JPS595815B2 - Two-stage compression refrigeration equipment - Google Patents

Two-stage compression refrigeration equipment

Info

Publication number
JPS595815B2
JPS595815B2 JP11762579A JP11762579A JPS595815B2 JP S595815 B2 JPS595815 B2 JP S595815B2 JP 11762579 A JP11762579 A JP 11762579A JP 11762579 A JP11762579 A JP 11762579A JP S595815 B2 JPS595815 B2 JP S595815B2
Authority
JP
Japan
Prior art keywords
circuit
defrosting
cooler
stage compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11762579A
Other languages
Japanese (ja)
Other versions
JPS5642067A (en
Inventor
功 阪上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11762579A priority Critical patent/JPS595815B2/en
Publication of JPS5642067A publication Critical patent/JPS5642067A/en
Publication of JPS595815B2 publication Critical patent/JPS595815B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Description

【発明の詳細な説明】 この発明は、除霜回路を備えた二段圧縮冷凍装置の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a two-stage compression refrigeration system equipped with a defrosting circuit.

まず、従来の二段圧縮冷凍装置を第1図により説明する
First, a conventional two-stage compression refrigeration system will be explained with reference to FIG.

図にお(・て1は低段側圧縮機2と高段側圧縮機3とを
備えた二段圧縮装置、4は一端が高段側圧縮機3の吐出
側に接続された凝縮器、4は一端が高段側圧縮機3の吐
出側に接続された凝縮器、5は一端を凝縮器4の他端に
接続されだ液溜、6は中間冷却器であって、冷却部の一
端は中間回路の絞り装置7と中間回路の開閉弁8とを介
して液溜5の他端に、他端は高段側圧縮機3の吸入側に
それぞれ接続されている。
In the figure (1 is a two-stage compression device equipped with a low-stage compressor 2 and a high-stage compressor 3, 4 is a condenser whose one end is connected to the discharge side of the high-stage compressor 3, 4 is a condenser whose one end is connected to the discharge side of the high-stage compressor 3; 5 is a reservoir whose one end is connected to the other end of the condenser 4; and 6 is an intercooler, one end of the cooling section. is connected to the other end of the liquid reservoir 5 via the throttle device 7 of the intermediate circuit and the on-off valve 8 of the intermediate circuit, and the other end is connected to the suction side of the high-stage compressor 3, respectively.

また、中間冷却器6の被冷却部の一端は冷却回路の開閉
弁9を介して液溜5の他端に接続されている。
Further, one end of the cooled portion of the intercooler 6 is connected to the other end of the liquid reservoir 5 via an on-off valve 9 of the cooling circuit.

10は一端が中間冷却器6の被冷却部の他端に接続され
た冷却回路の絞り装置、11は一端が冷却回路の絞り装
置10の他端に接続された冷却器、12は一端が冷却器
11の他端に、他端が低段側圧縮機2の吸入側に接続さ
れたアキュムレータ、13は一端を高段側圧縮機3の吐
出側に接続された除霜回路の開閉弁、14は一端は除霜
回路の開閉弁13の他端に、他端は冷却器11の一端に
接続されたドレンパンコイル、15は冷却器11の下方
に設けられ、ドレンパンコイル14を装置したドレンパ
ン、16はドレンパン150ドレン排出口、17は凝縮
器用送風機、18は冷却器用送風機である。
10 is a cooling circuit throttle device whose one end is connected to the other end of the cooled part of the intercooler 6; 11 is a cooler whose one end is connected to the other end of the cooling circuit throttle device 10; and 12 is a cooling circuit whose one end is connected to the other end of the cooling circuit. At the other end of the container 11, there is an accumulator whose other end is connected to the suction side of the low-stage compressor 2; 13 is an on-off valve for a defrosting circuit whose one end is connected to the discharge side of the high-stage compressor 3; 14; A drain pan coil 15 is provided below the cooler 11 and has one end connected to the other end of the opening/closing valve 13 of the defrosting circuit and the other end is connected to one end of the cooler 11. A drain pan 16 is provided below the cooler 11 and is equipped with the drain pan coil 14. 1 is a drain outlet of the drain pan 150, 17 is a condenser blower, and 18 is a cooler blower.

