo Matsuzaki
松崎 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3978586A priority Critical patent/JPS62198160A/en
Publication of JPS62198160A publication Critical patent/JPS62198160A/en
Publication of JPH0476498B2 publication Critical patent/JPH0476498B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To attain the high input impedance, high speed switching and large power of a transistor by forming an MOS gate structure, a conductivity modulation structure and a minority carrier extraction structure as a switching mechanism. CONSTITUTION:An element structure has a region projected in a columnar shape from a semiconductor substrate for forming parts of a drain region 28 (P<+> type) and a conductivity modulation region 27 at parts of a channel region 26 (P) and the conductivity modulation region 27 (N<-> type), a source region 29 (N<+> type) disposed at the top of the columnar projection and a gate oxide film 30 and a polysilicon electrode 31 disposed at the periphery, and a grid region 32 (P<+> type) to surround the root of the columnar projection attached to the region 27 of the substrate. As a result, the region 27 has both majority carrier and minority carrier to enhance a current density, and to remarkably reduce the resistance at ON time. The excess minority carrier fed to the region 27 is extracted from a grid region 32 near a channel provided to prevent the later thyristor operation and a latchup from occurring.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は高入カイ/ビーダ/ス、高速スイッチ/グ特性
を有し、かつ大電力で筺用することが可能なパワースイ
ッチング半導体装置に関する。
[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] The present invention relates to a power switching semiconductor device that has high input power/Vidas/S, high speed switching and switching characteristics, and can be used with large power. .

〔従来技術とその問題点〕[Prior art and its problems]

はじめにパワースイッチング半導体装置として従来知ら
れているバイポーラ形トランジスタ、絶縁ゲート形トラ
ンジスタおよび静電誘導形トランジスタの構造をそれぞ
れ第5図、第6図、第7図の断面図に示す。
First, the structures of a bipolar transistor, an insulated gate transistor, and a static induction transistor, which are conventionally known as power switching semiconductor devices, are shown in cross-sectional views in FIGS. 5, 6, and 7, respectively.

第5図のバイポーラ形トランジスタにおいて1はベース
電極、2はペース領域[F]、3はエミッタ電極、4は
エミッタ領域(へ)、5はコレクタ領截入)。
In the bipolar transistor shown in FIG. 5, 1 is a base electrode, 2 is a space region [F], 3 is an emitter electrode, 4 is an emitter region (into), and 5 is a collector region (injection).

6はコレクタ領域5より高不純物濃度のコレクタ領域ざ
)、7はコレクタ電極を表わしているうこのバイポーラ
形トランジスタはエミッタ領域4からの少数キャリア注
入をペース電流によシ励起し、大半の少数キャリアをベ
ース領域2を通過してコレクタに集めるという電流制御
方式のため、入力、インピーダンスが低く、高速スイッ
チング動作が困難なことや、二次降伏現象により動作領
域に制限があるなどの欠点をもっている。
Reference numeral 6 indicates the collector region (which has a higher impurity concentration than the collector region 5), and 7 indicates the collector electrode. In this bipolar transistor, minority carrier injection from the emitter region 4 is excited by a pace current, and most of the minority carriers are Since the current control method passes through the base region 2 and collects the current at the collector, it has drawbacks such as low input impedance, difficulty in high-speed switching operation, and limited operating range due to secondary breakdown phenomenon.

N6図の絶盪ゲート形トランジスタは上から8はゲート
電極、9はゲート絶縁膜、10はソース電極、11はソ
ース領域(N ) 、 12はチャンネル領域■。
From the top, 8 is a gate electrode, 9 is a gate insulating film, 10 is a source electrode, 11 is a source region (N), and 12 is a channel region (2) of the single-gate transistor shown in Figure N6.

