JPS5852148B2 - Two-stage compression refrigeration equipment - Google Patents

Two-stage compression refrigeration equipment

Info

Publication number
JPS5852148B2
JPS5852148B2 JP5480678A JP5480678A JPS5852148B2 JP S5852148 B2 JPS5852148 B2 JP S5852148B2 JP 5480678 A JP5480678 A JP 5480678A JP 5480678 A JP5480678 A JP 5480678A JP S5852148 B2 JPS5852148 B2 JP S5852148B2
Authority
JP
Japan
Prior art keywords
circuit
defrosting
refrigerant
stage compressor
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5480678A
Other languages
Japanese (ja)
Other versions
JPS54146048A (en
Inventor
明 原
功 阪上
治 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5480678A priority Critical patent/JPS5852148B2/en
Publication of JPS54146048A publication Critical patent/JPS54146048A/en
Publication of JPS5852148B2 publication Critical patent/JPS5852148B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting

Landscapes

  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】 この発明は、除霜回路を備えた二段圧縮冷凍装置の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a two-stage compression refrigeration system equipped with a defrosting circuit.

まず、従来の二段圧縮冷凍装置を第1図により説明する
First, a conventional two-stage compression refrigeration system will be explained with reference to FIG.

図において、1は低段側圧縮機2と高段側圧機3とを備
えた二段圧縮装置、4は一端を高段側圧縮機3の吐出側
に接続された凝縮器、5は一端を凝縮器4の他端に接続
された液溜、6は中間冷却器であって、冷却部の一端を
中間回路の絞り装置7と中間回路の開閉弁8とを介して
液溜5の他端に、他端を高段側圧縮機3の吸入側に接続
され、被冷却部の一端を冷却回路の開閉弁9を介して液
溜5の他端に接続されている。
In the figure, 1 is a two-stage compression device equipped with a low-stage compressor 2 and a high-stage compressor 3, 4 is a condenser with one end connected to the discharge side of the high-stage compressor 3, and 5 is a condenser with one end connected to the discharge side of the high-stage compressor 3. A liquid reservoir 6 connected to the other end of the condenser 4 is an intercooler, and one end of the cooling part is connected to the other end of the liquid reservoir 5 through a throttle device 7 of the intermediate circuit and an on-off valve 8 of the intermediate circuit. The other end is connected to the suction side of the high-stage compressor 3, and one end of the cooled part is connected to the other end of the liquid reservoir 5 via an on-off valve 9 of the cooling circuit.

10は一端を中間冷却器6の被冷却部の他端に接続され
た冷却回路の絞り装置、11は一端を冷却回路の絞り装
置10の他端と高段側圧縮機3の吐出側とに接続された
冷却器、12は一端を冷却器11の他端に、他端を低段
側圧縮機2の吸入側に接続されたアキュームレータ、1
3は高段側圧縮機3の吐出側と冷却器11との間に設け
られた除霜回路の開閉弁、14は凝縮器用送風機、15
は冷却器用送風機である。
10 is a cooling circuit throttle device whose one end is connected to the other end of the cooled portion of the intercooler 6; 11 is a cooling circuit throttle device whose one end is connected to the other end of the cooling circuit throttle device 10 and the discharge side of the high-stage compressor 3; The connected cooler 12 is an accumulator 1 whose one end is connected to the other end of the cooler 11 and the other end is connected to the suction side of the low stage compressor 2.
3 is an on-off valve for a defrosting circuit provided between the discharge side of the high-stage compressor 3 and the cooler 11; 14 is a condenser blower; 15
is a cooler blower.

そして、100は冷却回路であって、高段側圧縮機3の
吐出側かち凝縮器4、液溜5、冷却回路の開閉弁9、中
間冷却器6、冷却回路の絞り装置10、冷却器11およ
びアキュームレータ12を経て低段側圧縮機2の吸入側
に至る回路で構成されている。
100 is a cooling circuit, which includes a condenser 4 on the discharge side of the high-stage compressor 3, a liquid reservoir 5, an on-off valve 9 for the cooling circuit, an intercooler 6, a throttle device 10 for the cooling circuit, and a cooler 11. and a circuit that connects to the suction side of the low-stage compressor 2 via the accumulator 12.