そして、100は冷却回路であって、高段側圧縮機3の
吐出側から凝縮器4、液溜5、冷却回路の開閉弁9、中
間冷却器6、冷却回路の絞り装置10、冷却器11およ
びアキュムレータ12を経て低段側圧縮機2の吸入側に
至る回路で構成されている。
Reference numeral 100 denotes a cooling circuit, from the discharge side of the high-stage compressor 3 to a condenser 4, a liquid reservoir 5, a cooling circuit opening/closing valve 9, an intercooler 6, a cooling circuit throttling device 10, and a cooler 11. and a circuit that connects to the suction side of the low-stage compressor 2 via the accumulator 12.

200は中間回路であって、冷却回路100の液溜5の
出口側から分岐して中間回路の開閉弁8、中間回路の絞
り装置7および中間冷却器6を経て高段側圧縮機3の吸
入側に至る回路で構成されている。
Reference numeral 200 denotes an intermediate circuit, which branches off from the outlet side of the liquid reservoir 5 of the cooling circuit 100 and passes through the intermediate circuit on-off valve 8, the intermediate circuit throttling device 7, and the intercooler 6 to supply the suction to the high-stage compressor 3. It consists of a circuit that goes to the side.

300は除霜回路であって、高段側圧縮機3の吐出側か
ら除霜回路の開閉弁13、ドレンパンコイル12を経て
低段側圧縮機2の吸入側に至る回路で構成されている。
Reference numeral 300 denotes a defrosting circuit, which is comprised of a circuit extending from the discharge side of the high-stage compressor 3 to the suction side of the low-stage compressor 2 via the defrosting circuit on-off valve 13 and drain pan coil 12.

このように構成されたものにおいて、冷却運転時には、
冷却回路の開閉弁9と中間回路の開閉弁3とを開略し、
除霜回路の開閉弁13を閉路して、冷却回路100と中
間回路200とに冷媒を供給する。
With this configuration, during cooling operation,
The cooling circuit on-off valve 9 and the intermediate circuit on-off valve 3 are opened,
The opening/closing valve 13 of the defrosting circuit is closed to supply refrigerant to the cooling circuit 100 and the intermediate circuit 200.

即ち、第1図に示す実線矢印のように冷媒を循環させる
That is, the refrigerant is circulated as shown by the solid line arrows in FIG.

そして、除霜運転時には冷却回路の開閉弁9を閉路し、
除霜回路の開閉弁13と中間回路の開閉弁8とを開路し
て、除霜回路300と中間回路200とに冷媒を供給す
る。
Then, during defrosting operation, the on-off valve 9 of the cooling circuit is closed,
The defrosting circuit on-off valve 13 and the intermediate circuit on-off valve 8 are opened to supply refrigerant to the defrosting circuit 300 and the intermediate circuit 200.

即ち、第1図に示す破線矢印のように冷媒を循環させる
That is, the refrigerant is circulated as indicated by the broken line arrows in FIG.

このように、通常の冷却運転時および除霜運転時には中
間回路200にも冷媒を循環させて、高段側圧縮機3の
吐出冷媒ガス温度、電動機温度および油温などの上昇を
防止するようになされている。
In this way, during normal cooling operation and defrosting operation, the refrigerant is also circulated in the intermediate circuit 200 to prevent the temperature of the refrigerant gas discharged from the high-stage compressor 3, the motor temperature, the oil temperature, etc. from rising. being done.

ところが、除霜運転時においては、凝縮器4に供給され
る冷媒ガス量が少ないため、冷媒ガス量に対して凝縮器
4の凝縮能力が必要以上に過大となり、特に凝縮器用送
風機17を用いる空冷凝縮装置にあっては、外気温度の
低いときに一層顕著に過大となるため、液溜5内に多量
の冷媒液が溜り、除霜回路300を循環する冷媒循環量
が不足して、冷却器11での加熱量が減少する。
However, during defrosting operation, since the amount of refrigerant gas supplied to the condenser 4 is small, the condensing capacity of the condenser 4 becomes more than necessary relative to the amount of refrigerant gas. In the condensing device, the amount of refrigerant increases significantly when the outside temperature is low, so a large amount of refrigerant liquid accumulates in the liquid reservoir 5, and the amount of refrigerant circulating through the defrosting circuit 300 becomes insufficient, causing the cooling The amount of heating at 11 is reduced.

