JPS62196582A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS62196582A
JPS62196582A JP3962886A JP3962886A JPS62196582A JP S62196582 A JPS62196582 A JP S62196582A JP 3962886 A JP3962886 A JP 3962886A JP 3962886 A JP3962886 A JP 3962886A JP S62196582 A JPS62196582 A JP S62196582A
Authority
JP
Japan
Prior art keywords
solenoid valve
water
cooled condenser
compressor
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3962886A
Other languages
Japanese (ja)
Inventor
鶴田 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kentetsu Co Ltd
Mitsubishi Electric Corp
Original Assignee
Nihon Kentetsu Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kentetsu Co Ltd, Mitsubishi Electric Corp filed Critical Nihon Kentetsu Co Ltd
Priority to JP3962886A priority Critical patent/JPS62196582A/en
Publication of JPS62196582A publication Critical patent/JPS62196582A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷凍冷蔵ショーケース等の冷凍装置で、特に
除霜運転を改良したものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a refrigeration device such as a freezer/refrigeration showcase, and particularly to one with improved defrosting operation.

〔従来の技術〕[Conventional technology]

かかる冷凍装置は一般に、第2図に示すように、圧縮機
(1)、水冷式凝縮器(2)、減圧装置(3)、蒸発器
(4)、アキュムレーター(5)を順次連結して冷凍サ
イクルが構成され、また前記水冷式凝縮器(2)には冷
却通水管の水入口(7)と水出口が設けられてあり、図
示しないが蒸発器(4)には冷風強制送風用の送風機が
付設されている。
Such a refrigeration system generally has a compressor (1), a water-cooled condenser (2), a pressure reducing device (3), an evaporator (4), and an accumulator (5) connected in sequence, as shown in FIG. A refrigeration cycle is constructed, and the water-cooled condenser (2) is provided with a water inlet (7) and a water outlet of a cooling water pipe, and although not shown, the evaporator (4) is provided with a cooling water pipe for forced cold air. A blower is attached.

さらに、除霜のために圧縮機(1)の冷媒出口側と減圧
装置(3)の冷媒出口側とをバイパス回路(6)で結び
、ここにガス冷媒制御用の電磁弁(6a)を介在させ、
水冷式凝縮器(2)の水入口部に冷却水制御用の電磁弁
(7)を設けることがある。
Furthermore, for defrosting, the refrigerant outlet side of the compressor (1) and the refrigerant outlet side of the pressure reducing device (3) are connected by a bypass circuit (6), in which a solenoid valve (6a) for gas refrigerant control is interposed. let me,
A solenoid valve (7) for controlling cooling water may be provided at the water inlet of the water-cooled condenser (2).

そして、冷却運転時には、水冷式凝縮器(2)の水入口
部の電磁弁(7)を開き、同時にバイパス回路(6)の
電磁弁(6a)を閉にして、圧縮機(1)より吐出され
た高温高圧の冷媒ガスを第2図の実線の矢印の向きに循
環させる。このようにした場合、水冷式凝縮器(2)内
において高温高圧の冷媒ガスは凝縮されて液化し、この
とき放出される凝縮熱は冷却通水管の水に吸入される。
During cooling operation, the solenoid valve (7) at the water inlet of the water-cooled condenser (2) is opened, and at the same time, the solenoid valve (6a) of the bypass circuit (6) is closed to discharge water from the compressor (1). The high-temperature, high-pressure refrigerant gas thus produced is circulated in the direction of the solid line arrow in FIG. In this case, the high temperature and high pressure refrigerant gas is condensed and liquefied in the water-cooled condenser (2), and the heat of condensation released at this time is sucked into the water in the cooling water pipe.

そして、液化した常温常圧の冷媒液は減圧袋W(3)で
減圧されて低塩低圧の冷媒液となって凝縮器(2)に送
り込まれ、凝縮器(2)内の冷媒配管を通過する際に蒸
発するが、その蒸発に必要な熱を周囲の空気から吸収す
るので、周囲の空気は冷却され、これを送風機でショー
ケース内等に強制送風する。
Then, the liquefied refrigerant liquid at room temperature and normal pressure is depressurized in the vacuum bag W (3) to become a low-salt, low-pressure refrigerant liquid and sent to the condenser (2), where it passes through the refrigerant piping in the condenser (2). However, the heat required for evaporation is absorbed from the surrounding air, which cools the surrounding air, which is then forced into the showcase using a blower.