200は中間回路であって、冷却回路100の液溜5の
出口側から分岐して中間回路の開閉弁8、中間回路の絞
り装置7および中間冷却器6を経て高段側圧縮機3の吸
入側に至る回路で構成されている。
Reference numeral 200 denotes an intermediate circuit, which branches off from the outlet side of the liquid reservoir 5 of the cooling circuit 100 and passes through the intermediate circuit on-off valve 8, the intermediate circuit throttling device 7, and the intercooler 6 to supply the suction to the high-stage compressor 3. It consists of a circuit that goes to the side.

300は除霜回路であって、高段側圧縮機3の吐出側か
ら除霜回路の開閉弁13、゛冷却器11およびアキュー
ムレータ12を経て低段側圧縮機2の吸入側に至る回路
で構成されている。
Reference numeral 300 denotes a defrosting circuit, which is comprised of a circuit that runs from the discharge side of the high-stage compressor 3 to the suction side of the low-stage compressor 2 via the defrosting circuit's on-off valve 13, the cooler 11, and the accumulator 12. has been done.

このように構成されたものにおいて、冷却運転時には冷
却回路の開閉弁9と中間回路の開閉弁8とを開路し、除
霜回路の開閉弁13を閉路して、冷却回路100と中間
回路200とに冷媒を供給する。
In the device configured in this way, during cooling operation, the cooling circuit on-off valve 9 and the intermediate circuit on-off valve 8 are opened, the defrosting circuit on-off valve 13 is closed, and the cooling circuit 100 and the intermediate circuit 200 are connected. supply refrigerant to.

即ち、第1図に示す実線矢印のように冷媒を循環させる
That is, the refrigerant is circulated as shown by the solid line arrows in FIG.

そして、除霜運転時には冷却回路の開閉弁9を閉路し、
除霜回路の開閉弁13と中間回路の開閉弁8とを開路し
て、除霜回路300と中間回路200とに冷媒を供給す
る。
Then, during defrosting operation, the on-off valve 9 of the cooling circuit is closed,
The defrosting circuit on-off valve 13 and the intermediate circuit on-off valve 8 are opened to supply refrigerant to the defrosting circuit 300 and the intermediate circuit 200.

即ち、第1図に示す破線矢印のように冷媒を循環させる
That is, the refrigerant is circulated as indicated by the broken line arrows in FIG.

このように、通常の冷却運転時および除霜運転時には中
間回路200にも冷媒を循環させて、高段側圧縮機3の
吐出冷媒ガス温度、電動機温度および油温などの上昇を
防止するようになされている。
In this way, during normal cooling operation and defrosting operation, the refrigerant is also circulated in the intermediate circuit 200 to prevent the temperature of the refrigerant gas discharged from the high-stage compressor 3, the motor temperature, the oil temperature, etc. from rising. being done.

ところが、除霜運転時においては、凝縮器4に供給され
る冷媒ガス量が少ないため、冷媒ガス量に対して凝縮器
4の凝縮能力が必要以上に過大となり、特に凝縮器用送
風機14を用いる空冷凝縮装置にあっては、外気温度の
低いときに一層顕著に過大となるため、液溜5内に多量
の冷媒液が溜り除霜回路300を循環する冷媒循環量が
不足して冷却器11での加熱量が減少する。
However, during defrosting operation, since the amount of refrigerant gas supplied to the condenser 4 is small, the condensing capacity of the condenser 4 becomes more than necessary relative to the amount of refrigerant gas, and in particular, air cooling using the condenser blower 14 In the condensing device, the amount of refrigerant increases significantly when the outside temperature is low, so a large amount of refrigerant liquid accumulates in the liquid reservoir 5, and the amount of refrigerant circulated through the defrosting circuit 300 is insufficient, causing the cooler 11 to become overheated. The amount of heating is reduced.

よって、除霜能力を極端に低下させ、除霜のために長時
間運転を要するなど運転効率を悪くする。
Therefore, the defrosting ability is extremely reduced, and the operating efficiency is deteriorated, such as requiring long hours of operation for defrosting.

そして、液溜5内には逐次冷媒液が蓄積されるため、除
霜運転時に中間回路200を流れる冷媒循環量も不足す
る。
Since the refrigerant liquid is accumulated in the liquid reservoir 5 one after another, the amount of refrigerant circulated through the intermediate circuit 200 during the defrosting operation also becomes insufficient.