13は低不純物横変のドレイン領域(N)、14は高不
純物濃度のドレイン領域(N)、15はドレイン電極を
表わす。第7図の静電誘導形トランジスタはソース電極
16.ソース領域17(N)、ゲート電極18゜ゲート
領域19.ドレイン領域20(へ)、領域2oより高不
純物濃度のドレイン領域21(N)、ドレイン電砥22
.そして哩込層23(P)からなる。このような絶縁ゲ
ート形および静電誘導形トランジスタはいずれも電圧駆
動形スイッチング素子であって、高入力インピーダンス
、高速スイッチング特性を有するパワースイッチング半
導体装置として有望である。ところが絶縁ゲート形トラ
/ジスタおよび静1!誘導形トランジスタはいずれもチ
ャンネル誘起によりソース・ドレイン間を多数キャリア
が流れるユニボール形のため低抵抗化が問題であって大
電力用としては適用し難いという欠点がある。
Reference numeral 13 represents a drain region (N) with low impurity lateral variation, 14 represents a drain region (N) with high impurity concentration, and 15 represents a drain electrode. The electrostatic induction transistor shown in FIG. 7 has a source electrode 16. Source region 17 (N), gate electrode 18° gate region 19. Drain region 20 (to), drain region 21 (N) with higher impurity concentration than region 2o, drain electric polishing 22
.. And it consists of a folding layer 23(P). Both such insulated gate type and static induction type transistors are voltage-driven switching elements, and are promising as power switching semiconductor devices having high input impedance and high-speed switching characteristics. However, insulated gate type transistors/distor and static 1! Inductive type transistors are all uniball type in which majority carriers flow between the source and drain due to channel induction, so low resistance is a problem and it is difficult to apply them to high power applications.

N8図は以上の欠点を改良した伝導度変調形の絶縁ゲー
ト形トランジスタの構造を示したもので・ちシ、第6図
と共通部分を同一符号で表わしである。第8図が第6図
と異なる所はぺ〜ス領域からの少数キャリア注入が起こ
るように第8図では第6図のドレイン領域14(N)と
は逆の導電形のドレイン領域24(P)を設けたことに
あり、従来の絶縁ゲート形トランジスタ動作に加えてド
レイン領域13(N)に伝導度変調を起こさせ、電流密
度を大きクシ、低抵抗化、大電力化を可能にしたもので
ある。しかしこの構造はN−P−N−P構造となる沈め
に、サイリスタ動作を起こしゃすく、ラッチアップ防止
対策が必、要となるという欠点を生ずる。
Figure N8 shows the structure of a conductivity-modulated insulated gate transistor that has improved the above-mentioned drawbacks. Parts common to those in Figure 6 are denoted by the same symbols. The difference between FIG. 8 and FIG. 6 is that in FIG. 8, the drain region 24 (P) has a conductivity type opposite to that of the drain region 14 (N) in FIG. ), and in addition to the conventional insulated gate transistor operation, conductivity modulation is caused in the drain region 13 (N), making it possible to increase current density, lower resistance, and increase power. It is. However, this structure has the drawback that, since it is an N-P-N-P structure, thyristor operation is likely to occur, and measures to prevent latch-up are required.

第9図はさらに第8図の構造の改良形として提案されて
いるものであり、第8図と共通部分を同一符号で表わし
であるが、その改良点はチャンネル領域120の下部に
チャンネル領域12と同じ導電形の低抵抗層25(P)
を設けることにより、チャンネル近傍を通りソース領1
dll(N)へ至る少数キャリアの生成をできるだけ緩
和しようとした構造とした所にある。この唾の改良形の
別の構造としてチャンネル領域12の内部に低抵抗11
を設けたものも提案されている。しかし現状ではこれら
改良形はいずれも十分に改良された構造とは言い雉い。
FIG. 9 has been proposed as a further improvement of the structure of FIG. 8, and common parts with those in FIG. Low resistance layer 25 (P) of the same conductivity type as
By providing the source region 1 through the vicinity of the channel,
The structure is designed to alleviate the generation of minority carriers that reach dll(N) as much as possible. Another structure of this improved version of the spit is a low resistance 11 inside the channel region 12.
A system with a . However, at present, none of these improved structures can be said to have sufficiently improved structures.