凝縮器(4)内でほとんど気化した常温常圧の冷媒ガス
はアキュムレーター(5)に送り込まれ、ここでさらに
気化と気液分離が加えられて冷媒ガスのみが圧縮機(1
)に吸込まれて圧縮され高温高圧化される。
The refrigerant gas at normal temperature and normal pressure, which is almost vaporized in the condenser (4), is sent to the accumulator (5), where it is further vaporized and gas-liquid separated, and only the refrigerant gas is sent to the compressor (1).
), where it is compressed and raised to high temperature and pressure.

ところで、以上述べた冷却運転で低温低圧の冷媒ガスが
蒸発器(4)において気化する際に周囲の空気を冷却す
るものであるから、冷却された周囲の空気が含んでいた
水分は霜となって蒸発器(4)の表面に付着する。この
着霜が厚くなると蒸発器(4)の冷却力が低下するので
、冷却運転を除霜運転に切り換えることが必要となる。
By the way, in the cooling operation described above, when the low-temperature, low-pressure refrigerant gas vaporizes in the evaporator (4), it cools the surrounding air, so the moisture contained in the cooled surrounding air turns into frost. and adheres to the surface of the evaporator (4). As this frost thickens, the cooling power of the evaporator (4) decreases, so it becomes necessary to switch the cooling operation to the defrosting operation.

かかる除霜運転を開始するには、水冷式凝縮器(2)の
水入口部の電磁弁(7)を閉し、バイパス回路(6)の
電磁弁(6a)を開とすることにより、圧縮機(1)よ
り吐出された高温高圧の冷媒ガスを第2図の破線の矢印
の向きにiFi 環させる。
To start such defrosting operation, the solenoid valve (7) at the water inlet of the water-cooled condenser (2) is closed and the solenoid valve (6a) of the bypass circuit (6) is opened. The high-temperature, high-pressure refrigerant gas discharged from the machine (1) is circulated in the direction of the broken line arrow in FIG.

その際、圧縮機(1)から吐出された高温高圧の冷媒ガ
スはその状態で凝縮器(2)に流入するので、それの潜
熱が蒸発器(4)の表面の着霜を融解して除霜を行う。
At this time, the high temperature and high pressure refrigerant gas discharged from the compressor (1) flows into the condenser (2) in that state, so its latent heat melts and removes the frost on the surface of the evaporator (4). Do frost.

蒸発器(4)に流入した冷媒ガスは冷却されて液化する
が11i温高圧であったため液化は不完全でアキュムレ
ーター(5)に流入し、ここで気液混合状態で気液分離
され、液ガスはアキュムレーター(5)内に残留し、冷
媒ガスだけが圧縮機(1)に吸入される。
The refrigerant gas that has flowed into the evaporator (4) is cooled and liquefied, but since the temperature and pressure were high, the liquefaction is incomplete and it flows into the accumulator (5), where it is separated into a gas-liquid mixture and becomes liquid. The gas remains in the accumulator (5) and only the refrigerant gas is sucked into the compressor (1).

除霜が完了した時点で、水冷式凝縮器(2)の水入口部
の電磁弁(7)を開き、バイパス回路(6)の電磁弁(
6a)を閉にすれば、除霜運転は冷却運転に切り換わる
When defrosting is completed, open the solenoid valve (7) at the water inlet of the water-cooled condenser (2), and close the solenoid valve (7) in the bypass circuit (6).
If 6a) is closed, the defrosting operation is switched to the cooling operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように除霜運転開始時に水冷式凝縮器(2)の水入
口部の電磁弁(7)を閉じ、同時にバイパス回路(6)
の電磁弁(6a)を開くと、圧縮機(1)から吐出され
る高温高圧の冷媒ガスの大部分はバイパス回路に向かい
、一部は水冷式凝縮器(2)に向かって流出するが、そ
のとき水冷式凝縮器(2)は水冷を停止されているから
水冷式凝縮器(2)内が冷却されることがなく高温に維
持される。
In this way, at the start of defrosting operation, the solenoid valve (7) at the water inlet of the water-cooled condenser (2) is closed, and at the same time the bypass circuit (6) is closed.
When the solenoid valve (6a) is opened, most of the high-temperature, high-pressure refrigerant gas discharged from the compressor (1) heads to the bypass circuit, and a portion flows out toward the water-cooled condenser (2). At that time, water cooling of the water-cooled condenser (2) is stopped, so the inside of the water-cooled condenser (2) is not cooled and is maintained at a high temperature.