よって、高段側圧縮機3の吐出冷媒ガス温度、電動機温
度および油温などを上昇させ、冷媒回路に設けられであ
る各種の保護装置が作動して除霜運転を停止させ、安定
した除霜運転が行えなくなるなどの欠点があった。
Therefore, the discharge refrigerant gas temperature, motor temperature, oil temperature, etc. of the high-stage compressor 3 are increased, and various protection devices installed in the refrigerant circuit are activated to stop the defrosting operation, resulting in stable defrosting. There were drawbacks such as the inability to drive.

また、除霜運転時に冷却器11を加熱して凝縮した冷媒
液がアキュームレータ12に供給されて溜る。
Further, during the defrosting operation, the refrigerant liquid that is condensed by heating the cooler 11 is supplied to the accumulator 12 and accumulated therein.

よって、着霜量が多くて比較的長時間の除霜運転を行う
ときには、アキュームレータ12内に蓄積される冷媒液
量が多くなり、低段側圧縮機2の吸入側に冷媒液が供給
され、液バツク運転の生じる欠点もあった。
Therefore, when there is a large amount of frost and a relatively long defrosting operation is performed, the amount of refrigerant liquid accumulated in the accumulator 12 increases, and the refrigerant liquid is supplied to the suction side of the low stage compressor 2. There was also the drawback of liquid back-up operation.

この発明は、上述した欠点を除去するためになされたも
のであって、除霜運転時には、凝縮器へ冷媒を供給せず
に、除霜回路より分岐してアキュームレータ内の熱交換
器を経て高段側圧縮機の吸入側に至る回路に冷媒を供給
するようにするものである。
This invention was made in order to eliminate the above-mentioned drawbacks. During defrosting operation, refrigerant is not supplied to the condenser, but instead is branched from the defrost circuit and sent to the high temperature via the heat exchanger in the accumulator. The refrigerant is supplied to the circuit leading to the suction side of the stage side compressor.

以下、この発明の一実施例を第2図により説明する。An embodiment of the present invention will be described below with reference to FIG.

図において、第1図と同じ符号をつけである部分は第1
図に同一または相当する部分である16は開路切替装置
である三方弁であって、高段側圧縮機3の吐出側を凝縮
器4と冷却器11とにそれぞれ接続する回路の分岐部に
設けられ、何れか一方を開路し他方を閉路するように構
成されている。
In the figure, parts with the same reference numerals as in Figure 1 are numbered 1.
Reference numeral 16, which is the same or equivalent part in the figure, is a three-way valve that is an open circuit switching device, and is installed at a branch part of the circuit that connects the discharge side of the high-stage compressor 3 to the condenser 4 and the cooler 11, respectively. The circuit is configured to open one of the circuits and close the other.

17はアキュームレータ内に設けられ熱交換器であって
、三方弁16と冷却器11とを接続する回路に一端を接
続されている。
A heat exchanger 17 is provided in the accumulator, and one end thereof is connected to a circuit connecting the three-way valve 16 and the cooler 11.

18は一端を熱交換器17の他端に、他端を高段側圧縮
機3の吸入側に接続された絞り装置である。
Reference numeral 18 denotes a throttle device having one end connected to the other end of the heat exchanger 17 and the other end connected to the suction side of the high stage compressor 3.

そして、100は高段側圧縮機3の吐出側から三方弁1
6および凝縮器4ほかを経て低段側圧縮機2の吸入側に
至る冷却回路、200は中間回路、300は高段側圧縮
機3の吐出側から三方弁16および冷却器11ほかを経
て低段側圧縮機2の吸入側に至る除霜回路、400は除
霜回路300の三方弁16と冷却器11との間から分岐
して熱交換器17および絞り装置18を経て高段側圧縮
機3の吸入側に至る除霜時用中間回路である。
100 is a three-way valve 1 from the discharge side of the high-stage compressor 3.
6 and the condenser 4, etc., to the suction side of the low-stage compressor 2, 200 is an intermediate circuit, and 300 is a cooling circuit from the discharge side of the high-stage compressor 3 through the three-way valve 16, the cooler 11, etc. A defrosting circuit 400 leads to the suction side of the stage side compressor 2, which branches from between the three-way valve 16 of the defrosting circuit 300 and the cooler 11, passes through the heat exchanger 17 and the throttling device 18, and then connects to the high stage compressor. This is an intermediate circuit for defrosting that leads to the suction side of No. 3.