しかも第6図、!8図、第9図に示したいずれの横置に
おいてもチャンネル長を制御するために、チャンネル領
域12とソース領域11の形成が二重拡散で行なわれ、
これら各層を形成するのに使用される不純物材料および
拡赦粂沖が制限されるという問題が生ずる。さらにこの
ような構造は少数キャリアの注入現象によってターンオ
フ時のテールが長くなり周波数特性に関して不利になる
などの欠点もあり、その対策として、現状では金拡散や
高エネルギーの電子ビームの照射を行なって再結合中心
を生成することにより対処しているが、これらの方法は
チャンネル領域の界面およびゲート酸化膜への影響もあ
り、また製造プロセスの上でも再現性を得ることが1月
雌であるという問題をもっている。
Moreover, Figure 6! In order to control the channel length in both horizontal orientations shown in FIGS. 8 and 9, the channel region 12 and source region 11 are formed by double diffusion.
A problem arises in that the impurity materials and materials used to form each of these layers are limited. Furthermore, such a structure has the disadvantage that the minority carrier injection phenomenon causes a long tail at turn-off, which is disadvantageous in terms of frequency characteristics.Currently, countermeasures to this problem include gold diffusion and high-energy electron beam irradiation. These methods have been addressed by generating recombination centers, but these methods also affect the interface of the channel region and the gate oxide film, and it is important to obtain reproducibility in the manufacturing process. I have a problem.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものであり、その目
的は高速スイッチング特性を有する絶縁ゲート形トラン
ジスタの特徴全最大限に利用するとともに、伝導度変調
を生ずる構造として低1tItt、密度の欠点を除去し
、しかも伝導度変調形の絶縁ゲート形トランジスタに備
わるサイリスタ動作、ラッチアップ発生の可能性および
ター/オフ時の長いテールなどの欠点も除去した高入力
インピーダンス、高速スイッチング、大電力化を満足す
る新硯な絶縁ゲート電界効果トランジスタを提供するこ
とにある。
The present invention has been made in view of the above points, and its purpose is to take full advantage of all the characteristics of insulated gate type transistors having high-speed switching characteristics, while also solving the disadvantages of low 1tItt and density as a structure that produces conductivity modulation. It also eliminates the disadvantages of conductivity-modulated insulated gate transistors, such as thyristor operation, possibility of latch-up, and long tails at turn-on/off, resulting in high input impedance, high-speed switching, and high power. The object of the present invention is to provide a new and satisfying insulated gate field effect transistor.

〔発明の要点〕[Key points of the invention]

本発明は一導電形を有する半導体ドレイン領域と、この
ドレイン領域とは導電形の漠なる伝導変変調領域と、ド
レイン領域と同じ導電形を有する半導体チャンネル形成
領域と、伝導変度44領域と同じ導電形を有するソース
領域と、チャンネル形成領域の一1ltl1面全域にわ
たって形成され少くともソース領域、伝導度変調領域の
凸起部側面まで連らなるゲート絶縁膜とこのゲート絶縁
膜上に設けたゲート電極とを具備する構造としたことに
より、オン状態ではゲート電極にしきい電圧以上の電圧
を印加したときゲート絶縁膜と半導体チャンネル形成領
域との界面にチャンネル層が形成され、ソース領吠から
の多数キャリアの注入と半導体ドレイン領域からの少数
キャリアの注入が伝導度変調領域に同時に起こり、伝導
度変調領域を流れる電流の密度を高める作用をもたらし
、さらに本発明では伝導度変調領域内のチャンネル近傍
に?!流径路の少くとも一部を包囲するようにドレイン
領域と同じ導電形を有する低抵抗層の半導体グリッド領
域を配備することにより、ドレイン領域から注入された
少数キャリアの大部分をグリッド領域に引き込み、チャ
ンネル近傍への少数キャリアの流人を妨げ、ラッチアッ
プの発生を防止するとともに1オフ状態での少数キャリ
アの引き抜きもグリッド領域を通して瞬時に行なうこと
ができ、ターンオフ時のテール長を短かくする効果もね
らったものであり、要するにスイッチング機構としての
MOSゲート構造と伝導度変調構造と少数キャリアの引
き抜き構造を兼備することによりトランジスタの高入力
インピーダンス、高速スイッチング。
The present invention provides a semiconductor drain region having one conductivity type, a conduction variation region having a vague conductivity type, a semiconductor channel forming region having the same conductivity type as the drain region, and a conduction variation region having the same conductivity as the drain region. A source region having a conductivity type, a gate insulating film formed over the entire surface of the channel forming region and extending to at least the side surface of the convex portion of the source region and the conductivity modulation region, and a gate provided on the gate insulating film. By adopting a structure that includes an electrode, in the on state, when a voltage higher than the threshold voltage is applied to the gate electrode, a channel layer is formed at the interface between the gate insulating film and the semiconductor channel forming region, and a large number of layers from the source region are formed. Injection of carriers and injection of minority carriers from the semiconductor drain region simultaneously occur in the conductivity modulation region, resulting in an effect of increasing the density of current flowing through the conductivity modulation region. ? ! By disposing a semiconductor grid region of a low resistance layer having the same conductivity type as the drain region so as to surround at least a portion of the flow path, most of the minority carriers injected from the drain region are drawn into the grid region, This prevents minority carriers from flowing into the vicinity of the channel, prevents latch-up, and allows minority carriers to be instantly pulled out through the grid area in the 1-off state, thereby shortening the tail length at turn-off. In other words, by combining the MOS gate structure as a switching mechanism, a conductivity modulation structure, and a minority carrier extraction structure, the transistor can achieve high input impedance and high-speed switching.