しかし、この状態では高温高圧の冷媒ガスは吸入されに
くく徐々にバイパス回路(6)の電磁弁(6a)の方に
逆に排出される。その結果、電磁弁(6a)を通過する
高温高圧の冷媒ガスの量は徐々に増加し、それにつれて
蒸発器(4)で除霜を行って液化する冷媒液の量も徐々
に増加し、アキュムレーター(5)の気液分離能力の限
界をオーバーしてしまい、圧縮機(1)に冷媒液も吸入
されるといういわゆる液戻り現象が起きる。
However, in this state, the high-temperature, high-pressure refrigerant gas is difficult to be sucked in and is gradually discharged toward the solenoid valve (6a) of the bypass circuit (6). As a result, the amount of high-temperature, high-pressure refrigerant gas passing through the solenoid valve (6a) gradually increases, and accordingly, the amount of refrigerant liquid that is defrosted and liquefied in the evaporator (4) also gradually increases. The limit of the gas-liquid separation capacity of the rotor (5) is exceeded, and a so-called liquid return phenomenon occurs in which the refrigerant liquid is also sucked into the compressor (1).

これにより圧縮機(1)の寿命を短縮するおそれがあり
、これを解消するためにはアキュムレーター(5)を大
形化してその気液分離能力を増大することも考えられる
が、それには冷凍装置自体の大形化をまねくという雑魚
があった。
This may shorten the life of the compressor (1), and in order to solve this problem, it is possible to increase the size of the accumulator (5) and increase its gas-liquid separation capacity. There was a problem with this, which led to the equipment itself becoming larger.

本発明の目的は前記従来例の不都合を解消し、小型のア
キュムレーターを設置する冷凍装置においても、圧縮機
への冷媒液の吸込みを防Iにできる冷凍装置を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the disadvantages of the conventional example and to provide a refrigeration system that can prevent refrigerant from being sucked into the compressor even in a refrigeration system equipped with a small accumulator.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記目的を達成するため、圧縮機、水冷式凝縮
器、減圧装置、蒸発器、アキュムレーターを順次接続し
て冷凍サイクルを構成し、前記圧縮機の冷媒出口側と減
圧装置の冷媒出口側とを電磁弁を介在された除霜用のバ
イパス回路で連絡した冷凍装置において、水冷式凝縮器
の水入口部に前記電磁弁が開いてからしばらくして閉し
、前記電磁弁が閉じると同時に開く電磁弁を設けたこと
を要旨とするものである。
In order to achieve the above object, the present invention constitutes a refrigeration cycle by sequentially connecting a compressor, a water-cooled condenser, a pressure reducing device, an evaporator, and an accumulator, and the refrigerant outlet side of the compressor and the refrigerant outlet of the pressure reducing device In a refrigeration system in which a solenoid valve is connected to the side by a defrosting bypass circuit with an intervening solenoid valve, the solenoid valve opens at the water inlet of a water-cooled condenser and then closes a while after the solenoid valve closes. The gist is that a solenoid valve is provided that opens at the same time.

〔作用〕[Effect]

本発明によれば、水冷式凝縮器の水入口部の電磁弁とバ
イパス回路の電磁弁とを、除霜運転の初期の設定時間に
ついては、ともに開くことにより、その間水冷式凝縮器
の温度及び圧力が下がるから水冷式凝縮器から高温高圧
の冷媒ガスが逆方向に排出されることが防止され、蒸発
器内の液化量が1余々に増加することが阻止される。
According to the present invention, both the solenoid valve at the water inlet of the water-cooled condenser and the solenoid valve in the bypass circuit are opened for the initial setting time of the defrosting operation, thereby controlling the temperature of the water-cooled condenser during that time. Since the pressure is lowered, high-temperature, high-pressure refrigerant gas is prevented from being discharged in the opposite direction from the water-cooled condenser, and the amount of liquefaction in the evaporator is prevented from increasing by more than one unit.