なお、他の部分については説明を省略する。Note that explanations of other parts will be omitted.

次に作用を説明する。Next, the effect will be explained.

冷却運転時には、三方弁16を制御して冷却回路100
側を開略し、同時に冷却回路の開閉弁9と中間回路の開
閉弁8とを開路して、冷却回路100と中間回路200
とに冷媒を供給する。
During cooling operation, the three-way valve 16 is controlled to close the cooling circuit 100.
side, and at the same time open the cooling circuit on-off valve 9 and the intermediate circuit on-off valve 8 to open the cooling circuit 100 and the intermediate circuit 200.
and supply refrigerant.

即ち、第2図に示す実線矢印のように冷媒を循環させる
That is, the refrigerant is circulated as indicated by the solid line arrows in FIG.

よって、高段側圧縮機3の吐出側から吐出された冷媒ガ
スは、凝縮器4で凝縮されて冷媒液となり液溜5に溜る
Therefore, the refrigerant gas discharged from the discharge side of the high-stage compressor 3 is condensed in the condenser 4 and becomes a refrigerant liquid, which is accumulated in the liquid reservoir 5.

そして、冷却回路100と中間回路200とに分流され
る。
The water is then divided into the cooling circuit 100 and the intermediate circuit 200.

冷却回路100を流れる冷媒液は中間冷却器6で過冷却
されて、冷却回路の絞り装置10で減圧され、冷却器1
1で被冷却物を冷却して蒸発し、アキュームレータ12
を経て低段側圧縮機2の吸入側に吸入され圧縮される。
The refrigerant liquid flowing through the cooling circuit 100 is supercooled in the intercooler 6, and is depressurized in the cooling circuit throttling device 10.
The object to be cooled is cooled and evaporated in step 1, and
The air is drawn into the suction side of the low-stage compressor 2 and compressed.

一方、中間回路200を流れる冷媒液は中間回路の絞り
装置7で減圧されて、中間冷却器6で冷却回路100を
流れる冷媒液と熱交換して蒸発し、高段側圧縮機3の吸
入側に吸入されて、高段側圧縮機3の吐出冷媒ガス温度
、電動機温度および油温などの上昇を防止する。
On the other hand, the refrigerant liquid flowing through the intermediate circuit 200 is depressurized by the throttle device 7 of the intermediate circuit, and is evaporated by exchanging heat with the refrigerant liquid flowing through the cooling circuit 100 in the intercooler 6, and is then evaporated on the suction side of the high-stage compressor 3. This prevents increases in the temperature of the refrigerant gas discharged from the high-stage compressor 3, the motor temperature, the oil temperature, etc.

また、除霜運転時には、三方弁16を制御して除霜回路
300側を開路し、同時に冷却回路の開閉弁9と中間回
路の開閉弁8とを閉路して、除霜回路300と除霜時用
中間回路400とに冷媒を供給する。
In addition, during defrosting operation, the three-way valve 16 is controlled to open the defrosting circuit 300 side, and at the same time, the cooling circuit on-off valve 9 and the intermediate circuit on-off valve 8 are closed, so that the defrosting circuit 300 and the defrosting circuit 300 are closed. Refrigerant is supplied to the intermediate circuit 400.

即ち、第2図に示す破線矢印のように冷媒を循環させる
That is, the refrigerant is circulated as indicated by the broken line arrow in FIG.

よって、高段側圧縮機3の吐出側から吐出された冷媒ガ
スは、除霜回路300と除霜時用中間回路400とに分
流される。
Therefore, the refrigerant gas discharged from the discharge side of the high-stage compressor 3 is divided into the defrosting circuit 300 and the intermediate circuit 400 for defrosting.

除霜回路300を流れる冷媒ガスは、冷却器11を加熱
して除霜を行い、アキュームレータ12を経て低段側圧
縮機2の吸入側に吸入され圧縮される。
The refrigerant gas flowing through the defrosting circuit 300 heats the cooler 11 to defrost it, passes through the accumulator 12, is sucked into the suction side of the low-stage compressor 2, and is compressed.