大電力化を達成したものである。This achieved high power consumption.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第1図は本発明の絶縁ゲート電界効果トランジスタセル
が多数配備され九半導体チップの表面外観図を示したも
のであシ、本発明を説明するためにこれらセルの一つに
ついての平面図を第2図に、そのA−A′断面t−第2
図と対応するように第3図に示した。したがって第1図
ないしjjg3図については共通部分を同一符号で表わ
しである。以下第2図、第3図を参照して説明すると、
本発明の素子構造はチャンネル領域26 (P)および
伝導度変調領域27(N)の一部が、ドレイン領域28
(P)および伝導度変調領域27の一部と形成している
半導体基板に対して円柱状に突出した領域をもつ構造と
し、さらにこの円柱状突起部の上部にソース領域29(
N)。
FIG. 1 shows a surface external view of a semiconductor chip in which a large number of insulated gate field effect transistor cells according to the present invention are arranged. Figure 2 shows the A-A' section t-2nd.
It is shown in FIG. 3 to correspond to the figure. Therefore, in FIGS. 1 to 3, common parts are indicated by the same reference numerals. As explained below with reference to Figures 2 and 3,
In the device structure of the present invention, a part of the channel region 26 (P) and the conductivity modulation region 27 (N) is
(P) and a part of the conductivity modulation region 27, the structure has a columnar region projecting from the semiconductor substrate, and the source region 29 (
N).

周囲にゲート酸化膜30とポリシリコンゲート電極31
を配備イし、基板の伝導度変調領域27に属する円柱状
突起部の付は根を取り巻くようにグリッド領域32(P
)を形成しである。
Surrounding gate oxide film 30 and polysilicon gate electrode 31
The grid area 32 (P
) is formed.

このような構造で、いまゲート電極31にしきい電圧以
上の電圧を印加すると、チャンネル領域26のゲート酸
化H30との界面近傍に点線で表わしたチャンネル層3
3が形成され、ソース、([34によりソース領域29
から注入された多数キャリアはチャンネル層33を通っ
て伝導度変調領域27に流れ込み、ドレイン領域28に
到達する。一方ドレイン電極35によりドレイン領咳2
8から注入された少数キャリアは伝導変度1v!4領域
27に流れ込み、その結果伝導度変調・煩域27は多数
キャリアと少数キャリアが共存して電流密度を高め、オ
フ時の抵抗を大巾に低下させるように作用する。そして
伝導、■変調領域27に流入した余剰の少数キャリアは
その後のサイリスタ動作やラッチアップを防止するため
に設けたチャンネル近傍のグリッド領域32より引き抜
かれる。
In this structure, when a voltage higher than the threshold voltage is applied to the gate electrode 31, the channel layer 3 shown by a dotted line forms near the interface with the gate oxide H30 of the channel region 26.
3 is formed and the source, ([34 causes the source region 29
The majority carriers injected from the channel layer 33 flow into the conductivity modulation region 27 and reach the drain region 28. On the other hand, the drain electrode 35
Minority carriers injected from 8 have a conduction variation of 1v! As a result, majority carriers and minority carriers coexist in the conductivity modulation/transmission region 27, increasing the current density and greatly reducing the resistance during off-state. The surplus minority carriers that have flowed into the conduction and modulation region 27 are extracted from the grid region 32 near the channel provided to prevent subsequent thyristor operation and latch-up.