さらに続いて、逆動作で合致させることにより、蒸発器
内の液化量を一定量に押さえ、一方除霜の終了をまって
水冷式性#@器の水入口部の電磁弁とバイパス回路の電
磁弁を開と閉にして冷却運転に切り換える。これにより
、除霜時にアキュムレーターから圧縮機へ冷媒液が吸入
されることはなくなる。
Furthermore, by matching the reverse operation, the amount of liquefaction in the evaporator is held down to a constant amount, while waiting for the end of defrosting, the solenoid valve at the water inlet of the water-cooled #@ container and the solenoid in the bypass circuit are Switch to cooling operation by opening and closing the valve. This prevents refrigerant liquid from being sucked into the compressor from the accumulator during defrosting.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明は、第2図に示すような圧縮機(1)、水冷式凝
縮器(2)、例えば膨張弁などの減圧装置(3)、蒸発
器(4)、アキュムレーター(5)を順次連結して冷凍
サイクルを構成し、圧縮機(1)の冷媒出口側と減圧装
置(3)の冷媒出口側とを結ぶバイパス回路(6)に設
けた電磁弁(6a)を設けた回路において、水冷式凝縮
器(2)の水入口部に特定の電磁弁(7)を設けた。
The present invention sequentially connects a compressor (1), a water-cooled condenser (2), a pressure reducing device (3) such as an expansion valve, an evaporator (4), and an accumulator (5) as shown in FIG. A refrigeration cycle is configured, and a water cooling A specific solenoid valve (7) was installed at the water inlet of the type condenser (2).

第1図の運転タイマチャー1−にもとづき、前記電磁弁
(7)の作用を中心に説明すると、図中斜線を施しであ
る時間帯が電磁弁(6a>(7)の開を示している。
Based on the operation timer 1- in Fig. 1, the operation of the solenoid valve (7) will be mainly explained. In the diagram, the hatched time period indicates the opening of the solenoid valve (6a>(7)). .

冷却運転は除霜終了時に冷却水用電磁弁(7)は開にし
、高温高圧冷媒ガス用電磁弁(6a)は閉にするもので
あり、これらはタイマー等に設定した時点に従ってそれ
ぞれの電磁弁に信号を送るものであり、冷却運転時の冷
凍装置の動作は従来例の場合とまったく同じであるから
説明を省略する。
In the cooling operation, when defrosting is finished, the cooling water solenoid valve (7) is opened and the high-temperature, high-pressure refrigerant gas solenoid valve (6a) is closed. The operation of the refrigeration system during cooling operation is exactly the same as in the conventional example, so the explanation will be omitted.

次に、除霜運転について説明すると、除霜開始の時点は
、タイマー等の設定に従って冷却水電磁弁(7)には閉
の信号を送らないでしばらく開の状態を続けさセ、一方
この間に高温高圧ガス用の電磁弁(6a)に信号を送っ
て閉にする。
Next, to explain the defrosting operation, when defrosting starts, the cooling water solenoid valve (7) is kept open for a while without sending a close signal according to the settings of the timer, etc. A signal is sent to the solenoid valve (6a) for high-temperature, high-pressure gas to close it.

そうすると、圧縮1J3i(1)から吐出される高温高
圧冷媒ガスの一部はバイパス回路の電磁弁(6a)を通
過して蒸発器(4)に流入するが、他は水冷式凝縮器(
2)に流入して、ここで水冷されて常温高圧の冷媒液と
なり、さらに減圧装置(3)をill過して低温低圧の
冷媒液となって蒸発器(4)に流入し、そこで蒸発する
から冷媒液のままでアキュムレーター(5)に流入する
量はきわめて少ない。
Then, a part of the high-temperature, high-pressure refrigerant gas discharged from the compression 1J3i (1) passes through the solenoid valve (6a) of the bypass circuit and flows into the evaporator (4), but the rest flows into the water-cooled condenser (
2), where it is water-cooled to become a room-temperature, high-pressure refrigerant liquid, and then passes through the pressure reducing device (3) to become a low-temperature, low-pressure refrigerant liquid that flows into the evaporator (4), where it evaporates. The amount of refrigerant that flows into the accumulator (5) as a refrigerant liquid is extremely small.