よって、除霜能力を極端に低下させ、除霜のために長時
間運転を要するなど運転効率を悪(する。
Therefore, the defrosting ability is extremely reduced, and the operating efficiency is deteriorated, such as requiring long hours of operation for defrosting.

そして、液溜5内に遂次冷媒液が蓄積されるため、除霜
運転時に中間回路200を流れる冷媒循環量も不足する
Since the refrigerant liquid is successively accumulated in the liquid reservoir 5, the amount of refrigerant circulated through the intermediate circuit 200 during the defrosting operation also becomes insufficient.

よって、高段側圧縮機3の吐出冷媒ガス温度、電動機温
度および油温などを上昇させ、冷媒回路に設けられであ
る各種の保護装置が作動して除霜運転を停止させ、安定
した除霜運転が行なえなくなるなどの欠点があった。
Therefore, the discharge refrigerant gas temperature, motor temperature, oil temperature, etc. of the high-stage compressor 3 are increased, and various protection devices installed in the refrigerant circuit are activated to stop the defrosting operation, resulting in stable defrosting. There were drawbacks such as the inability to drive.

また、高段側圧縮機3から吐出された冷媒ガスは、ドレ
ンパンコイル14を加熱してから冷却器11に供給され
るため、冷却器11での加熱力が弱く、除霜に長時間の
除霜運転を要する欠点があり、加熱する順序を逆にして
、先に冷却器11を加熱すると、ドレンパンコイル14
での加熱力が弱くなり、ドレンパン15に落下したドレ
ンパンが凍結して排水不能となるなどの欠点があった。
In addition, since the refrigerant gas discharged from the high-stage compressor 3 is supplied to the cooler 11 after heating the drain pan coil 14, the heating power in the cooler 11 is weak, and defrosting takes a long time. There is a drawback that frost operation is required, and if the heating order is reversed and the cooler 11 is heated first, the drain pan coil 14
There were disadvantages such as the heating power in the drain pan 15 becoming weaker and the drain pan falling into the drain pan 15 freezing and making it impossible to drain water.

この発明は、上述した欠点を除去するためになされたも
のである。
This invention has been made to eliminate the above-mentioned drawbacks.

以下、この発明の一実施例を第2図により説明する。An embodiment of the present invention will be described below with reference to FIG.

同図において、第1図と同じ符号をつけである部分は第
1図に同一または相当する部分である。
In this figure, parts with the same reference numerals as in FIG. 1 are the same as or correspond to those in FIG. 1.

19は回路切替装置である三方弁であって、高段側圧縮
機3の吐出側を凝縮器4と冷却器11とにそれぞれ接続
する回路の分岐部に設けられ、何れか一方を開路し他方
を閉路するように構成されている。
Reference numeral 19 denotes a three-way valve which is a circuit switching device, and is provided at a branch part of a circuit that connects the discharge side of the high-stage compressor 3 to the condenser 4 and the cooler 11, respectively, so that one of the valves is opened and the other is closed. It is configured to close the circuit.

20は補助熱交換器であるドレンパンコイルであって、
一端を三方弁19と冷却器11とを接続する回路に接続
されており、もう一端は、中間回路200の開閉弁8と
中間回路200の絞り装置7間へ接続されている。
20 is a drain pan coil which is an auxiliary heat exchanger,
One end is connected to a circuit connecting the three-way valve 19 and the cooler 11, and the other end is connected between the on-off valve 8 of the intermediate circuit 200 and the throttle device 7 of the intermediate circuit 200.