またグリッド領域32による少数キャリアの引き抜きや
果をさらに高めるためには第4図のように伝導度変調領
域27の電流径路の中にグリッド領域32のほかに島状
に埋め込んだグリッド領域32a (P )を設けるの
も効果的であシ、このことによりサイリスタ動作やラッ
チアップを防止するのに一層有効に作用するものである
In addition, in order to further enhance the extraction of minority carriers by the grid region 32, as shown in FIG. 4, a grid region 32a (P ) is also effective, and this works even more effectively to prevent thyristor operation and latch-up.

以上のごとく本発明は伝導度変調形の絶縁ゲートトラン
ジスタの特長を利用して電流密度を高めるとともに、グ
リッド領域を設けて伝導度変調領域に残存する余剰の少
数キャリアを、そのグリッド領域に引き込みサイリスタ
動作を抑制し、高入力インビーダ/ス、高速スイッチン
グ特性を有し、大電力として用いることが可能な絶縁ゲ
ート電界効果トランジスタを実現したものである。
As described above, the present invention utilizes the characteristics of a conductivity modulation type insulated gate transistor to increase current density, and also provides a grid region to draw excess minority carriers remaining in the conductivity modulation region into the grid region, thereby creating a thyristor. This realizes an insulated gate field effect transistor that suppresses operation, has high input impedance, high speed switching characteristics, and can be used for high power.

〔発明の効果〕〔Effect of the invention〕

以上実施例で説明したように、本発明によれば伝導度変
調領域碌ゲートトランジスタのチャンネル層の多数キャ
リアの出口近傍に少数キャリアのチャンネル層への流入
を防止するための少数キャリア引き抜き層(グリッド領
域)を設けたことにより、伝導度変、ill形絶縁ゲー
トトランジスタのすぐれた特性を最大限に利用するとと
もに、伝導度変調領域縁ゲートトランジスタに関する特
有のサイリスタ動作、ラッチアップの発生する可能性を
抑止することができ、その結果高入力インピーダンス、
高速スイッチング特性を有し、しかも大電力用として使
用ar能なパワースイッチング半導体装置を得ることに
成功したものである。
As explained above in the embodiments, according to the present invention, a minority carrier extraction layer (grid By providing a conductivity modulation region), it is possible to make maximum use of the excellent characteristics of conductivity modulation, ill-type insulated gate transistors, and also to eliminate the possibility of occurrence of thyristor operation and latch-up, which are unique to conductivity modulation region edge gate transistors. can suppress, resulting in high input impedance,
We have succeeded in obtaining a power switching semiconductor device that has high-speed switching characteristics and can be used for high power applications.

【図面の簡単な説明】[Brief explanation of drawings]