一方、高温高圧の冷媒ガスのまま電磁弁(6a)を通過
した冷媒ガスは、蒸発器(4)に流入して除霜のために
放熱して液化し、冷媒は流気混合状でアキュムレーター
(5)に送られ、ここで流気分離される。そこで、アキ
ュムレーター(5)の気液分離能力を勘案して適切な時
間を設定したうえで、水冷式凝縮器(2)の水入口部の
電磁弁(7)を信号によって閉にすると、水冷式凝縮器
(2)での冷却水の導入はストップし、冷却水による放
熱が停止されるから圧縮機(1)から吐出される高温高
圧の冷媒ガスの水冷式凝縮器(2)への流人が阻止され
、はとんどの高温高圧の冷媒ガスはバイパス回路(6)
の電磁弁(6)を通過することになる。その結果、蒸発
器(4)での高温高圧の冷媒ガスの液化量は一定量とな
りアキュムレーター(5)での気液分離能力の範囲でお
さまるように除霜時間を設定しておいて、水冷式凝縮器
の水入口部の電磁弁(7)を開き、電磁弁(6a)を閉
にする。
On the other hand, the refrigerant gas that has passed through the solenoid valve (6a) as a high-temperature, high-pressure refrigerant gas flows into the evaporator (4), radiates heat for defrosting, and liquefies. (5), where the stream is separated. Therefore, after setting an appropriate time in consideration of the gas-liquid separation capacity of the accumulator (5), the solenoid valve (7) at the water inlet of the water-cooled condenser (2) is closed by a signal. The introduction of cooling water to the water-cooled condenser (2) is stopped, and heat dissipation by the cooling water is stopped, so the flow of high temperature and high pressure refrigerant gas discharged from the compressor (1) to the water-cooled condenser (2) is stopped. People are blocked, and most high-temperature, high-pressure refrigerant gas is bypassed (6)
It passes through the solenoid valve (6). As a result, the amount of high-temperature, high-pressure refrigerant gas liquefied in the evaporator (4) is a constant amount, and the defrosting time is set so that it stays within the range of the gas-liquid separation capacity of the accumulator (5). Open the solenoid valve (7) at the water inlet of the type condenser, and close the solenoid valve (6a).

このようにすれば、アキュムレーター(5)より圧縮機
(1)に冷媒液が吸入されることはなく、除霜運転が冷
却運転に切り換えられる。
In this way, the refrigerant liquid is not sucked into the compressor (1) from the accumulator (5), and the defrosting operation is switched to the cooling operation.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の冷凍装置は、圧縮機、水冷式
凝縮器、減圧装置、蒸発器、アキュムレーターを順次接
続して冷凍サイクルを構成し、前記圧縮機の冷媒出口側
と減圧装置の冷媒出口側とを電磁弁を介在させた除霜用
のバイパス回路で連結した冷凍装置において、除霜運転
中に蒸発器での冷媒の液化量が一定量となり、しかもア
キュムレーターの気液分離能力の範囲内で除霜を完了さ
せることができるから、アキュムレーターより圧縮機へ
液冷媒が吸入されるいわゆる液戻りの不都合も解消され
る。その結果、圧縮機の寿命を延ばすことができる。ま
た、以上の除霜運転は小型のアキュムレーターでもその
気液分離能力の範囲内で可能であるから、冷凍装置を小
型化できるという効果もある。
As described above, the refrigeration system of the present invention configures a refrigeration cycle by sequentially connecting a compressor, a water-cooled condenser, a pressure reducing device, an evaporator, and an accumulator. In a refrigeration system in which the refrigerant outlet side is connected to the refrigerant outlet side by a defrosting bypass circuit with a solenoid valve, the amount of refrigerant liquefied in the evaporator is constant during defrosting operation, and the gas-liquid separation capacity of the accumulator is Since defrosting can be completed within this range, the inconvenience of so-called liquid return, where liquid refrigerant is sucked into the compressor from the accumulator, is also eliminated. As a result, the life of the compressor can be extended. Furthermore, since the above-mentioned defrosting operation is possible even with a small accumulator within its gas-liquid separation capacity, there is also the effect that the refrigeration apparatus can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の冷凍装置の実施例を示す運転タイムチ
ャート、第2図は冷凍装置のプロ・ツク図、第3図は従
来例を示す運転タイムチャートである。 (1)・・・圧縮機   (2)・・・水冷式凝縮器(
3)・・・減圧装置  (4)・・・蒸発器(5)・・
・アキュムレーター (6)・・・バイパス回路(6a)・・・電磁弁(7)
・・・電磁弁 代理人    弁理士  大音 増雄 第1図 闇  於 蛸了
FIG. 1 is an operation time chart showing an embodiment of the refrigeration system of the present invention, FIG. 2 is a program diagram of the refrigeration system, and FIG. 3 is an operation time chart showing a conventional example. (1)...Compressor (2)...Water-cooled condenser (
3)...Pressure reduction device (4)...Evaporator (5)...
・Accumulator (6)...Bypass circuit (6a)...Solenoid valve (7)
...Solenoid valve agent Patent attorney Masuo Oono Figure 1 Darkness Otakoryo