そして、100は高段側圧縮機3の吐出側から三方弁1
9および凝縮器4ほかを経て低段側圧縮機2の吸入側に
至る冷却回路、200は中間回路、300は高段側圧縮
機3の吐出側から三方弁19および冷却器11ほかを経
て低段側圧縮機2の吸入側に至る除霜回路、400は除
霜回路300の三方弁19と冷却器11との間から分岐
してドレンパンコイル20および絞り装置1を経て高段
側圧縮機3の吸入側に至る除霜時用中間回路である。
100 is a three-way valve 1 from the discharge side of the high-stage compressor 3.
9 and the condenser 4, etc., to the suction side of the low-stage compressor 2; 200, the intermediate circuit; A defrosting circuit 400 that reaches the suction side of the stage compressor 2 branches from between the three-way valve 19 of the defrosting circuit 300 and the cooler 11, passes through the drain pan coil 20 and the throttling device 1, and then connects to the high stage compressor 3. This is an intermediate circuit for defrosting that connects to the suction side.

なお、他の部分については第1図のものと同様であるの
で説明を省略する。
Note that other parts are the same as those shown in FIG. 1, so explanations will be omitted.

次に作用を説明する。Next, the effect will be explained.

冷却運転時には、三方弁19を制御して冷却回路100
側を開路し、同時に冷却回路の開閉弁9と中間回路の開
閉弁8とを開路して、冷却回路100と中間回路200
とに冷媒を供給する。
During cooling operation, the three-way valve 19 is controlled to close the cooling circuit 100.
side, and at the same time open the cooling circuit on-off valve 9 and the intermediate circuit on-off valve 8 to open the cooling circuit 100 and the intermediate circuit 200.
and supply refrigerant.

即ち、第2図に示す実線矢印のように冷媒を循環させる
That is, the refrigerant is circulated as indicated by the solid line arrows in FIG.

よって、高段側圧縮機3の吐出側から吐出された冷媒ガ
スは、凝縮器4で凝縮されて冷媒液となり液溜5に溜る
Therefore, the refrigerant gas discharged from the discharge side of the high-stage compressor 3 is condensed in the condenser 4 and becomes a refrigerant liquid, which is accumulated in the liquid reservoir 5.

そして、冷却回路100と中間回路200とに分流され
る。
The water is then divided into the cooling circuit 100 and the intermediate circuit 200.

冷却回路100を流れる冷媒液は中間冷却器6で過冷却
されて、冷却回路の絞り装置10で減圧され、冷却器1
1で被冷却物を冷却して蒸発し、アキュムレータ12を
経て低段側圧縮機2の吸入側に吸入され圧縮される。
The refrigerant liquid flowing through the cooling circuit 100 is supercooled in the intercooler 6, and is depressurized in the cooling circuit throttling device 10.
1, the object to be cooled is cooled and evaporated, and is sucked into the suction side of the low-stage compressor 2 via the accumulator 12 and compressed.

一方、中間回路200を流れる冷媒液は中間回路の絞り
装置7で減圧されて、中間冷却器6で冷却回路100を
流れる冷媒液と熱交換して蒸発し、高段側圧縮機3の吸
入側に吸入されて、高段側圧縮機3の吐出冷媒ガス温度
、電動機温度および油温などの上昇を防止する。
On the other hand, the refrigerant liquid flowing through the intermediate circuit 200 is depressurized by the throttle device 7 of the intermediate circuit, and is evaporated by exchanging heat with the refrigerant liquid flowing through the cooling circuit 100 in the intercooler 6, and is then evaporated on the suction side of the high-stage compressor 3. This prevents increases in the temperature of the refrigerant gas discharged from the high-stage compressor 3, the motor temperature, the oil temperature, etc.

また、除霜運転時には、三方弁19を制御して除霜回路
300側を開略し、同時に冷却回路の開閉弁9と中間回
路の開閉弁8とを閉路して、除霜回路300と除霜時用
中間回路400とに冷媒を供給する。
In addition, during defrosting operation, the three-way valve 19 is controlled to open the defrosting circuit 300 side, and at the same time, the cooling circuit on-off valve 9 and the intermediate circuit on-off valve 8 are closed, so that the defrosting circuit 300 and the defrosting circuit 300 and the defrosting circuit 300 are closed. Refrigerant is supplied to the intermediate circuit 400.

即ち、第2図に示す破線矢印のように冷媒を循環させる
That is, the refrigerant is circulated as indicated by the broken line arrow in FIG.

よって、高段側圧縮機3の吐出側から吐出された冷媒ガ
スは、除霜回路300と除霜時用中間回路400とに分
流される。
Therefore, the refrigerant gas discharged from the discharge side of the high-stage compressor 3 is divided into the defrosting circuit 300 and the intermediate circuit 400 for defrosting.

除霜回路300を流れる冷媒ガスは、冷却器11を加熱
して除霜を行い、アキュムレータ12を経て低段側圧縮
機2の吸入側に吸入され圧縮される。
The refrigerant gas flowing through the defrosting circuit 300 heats the cooler 11 to defrost it, passes through the accumulator 12, is sucked into the suction side of the low-stage compressor 2, and is compressed.

一方、除霜時用中間回路400を流れる冷媒ガスはドレ
ンパンコイル20でドレンパン15を加熱して一部は冷
媒液となり、絞り装置7で減圧され蒸発し、高段側圧縮
機3の吸入側に吸入されて、高段側圧縮機3の吐出ガス
温度、電動機温度および油温などの上昇を防止する。
On the other hand, the refrigerant gas flowing through the intermediate circuit 400 for defrosting heats the drain pan 15 with the drain pan coil 20, and a portion of the refrigerant gas becomes a refrigerant liquid, which is depressurized and evaporated by the expansion device 7, and then flows to the suction side of the high-stage compressor 3. This prevents increases in the discharge gas temperature, motor temperature, oil temperature, etc. of the high-stage compressor 3.

このように、上述した実施例は、除霜回路300より分
岐して、ドレンパンコイル20を経て高段側圧縮機3の
低圧側に至る除霜時用中間回路400を設け、除霜運転
時には、除霜回路300と除霜時用中間回路400とに
、それぞれ冷媒ガスを供給するようにしであるため、除
霜回路300を流れる冷媒ガスより冷却器11を加熱し
て除霜し、除霜時用中間回路400を流れる冷媒カスに
よりドレンパンコイル20を加熱スル。
In this way, the embodiment described above is provided with an intermediate circuit 400 for defrosting that branches from the defrosting circuit 300 and reaches the low pressure side of the high-stage compressor 3 via the drain pan coil 20, so that during defrosting operation, Since refrigerant gas is supplied to the defrosting circuit 300 and the intermediate circuit 400 for defrosting, the cooler 11 is heated and defrosted by the refrigerant gas flowing through the defrosting circuit 300. The drain pan coil 20 is heated by the refrigerant scum flowing through the intermediate circuit 400.

よって、冷却器11とドレンパンコイル20での加熱力
をそれぞれ確保でき、冷却器11の除霜を比較的短時間
で行うことができるとともに、ドレンパン15が凍結す
るようなこともない。
Therefore, the heating power of the cooler 11 and the drain pan coil 20 can be ensured, the cooler 11 can be defrosted in a relatively short time, and the drain pan 15 does not freeze.

以上のようにこの発明によると、冷却回路と除霜回路と
除霜時用中間回路とを備え、除霜運転時には、上記冷却
回路へ冷媒を供給せずに上記除霜回路と除霜時用中間回
路とへ冷媒を供給するようにしであるため、除霜運転時
に液溜内に冷媒液の蓄積されることがない。
As described above, according to the present invention, the cooling circuit, the defrosting circuit, and the intermediate circuit for defrosting are provided, and during the defrosting operation, the defrosting circuit and the intermediate circuit for defrosting are provided without supplying refrigerant to the cooling circuit. Since the refrigerant is supplied to the intermediate circuit, refrigerant liquid does not accumulate in the liquid reservoir during defrosting operation.

よって、上記除霜回路を循環する冷媒循環量を適正に維
持することができ、除霜能力の低下がなく、運転効率の
良い除霜運転が行える。
Therefore, the amount of refrigerant circulated through the defrosting circuit can be maintained appropriately, and defrosting performance can be maintained without deterioration and defrosting operation with high operational efficiency can be performed.

そして、高段側圧縮機には上記除霜時用中間回路の補助
熱交換器を経て冷媒が供給されるため、上記高段側圧縮
機の吐出ガス温度、電動機温度および油温などの上昇を
防止することができ、安定した除霜運転が行える。
Since refrigerant is supplied to the high-stage compressor via the auxiliary heat exchanger in the intermediate circuit for defrosting, increases in the discharge gas temperature, motor temperature, oil temperature, etc. of the high-stage compressor are prevented. This enables stable defrosting operation.

さらに除霜時用中間回路に中間回路の絞り装置7とは別
に除霜用中間絞り装置を設ける方法もあるが、この場合
、中間回路用の絞り装置が2個必要となり、コストが高
(つき、信頼性も少なくなるなどの欠点があるが、この
発明では、除霜用中間回路の絞り装置と冷却時用中間回
路の絞り装置とを兼用しているので、中間回路としての
絞り装置は1個でよく、コストが安く信頼性の高い二段
圧縮冷凍装置が得られる。
Furthermore, there is a method of providing an intermediate diaphragm device for defrosting in the intermediate circuit for defrosting, separately from the diaphragm device 7 of the intermediate circuit, but in this case, two diaphragm devices for the intermediate circuit are required, resulting in high cost. However, in this invention, the diaphragm device for the intermediate circuit for defrosting and the diaphragm device for the intermediate circuit for cooling are both used, so only one diaphragm device is used as the intermediate circuit. A low-cost, highly reliable two-stage compression refrigeration system can be obtained.

なお、上記実施例においては、凝縮装置として凝縮器用
送風機17を用いた空冷式凝縮装置について説明したが
、水冷式凝縮装置など他の形式の凝縮装置を用いてもよ
く、また液溜、中間冷却器は必ずしも設けなくとも同様
の効果が得られる。
In the above embodiment, an air-cooled condensing device using a condenser blower 17 was described as a condensing device, but other types of condensing devices such as a water-cooled condensing device may be used, and liquid storage, intermediate cooling, etc. The same effect can be obtained even if the container is not necessarily provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の二段圧縮冷凍装置を示す冷媒回路図、第
2図はこの発明の一実施例を示す二段圧縮冷凍装置の冷
媒回路図である。 図中、1は二段圧縮装置、4は凝縮器、7は中間回路の
絞り装置、11は冷却器、20はドレンパンコイル、1
9は三方弁、100は冷却回路、200は中間回路、3
00は除霜回路、400は除霜時用中間回路である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a refrigerant circuit diagram showing a conventional two-stage compression refrigeration system, and FIG. 2 is a refrigerant circuit diagram of a two-stage compression refrigeration system showing an embodiment of the present invention. In the figure, 1 is a two-stage compression device, 4 is a condenser, 7 is an intermediate circuit throttle device, 11 is a cooler, 20 is a drain pan coil, 1
9 is a three-way valve, 100 is a cooling circuit, 200 is an intermediate circuit, 3
00 is a defrosting circuit, and 400 is an intermediate circuit for defrosting. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 低段側圧縮機と高段側圧縮機とを有する二段圧縮装
置、凝縮器、絞り装置および冷却器を順次連通してなる
冷却回路と、上記二段圧縮装置と上記冷却器とを連通し
てなる除霜回路と、上記冷却回路と除霜回路とに切替制
御する回路切替装置と、上記冷却回路の作用時、上記凝
縮器からの冷媒液の一部を、絞り装置を通して上記高段
側圧縮機の吸入側へ供給する中間回路と、上記回路切替
装置と冷却器との間から分岐して、補助熱交換器を経て
、上記中間回路の絞り装置の入口側へ接続された除霜時
用中間回路とを備え、除霜運転時には、上記回路切替装
置を切替制御して、上記除霜回路と除霜時用中間回路と
に冷媒を供給するようにしたことを特徴とする二段圧縮
冷凍装置。 2 上記補助熱交換器は上記冷却器の下方に設はラレタ
ドレンパンコイルである特許請求の範囲第1項記載の二
段圧縮冷凍装置。
[Scope of Claims] 1. A two-stage compression device having a low-stage compressor and a high-stage compressor, a cooling circuit formed by sequentially communicating a condenser, a throttle device, and a cooler, and the two-stage compression device and a defrosting circuit that communicates with the cooler; a circuit switching device that switches between the cooling circuit and the defrosting circuit; and when the cooling circuit operates, a portion of the refrigerant liquid from the condenser is An intermediate circuit that supplies electricity to the suction side of the high-stage compressor through a throttling device, and is branched from between the circuit switching device and the cooler, passes through an auxiliary heat exchanger, and then flows to the inlet side of the throttling device of the intermediate circuit. and a defrosting intermediate circuit connected to the defrosting circuit, and during defrosting operation, the circuit switching device is switched and controlled to supply refrigerant to the defrosting circuit and the defrosting intermediate circuit. A two-stage compression refrigeration system featuring: 2. The two-stage compression refrigeration system according to claim 1, wherein the auxiliary heat exchanger is a Lareta drain pan coil installed below the cooler.
JP11762579A 1979-09-12 1979-09-12 Two-stage compression refrigeration equipment Expired JPS595815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11762579A JPS595815B2 (en) 1979-09-12 1979-09-12 Two-stage compression refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11762579A JPS595815B2 (en) 1979-09-12 1979-09-12 Two-stage compression refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5642067A JPS5642067A (en) 1981-04-20
JPS595815B2 true JPS595815B2 (en) 1984-02-07