一方、除霜時用中間回路400を流れる冷媒ガスは熱交
換器1Tに供給されて、アキュームレータ12内に溜っ
ている冷媒液を加熱して蒸発させることにより一部は冷
媒液となり、絞り装置18で減圧されて蒸発し、高段側
圧縮機3の吸入側に吸入されて、高段側圧縮機3の吐出
ガス温度、電動機温度および油温などの上昇を防止する
On the other hand, the refrigerant gas flowing through the intermediate circuit 400 for defrosting is supplied to the heat exchanger 1T, which heats and evaporates the refrigerant liquid accumulated in the accumulator 12, so that a part of the refrigerant gas becomes refrigerant liquid, and the expansion device 18 The gas is depressurized and evaporated, and is sucked into the suction side of the high-stage compressor 3, thereby preventing increases in the discharge gas temperature, motor temperature, oil temperature, etc. of the high-stage compressor 3.

以上のように、この発明によると、冷却回路と除霜回路
と除霜時用中間回路とを備え、除霜時には上記冷却回路
へ冷媒を供給せずに上記除霜回路と除霜時用中間回路と
へ冷媒を供給するようにしであるため、除霜運転時に液
溜内に冷媒液の蓄積されることがない。
As described above, according to the present invention, the cooling circuit, the defrosting circuit, and the intermediate circuit for defrosting are provided, and during defrosting, the defrosting circuit and the intermediate circuit for defrosting are provided without supplying refrigerant to the cooling circuit. Since the refrigerant is supplied to the circuit, refrigerant liquid does not accumulate in the liquid reservoir during defrosting operation.

よって、上記除霜回路を循環する冷媒循環量を適正に維
持することができ、除霜能力の低下がなく、運転効率の
良い除霜運転が行える。
Therefore, the amount of refrigerant circulated through the defrosting circuit can be maintained appropriately, and defrosting performance can be maintained without deterioration and defrosting operation with high operational efficiency can be performed.

そして、高段側圧縮機には上記除霜時用中間回路を経て
冷媒が供給されるため、上記高段側圧縮機の吐出ガス温
度、電動機温度および油温などの上昇を防止することが
でき、安定した除霜運転が行える。
Since the refrigerant is supplied to the high-stage compressor through the intermediate circuit for defrosting, it is possible to prevent the discharge gas temperature, motor temperature, oil temperature, etc. of the high-stage compressor from rising. , stable defrosting operation can be performed.

また、上記除霜時用中間回路に設けられた熱交換器によ
りアキュームレータ内の冷媒液を加熱して蒸発させるよ
うにしであるため、上記アキュームレータ内に冷媒液が
多量に蓄積されることがなく、低段側圧縮機に冷媒液の
供給される液バツク運転をすることができるなどの効果
が得られる。
Moreover, since the refrigerant liquid in the accumulator is heated and evaporated by the heat exchanger provided in the intermediate circuit for defrosting, a large amount of refrigerant liquid does not accumulate in the accumulator, Effects such as liquid backup operation in which refrigerant liquid is supplied to the lower stage compressor can be obtained.