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、水冷式凝縮器、減圧装置、蒸発器、アキュムレ
ーターを順次接続して冷凍サイクルを構成し、前記圧縮
機の冷媒出口側と減圧装置の冷媒出口側とを電磁弁を介
在された除霜用のバイパス回路で連絡した冷凍装置にお
いて、水冷式凝縮器の水入口部に前記電磁弁が開いてか
らしばらくして閉じ、前記電磁弁が閉じると同時に開く
電磁弁を設けたことを特徴とする冷凍装置。
A refrigeration cycle is constructed by sequentially connecting a compressor, a water-cooled condenser, a pressure reducing device, an evaporator, and an accumulator. In the refrigeration system connected by a frost bypass circuit, a solenoid valve is provided at the water inlet of the water-cooled condenser, which closes after a while after the solenoid valve opens, and opens at the same time as the solenoid valve closes. refrigeration equipment.
JP3962886A 1986-02-25 1986-02-25 Refrigerator Pending JPS62196582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3962886A JPS62196582A (en) 1986-02-25 1986-02-25 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3962886A JPS62196582A (en) 1986-02-25 1986-02-25 Refrigerator

Publications (1)

Publication Number Publication Date
JPS62196582A true JPS62196582A (en) 1987-08-29

Family

ID=12558367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3962886A Pending JPS62196582A (en) 1986-02-25 1986-02-25 Refrigerator

Country Status (1)

Country Link
JP (1) JPS62196582A (en)

Similar Documents

Publication Publication Date Title
KR930002429B1 (en) Refrigerating cycle apparatus
JP3965717B2 (en) Refrigeration equipment and refrigerator
JPH09318205A (en) Refrigerating device
JPS62196582A (en) Refrigerator
JP3091594B2 (en) Refrigeration equipment
JPH06123527A (en) Refrigerating cycle of deep freezing refrigerating unit
JPH06185836A (en) Freezer
JPH09318229A (en) Refrigerating device
JPS62223570A (en) Method of controlling operation of refrigerator
JPH07234041A (en) Cascade refrigerating equipment
JPH03170758A (en) Air conditioner
JPH028660A (en) Freezer
JPH11304265A (en) Air conditioner
JPH0821664A (en) Refrigerating cycle device
JPH08313121A (en) Refrigerating device
JP2004218855A (en) Vapor compression type refrigerating machine
JPS6015081Y2 (en) Refrigeration equipment
JPS5852148B2 (en) Two-stage compression refrigeration equipment
JPH07127935A (en) Cascade freezing device
JPH025336Y2 (en)
JPS595815B2 (en) Two-stage compression refrigeration equipment
JPH0429345Y2 (en)
JPH109727A (en) Freezer
JP2001272141A (en) Cooling device
JPH0459546B2 (en)