pX1図は本発明による半導体チップの表面外観図、第
2図は本発明の素子構造を示す平面図、第3図は同じく
1折面図、第4図は第3図と異なる構造例と示す断面図
、8g5図は従来のバイポーラ形トランジスタの断面図
、第6図は同じく絶縁ゲートトランジスタの断面図、第
7図は同じく静電誘導形トランジスタの断面図、第8図
は同じく伝導度変調形の絶縁ゲートトランジスタの断面
図、第9図は第8図の改良型伝導度変調形絶縁ゲートト
ランジスタの断面図である。 1・・・ペース!ffi、2・・・ベース領域、3・・
・エミッタ成極、4・・・エミッタ領域、5,6・・・
コレクタ領域、7・・・コレクタ電極、8,18.31
・・・ゲート電極、9,30・・・ゲート絶縁膜、10
 、16 、34・・・ソース1!極、11 、17 
、29・・・ソース領域、12.26・・・チャンネル
領域、13,14,20,21,24.28・・・ドレ
イン領域、15,22.35・・・ドレインtl!極、
19・・・ゲート領域、23・・・埋込III、25・
・・低置抗層、27・・・伝導度変調領域、32・・・
グリッド領域、33・・・¥ 1 図 第4図 i2図 第3 図
Figure 1 is a surface external view of a semiconductor chip according to the present invention, Figure 2 is a plan view showing the element structure of the present invention, Figure 3 is a first folded view, and Figure 4 shows an example of a structure different from Figure 3. Cross-sectional views, Figure 8g5 is a cross-sectional view of a conventional bipolar transistor, Figure 6 is a cross-sectional view of an insulated gate transistor, Figure 7 is a cross-sectional view of a static induction transistor, and Figure 8 is a conductivity modulation transistor. FIG. 9 is a cross-sectional view of the improved conductivity modulated insulated gate transistor of FIG. 1...Pace! ffi, 2...Base area, 3...
・Emitter polarization, 4... Emitter region, 5, 6...
Collector region, 7... Collector electrode, 8, 18.31
... Gate electrode, 9, 30 ... Gate insulating film, 10
, 16 , 34... Source 1! pole, 11, 17
, 29... Source region, 12.26... Channel region, 13, 14, 20, 21, 24.28... Drain region, 15, 22.35... Drain tl! very,
19... Gate region, 23... Buried III, 25...
...Low resistive layer, 27...Conductivity modulation region, 32...
Grid area, 33...¥ 1 Figure 4 Figure i2 Figure 3

Claims (1)

【特許請求の範囲】 1)伝導度変調形の絶縁ゲート電界効果トランジスタで
あつて、一導電形を有するドレイン領域、該ドレイン領
域と異なる導電形を有する伝導度変調領域、前記ドレイ
ン領域と同じ導電形を有するチャンネル領域、前記伝導
度変調領域と同じ導電形を有するソース領域がこの順に
堆積され、少くとも前記チャンネル領域の側面を全面に
わたつて覆い前記ソース領域と前記伝導度変調領域の側
面上まで延びるゲート絶縁膜と、該ゲート絶縁膜上に設
けられたゲート電極と、前記ソース領域から前記チヤン
ネル領域に形成されたチャンネル層を通つて前記ドレイ
ン領域に至る前記伝導度変調領域内の電流経路の少くと
も一部を包囲するように配備され前記ドレイン領域と同
じ導電形を有するグリッド領域とを備えたことを特徴と
する絶縁ゲート電界効果トランジスタ。 2)特許請求の範囲第1項記載の電界効果トランジスタ
においてチャンネル領域と伝導度変調領域の一部が伝導
度変調領域から突出して形成されたことを特徴とする絶
縁ゲート電界効果トランジスタ。
[Scope of Claims] 1) A conductivity modulation type insulated gate field effect transistor, which comprises a drain region having one conductivity type, a conductivity modulation region having a conductivity type different from that of the drain region, and the same conductivity as the drain region. a channel region having the same conductivity type as the conductivity modulation region, and a source region having the same conductivity type as the conductivity modulation region are deposited in this order so as to cover at least the entire side surface of the channel region and on the side surfaces of the source region and the conductivity modulation region. a gate insulating film extending from the source region to the drain region, a gate electrode provided on the gate insulating film, and a current path in the conductivity modulation region from the source region to the drain region through a channel layer formed in the channel region. An insulated gate field effect transistor comprising: a grid region that surrounds at least a portion of the drain region and has the same conductivity type as the drain region. 2) An insulated gate field effect transistor according to claim 1, wherein the channel region and a part of the conductivity modulation region are formed to protrude from the conductivity modulation region.
JP3978586A 1986-02-25 1986-02-25 Insulated gate field effect transistor Granted JPS62198160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3978586A JPS62198160A (en) 1986-02-25 1986-02-25 Insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3978586A JPS62198160A (en) 1986-02-25 1986-02-25 Insulated gate field effect transistor

Publications (2)

Publication Number Publication Date
JPS62198160A true JPS62198160A (en) 1987-09-01
JPH0476498B2 JPH0476498B2 (en) 1992-12-03

Family

ID=12562589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3978586A Granted JPS62198160A (en) 1986-02-25 1986-02-25 Insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JPS62198160A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254968A (en) * 1988-08-19 1990-02-23 Fuji Electric Co Ltd Conductivity modulation type mos-fet
WO1995018465A1 (en) * 1993-12-28 1995-07-06 North Carolina State University Three-terminal gate-controlled semiconductor switching device with rectifying-gate
US5488236A (en) * 1994-05-26 1996-01-30 North Carolina State University Latch-up resistant bipolar transistor with trench IGFET and buried collector
US5679966A (en) * 1995-10-05 1997-10-21 North Carolina State University Depleted base transistor with high forward voltage blocking capability
EP0833387A1 (en) * 1996-09-30 1998-04-01 Siemens Aktiengesellschaft Field effect controllable semiconductor device
EP0854518A1 (en) * 1997-01-21 1998-07-22 Plessey Semiconductors Limited Trench insulated gate bipolar transistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5760320B2 (en) * 2010-01-28 2015-08-05 富士電機株式会社 Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254968A (en) * 1988-08-19 1990-02-23 Fuji Electric Co Ltd Conductivity modulation type mos-fet
WO1995018465A1 (en) * 1993-12-28 1995-07-06 North Carolina State University Three-terminal gate-controlled semiconductor switching device with rectifying-gate
US5488236A (en) * 1994-05-26 1996-01-30 North Carolina State University Latch-up resistant bipolar transistor with trench IGFET and buried collector
US5679966A (en) * 1995-10-05 1997-10-21 North Carolina State University Depleted base transistor with high forward voltage blocking capability
EP0833387A1 (en) * 1996-09-30 1998-04-01 Siemens Aktiengesellschaft Field effect controllable semiconductor device
EP0854518A1 (en) * 1997-01-21 1998-07-22 Plessey Semiconductors Limited Trench insulated gate bipolar transistor

Also Published As

Publication number Publication date
JPH0476498B2 (en) 1992-12-03

Similar Documents

Publication Publication Date Title
US5702961A (en) Methods of forming insulated gate bipolar transistors having built-in freewheeling diodes and transistors formed thereby
US4364072A (en) Static induction type semiconductor device with multiple doped layers for potential modification
JP2663679B2 (en) Conductivity modulation type MOSFET
JPH06196705A (en) Reverse-current carrying type insulated gate bipolar transistor and manufacture thereof
KR950014279B1 (en) Semiconductor device and its making method
JPH043113B2 (en)
GB2305777A (en) Base resistance controlled thyristor structure with high density layout for increased current capacity
JPH0624244B2 (en) Composite semiconductor device
JPS62198160A (en) Insulated gate field effect transistor
EP3989292A1 (en) Insulated gate bipolar transistor
US5723349A (en) Process for manufacturing a high conductivity insulated gate bipolar transistor integrater structure
JP3163815B2 (en) Semiconductor device
JPH0241182B2 (en)
JPH0529628A (en) Insulating-gate type bipolar transistor
JPH06232392A (en) Dual gate semiconductor device
KR970004841B1 (en) Lateral resurfed mosfet
JPH04180680A (en) Insulated-gate bipolar transistor
JPH04320377A (en) Insulated gate bipolar transistor
JP2825345B2 (en) High-speed turn-on device
JP3094682B2 (en) Lateral insulated gate bipolar transistor
JPH0548083A (en) Power semiconductor element
JPS6013311B2 (en) Semiconductor controlled rectifier
JPH06163908A (en) Double gate mos device
JP2799928B2 (en) Electrostatic induction thyristor with split gate type cathode short circuit structure
JP3435246B2 (en) Reverse conducting thyristor with planar gate structure