Family

ID=14716363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11762579A Expired JPS595815B2 (en) 1979-09-12 1979-09-12 Two-stage compression refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS595815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927441A (en) * 1982-08-05 1984-02-13 Mitsubishi Electric Corp Discharge lamp apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003440B2 (en) * 2007-11-30 2012-08-15 ダイキン工業株式会社 Refrigeration equipment
JP5003439B2 (en) 2007-11-30 2012-08-15 ダイキン工業株式会社 Refrigeration equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927441A (en) * 1982-08-05 1984-02-13 Mitsubishi Electric Corp Discharge lamp apparatus

Also Published As

Publication number Publication date
JPS5642067A (en) 1981-04-20

Similar Documents

Publication Publication Date Title
KR930002429B1 (en) Refrigerating cycle apparatus
US4197716A (en) Refrigeration system with auxiliary heat exchanger for supplying heat during defrost cycle and for subcooling the refrigerant during a refrigeration cycle
EP3388758A1 (en) Heat-pump air conditioner
KR101917751B1 (en) A refrigeration vehicle equipped with a refrigerator having stroage function of cold
US5381671A (en) Air conditioning apparatus with improved ice storage therein
KR100796452B1 (en) Heat pump and demist method
JP3847499B2 (en) Two-stage compression refrigeration system
JPS595815B2 (en) Two-stage compression refrigeration equipment
JPS5852148B2 (en) Two-stage compression refrigeration equipment
JPS5852147B2 (en) Two-stage compression refrigeration equipment
KR100345579B1 (en) The combined Compact Refrigerative / Regenerative Heat-Pump System
JPS595814B2 (en) Two-stage compression refrigeration equipment
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JPH10311614A (en) Heat storage type cooling device
JPS5842842Y2 (en) Two-stage compression refrigeration equipment
JPH025336Y2 (en)
JPH06185836A (en) Freezer
JP2924460B2 (en) Air conditioner
KR100727124B1 (en) Thermal storage airconditioner
JP3010908B2 (en) Refrigeration equipment
JP3643687B2 (en) Air conditioner with ice heat storage unit
JPH11304265A (en) Air conditioner
JPH11173689A (en) Heat storage type cooling device
JPH04320774A (en) Freezer device
KR20070019275A (en) Thermal storage airconditioner