なお、上記実施例においては、凝縮装置として凝縮器用
送風機を用いた空冷凝縮装置について説明しであるが、
水冷凝縮装置など他の凝縮装置を用いても同様の効果が
得られる。
In addition, in the above embodiment, an air-cooled condensing device using a condenser blower is described as a condensing device, but
Similar effects can be obtained using other condensing devices such as a water-cooled condensing device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の二段圧縮冷凍装置を示す冷媒回路図、第
2図はこの発明の一実施例を示す二段圧縮冷凍装置の冷
媒回路図である。 図中、1は二段圧縮装置、4は凝縮器、11は冷却器、
12はアキュームレータ、16は三方弁、1Tは熱交換
器、100は冷却回路、300は除霜回路、400は除
霜時用中間回路である。 なお、図中同一符号は同一または相当部分を示す。
FIG. 1 is a refrigerant circuit diagram showing a conventional two-stage compression refrigeration system, and FIG. 2 is a refrigerant circuit diagram of a two-stage compression refrigeration system showing an embodiment of the present invention. In the figure, 1 is a two-stage compression device, 4 is a condenser, 11 is a cooler,
12 is an accumulator, 16 is a three-way valve, 1T is a heat exchanger, 100 is a cooling circuit, 300 is a defrosting circuit, and 400 is an intermediate circuit for defrosting. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 低段側圧縮機と高段側圧縮機とを有する二段圧縮装
置、冷却運転回路と除霜運転回路とに冷媒回路を切替制
御する回路切替装置、凝縮器、絞り装置、冷却器および
アキュームレータを順次連通してなる冷却回路と、上記
二段圧縮装置、上記回路切替装置、上記冷却器および上
記アキュームレータを順次連通してなる除霜回路と、こ
の除霜回路の上記回路切替装置と冷却器との間から分岐
して、上記アキュームレータ内に設けられた熱交換器を
経て、上記高段側圧縮機の吸入側に至る除霜時用中間回
路とを備え、除霜運転時には、上記回路切替装置を切替
制御して、上記除霜回路と除霜時用中間回路とに冷媒を
供給するようにしたことを特徴とする二段圧縮冷凍装置
1. Two-stage compression device having a low-stage compressor and a high-stage compressor, a circuit switching device that switches and controls a refrigerant circuit between a cooling operation circuit and a defrosting operation circuit, a condenser, a throttle device, a cooler, and an accumulator. a cooling circuit in which the two-stage compression device, the circuit switching device, the cooler, and the accumulator are connected in sequence; a defrosting circuit in which the defrosting circuit has the circuit switching device and the cooler; and an intermediate circuit for defrosting which branches off from between and passes through a heat exchanger provided in the accumulator to the suction side of the high-stage compressor, and during defrosting operation, the circuit is switched. A two-stage compression refrigeration device, characterized in that the device is switched and controlled to supply refrigerant to the defrosting circuit and the intermediate circuit for defrosting.
JP5480678A 1978-05-08 1978-05-08 Two-stage compression refrigeration equipment Expired JPS5852148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5480678A JPS5852148B2 (en) 1978-05-08 1978-05-08 Two-stage compression refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5480678A JPS5852148B2 (en) 1978-05-08 1978-05-08 Two-stage compression refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS54146048A JPS54146048A (en) 1979-11-14
JPS5852148B2 true JPS5852148B2 (en) 1983-11-21

Family

ID=12980966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5480678A Expired JPS5852148B2 (en) 1978-05-08 1978-05-08 Two-stage compression refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS5852148B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60227520D1 (en) * 2001-07-02 2008-08-21 Sanyo Electric Co HEAT PUMP DEVICE
EP1775531A1 (en) * 2005-10-12 2007-04-18 GTI Koudetechnik B.V. Apparatus and system for cooling and/or freezing and defrosting
JP2014224644A (en) * 2013-05-16 2014-12-04 シャープ株式会社 Heat pump device

Also Published As

Publication number Publication date
JPS54146048A (en) 1979-11-14

Similar Documents

Publication Publication Date Title
KR930002429B1 (en) Refrigerating cycle apparatus
US5381671A (en) Air conditioning apparatus with improved ice storage therein
US4318277A (en) Non-reverse hot gas defrost system
JP3823706B2 (en) Air conditioner
JPH06337171A (en) Refrigerating device
JPS5852148B2 (en) Two-stage compression refrigeration equipment
JPS595815B2 (en) Two-stage compression refrigeration equipment
JPS5852147B2 (en) Two-stage compression refrigeration equipment
JPS595814B2 (en) Two-stage compression refrigeration equipment
JPS5842842Y2 (en) Two-stage compression refrigeration equipment
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP2924460B2 (en) Air conditioner
JPH06185836A (en) Freezer
JPH10311614A (en) Heat storage type cooling device
KR100727124B1 (en) Thermal storage airconditioner
JPS6036843Y2 (en) heat pump equipment
JP3626927B2 (en) Gas heat pump type air conditioner
JP3709663B2 (en) Refrigeration equipment
JPH025336Y2 (en)
JPH04320774A (en) Freezer device
JPH11173689A (en) Heat storage type cooling device
KR100362465B1 (en) Airconditioner for vehicles having dual evaporator struction
JP4159409B2 (en) Air conditioner
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof