JPS62223570A - Method of controlling operation of refrigerator - Google Patents
Method of controlling operation of refrigeratorInfo
- Publication number
- JPS62223570A JPS62223570A JP6521386A JP6521386A JPS62223570A JP S62223570 A JPS62223570 A JP S62223570A JP 6521386 A JP6521386 A JP 6521386A JP 6521386 A JP6521386 A JP 6521386A JP S62223570 A JPS62223570 A JP S62223570A
- Authority
- JP
- Japan
- Prior art keywords
- solenoid valve
- refrigerant
- water
- compressor
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 6
- 239000003507 refrigerant Substances 0.000 claims description 64
- 238000010257 thawing Methods 0.000 claims description 21
- 238000005057 refrigeration Methods 0.000 claims description 18
- 239000007788 liquid Substances 0.000 description 22
- 238000001816 cooling Methods 0.000 description 9
- 238000000926 separation method Methods 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
Landscapes
- Defrosting Systems (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、冷凍冷蔵ショーケース等の冷凍装置の運転制
御で、特に除霜運転を改良したものに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to operational control of refrigeration equipment such as freezer/refrigerated showcases, and particularly to improved defrosting operation.
かかる冷凍装置は一般に、第2図に示すように、圧縮機
(1)、水冷式凝縮器(2)、減圧装置(3)、蒸発器
(4)、アキュムレーター(5)を順次冷媒配管連結し
て冷凍サイクルが構成され、また前記水冷式凝縮器(2
)には冷却通水管の水入口と水出口が設けられてあり、
図示しないが蒸発器(4)には冷風強制送風用の送風機
が付設されている。Generally, as shown in FIG. 2, such a refrigeration system connects a compressor (1), a water-cooled condenser (2), a pressure reducing device (3), an evaporator (4), and an accumulator (5) with refrigerant piping in sequence. A refrigeration cycle is constructed, and the water-cooled condenser (2
) is provided with a water inlet and a water outlet for the cooling water pipe.
Although not shown, the evaporator (4) is equipped with a blower for forced cold air.
さらに、除霜のために圧縮機(1)の冷媒出口側と減圧
装置(3)の冷媒出口側とをバイパス管路(6)で結び
、ここにガス冷媒制御用の電磁弁(6a)を介在させ、
水冷式凝縮器(2)の冷媒入口部にもガス冷媒制御用の
電磁弁(7)を設けるものがある。Furthermore, for defrosting, the refrigerant outlet side of the compressor (1) and the refrigerant outlet side of the pressure reducing device (3) are connected by a bypass pipe (6), and a solenoid valve (6a) for gas refrigerant control is connected here. intervene,
Some water-cooled condensers (2) are also provided with a solenoid valve (7) for gas refrigerant control at the refrigerant inlet.
そして、冷却運転時には、水冷式凝縮器(2)の冷媒入
口部の電磁弁(7)を開き、同時にバイパス管路(6)
の電磁弁(6a)を閉にして、圧縮機(1)より吐出さ
れた高温高圧の冷媒ガスを第2図の実線の矢印の向きに
循環させる。このようにした場合、水冷式凝縮器(2)
内において高温高圧の冷媒ガスは凝縮されて液化し、こ
のとき放出される凝縮熱は冷却通水管の水に吸入される
。During cooling operation, the solenoid valve (7) at the refrigerant inlet of the water-cooled condenser (2) is opened, and at the same time the bypass pipe (6) is opened.
The solenoid valve (6a) is closed, and the high temperature and high pressure refrigerant gas discharged from the compressor (1) is circulated in the direction of the solid line arrow in FIG. In this case, the water-cooled condenser (2)
The high-temperature, high-pressure refrigerant gas is condensed and liquefied within the cooling water pipe, and the heat of condensation released at this time is absorbed into the water in the cooling water pipe.
そして、液化した常温常圧の冷媒液は減圧装置(3)で
減圧されて低温低圧の冷媒液となって凝縮器(2)に送
り込まれ、凝縮器(2)内の冷媒配管を通過する際に蒸
発するが、その蒸発に必要な熱を周囲の空気から吸収す
るので、周囲の空気は冷却され、これを送風機でショー
ケース内等に強制送風する。Then, the liquefied refrigerant liquid at room temperature and normal pressure is depressurized by the pressure reducing device (3), becomes a low temperature and low pressure refrigerant liquid, and is sent to the condenser (2), and when it passes through the refrigerant pipe in the condenser (2). However, since the heat required for evaporation is absorbed from the surrounding air, the surrounding air is cooled, and this air is forced into the showcase etc. using a blower.
凝縮器(4)内でほとんど気化した常温常圧の冷媒ガス
はアキュムレーター(5)に送り込まれ、ここで気液分
離が加えられて冷媒ガスのみが圧縮機(1)に吸込まれ
て圧縮され高温高圧化される。The refrigerant gas at normal temperature and normal pressure that has almost vaporized in the condenser (4) is sent to the accumulator (5), where gas-liquid separation is applied and only the refrigerant gas is sucked into the compressor (1) and compressed. The temperature and pressure are increased.
ところで、以上述べた冷却運転で低温低圧の冷媒ガスが
蒸発器(4)において気化する際に周囲の空気を冷却す
るものであるから、冷却された周囲の空気が含んでいた
水分は霜となって蒸発器(4)の表面に付着する。この
着霜が厚くなると蒸発器(4)の冷却力が低下するので
、冷却運転を除霜運転に切り換えることが必要となる。By the way, in the cooling operation described above, when the low-temperature, low-pressure refrigerant gas vaporizes in the evaporator (4), it cools the surrounding air, so the moisture contained in the cooled surrounding air turns into frost. and adheres to the surface of the evaporator (4). As this frost thickens, the cooling power of the evaporator (4) decreases, so it becomes necessary to switch the cooling operation to the defrosting operation.
かかる除霜運転を開始するには、水冷式凝縮器(2)の
冷媒入口部の電磁弁(7)を閉じ、バイパス管路(6)
の電磁弁(6a)を開とすることにより、圧縮機(1)
より吐出された高温高圧の冷媒ガスを第2図の破線の矢
印の向きに循環させる。To start such defrosting operation, the solenoid valve (7) at the refrigerant inlet of the water-cooled condenser (2) is closed, and the bypass pipe (6) is closed.
By opening the solenoid valve (6a) of the compressor (1),
The high-temperature, high-pressure refrigerant gas discharged from the refrigerant gas is circulated in the direction of the broken line arrow in FIG.
その際、圧縮機(1)から吐出された高温高圧の冷媒ガ
スはその状態で凝縮器(2)に流入するので、それの潜
熱が蒸発器(4)の表面の着霜を融解して除霜を行う。At this time, the high temperature and high pressure refrigerant gas discharged from the compressor (1) flows into the condenser (2) in that state, so its latent heat melts and removes the frost on the surface of the evaporator (4). Do frost.
蒸発器(4)に流入した冷媒ガスは冷却されて液化する
が高温高圧であったため液化は不完全でアキュムレータ
ー(5)に流入し、ここで気液分離され、液冷媒はアキ
ュムレーター(5)内に残留し、冷媒ガスだけが圧縮機
(1)に吸入される。The refrigerant gas that has flowed into the evaporator (4) is cooled and liquefied, but since the temperature and pressure were high, the liquefaction is incomplete and it flows into the accumulator (5), where it is separated into gas and liquid. ), and only the refrigerant gas is sucked into the compressor (1).
除霜が完了した時点で、水冷式凝縮器(2)の冷媒入口
部の電磁弁(7)を開き、バイパス管路(6)の電磁弁
(6a)を閉にすれば、除霜運転は冷却運転に切り換わ
る。When defrosting is completed, open the solenoid valve (7) at the refrigerant inlet of the water-cooled condenser (2) and close the solenoid valve (6a) in the bypass pipe (6) to start defrosting operation. Switches to cooling operation.
このように除霜運転開始時に水冷式凝縮器(2)の冷媒
入口部の電磁弁(7)を閉じ、同時にバイパス管路(6
)の電磁弁(6a)を開くと、圧縮機(1)から吐出さ
れる高温高圧の冷媒ガスの大部分はバイパス管路に向か
い、一部分は水冷式凝縮器(2)に向かって流出するが
、冷媒人口部の電磁弁(7)が閉になっているから、凝
縮器(2)内に溜ることなく、すべてバイパス管路(6
)の電磁弁(6a)の方に逆に排出される。その結果、
電磁弁(6a)を通過する高温高圧の冷媒ガスの量は過
度に増加し、それにともなって蒸発器(4)で除霜を行
って液化する冷媒液の量も過度に増加し、アキュムレー
ター(5)の気液分離能力の限界をオーバーしてしまい
、圧縮機(1)に冷媒液も吸入されるといういわゆる液
戻り現象が起きる。In this way, at the start of defrosting operation, the solenoid valve (7) at the refrigerant inlet of the water-cooled condenser (2) is closed, and at the same time the bypass pipe (6) is closed.
), when the solenoid valve (6a) of the compressor (1) is opened, most of the high-temperature, high-pressure refrigerant gas discharged from the compressor (1) will flow toward the bypass pipe, and a portion will flow toward the water-cooled condenser (2). , Since the solenoid valve (7) in the refrigerant intake section is closed, no accumulation occurs in the condenser (2) and all of the refrigerant flows through the bypass pipe (6).
) is discharged in the opposite direction to the solenoid valve (6a). the result,
The amount of high-temperature, high-pressure refrigerant gas passing through the solenoid valve (6a) increases excessively, and the amount of refrigerant liquid that defrosts and liquefies in the evaporator (4) also increases excessively, causing the accumulator ( 5), the limit of the gas-liquid separation capacity is exceeded, and a so-called liquid return phenomenon occurs in which the refrigerant liquid is also sucked into the compressor (1).
これにより圧縮機(1)の寿命を短縮するおそれがあり
、これを解消するためにはアキュムレータ−(5)を大
形化してその気液分離能力を増大することも考えられる
が、それには冷凍装置自体の大形化をまねくという難点
があった。This may shorten the life of the compressor (1), and in order to solve this problem, it is possible to increase the size of the accumulator (5) and increase its gas-liquid separation capacity. The problem was that the device itself became larger.
本発明の目的は前記従来例の不都合を解消し、小型のア
キュムレーターを設置する冷凍装置においても、圧縮機
への冷媒液の吸込みを防止できる冷凍装置の運転制御方
法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for controlling the operation of a refrigeration system which can prevent refrigerant liquid from being sucked into the compressor even in a refrigeration system equipped with a small accumulator, which eliminates the disadvantages of the conventional example.
本発明は前記目的を達成するため、圧縮機、水冷式凝縮
器、減圧装置、蒸発器、アキュムレーターを冷媒配管で
順次接続して冷凍サイクルを構成し、前記圧縮機の冷媒
出口側と減圧装置の冷媒出口側とを電磁弁を介在させた
除霜用のバイパス管路で連絡し、また、水冷式凝縮器の
冷媒流入側に電磁弁を設けた冷凍装置において、凝縮器
の冷媒流入側の電磁弁は、バイパス管理の電磁弁が開い
てからしばらくして閉じ、このバイパス管路の電磁弁が
閉じると同時に開くことを要旨とするものである。In order to achieve the above object, the present invention configures a refrigeration cycle by sequentially connecting a compressor, a water-cooled condenser, a pressure reducing device, an evaporator, and an accumulator with refrigerant piping, and connects the refrigerant outlet side of the compressor to the pressure reducing device. In a refrigeration system in which the refrigerant outlet side of the condenser is connected to the refrigerant outlet side of the condenser through a defrosting bypass pipe with an intervening solenoid valve, and a solenoid valve is provided on the refrigerant inlet side of the water-cooled condenser, the refrigerant inlet side of the condenser The gist of the solenoid valve is that it closes a while after the bypass management solenoid valve opens, and opens at the same time as the bypass conduit solenoid valve closes.
本発明によれば、水冷式凝縮器の冷媒入口部の電磁弁と
バイパス管路の電磁弁とを、除霜運転の初期の設定時間
については、ともに開くことにより、その間水冷式凝縮
器内に一定量の高温高圧の冷媒ガスが流入するから蒸発
器内の液化量が過度に増加することが阻止される。According to the present invention, by opening both the solenoid valve at the refrigerant inlet of the water-cooled condenser and the solenoid valve at the bypass pipe for the initial setting time of the defrosting operation, no air is allowed to flow inside the water-cooled condenser during that time. Since a certain amount of high-temperature, high-pressure refrigerant gas flows in, the amount of liquefaction in the evaporator is prevented from increasing excessively.
さらに続いて、逆動作で合致させることにより、蒸発器
内の液化量をアキュムレーターの能力の限度内で一定量
に押さえ、一方除霜の終了をまって水冷式凝縮器の水入
口部の電磁弁とバイパス管路の電磁弁を開と閉にして冷
却運転に切り換える。Furthermore, by matching the reverse operation, the amount of liquefaction in the evaporator is held down to a constant amount within the capacity limit of the accumulator, while waiting for the end of defrosting, the electromagnetic Switch to cooling operation by opening and closing the valve and the solenoid valve of the bypass pipe.
これにより、除霜時にアキュムレーターから圧縮機へ冷
媒液が吸入されることはなくなる。This prevents refrigerant liquid from being sucked into the compressor from the accumulator during defrosting.
以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.
本発明方法は、第2図に示すような圧縮機(1)、水冷
式凝縮器(2)、例えば膨張弁などの減圧装置(3)、
蒸発器(4)、アキュムレーター(5)を順次連結して
冷凍サイクルを構成し、圧縮機(1)の冷媒出口側と減
圧装置(3)の冷媒出口側とを結ぶバイパス管路(6)
に設けた電磁弁(6a)を設けた回路において、水冷式
凝縮器(2)の冷媒入口部に特定の電磁弁(7)を設け
た。The method of the present invention includes a compressor (1) as shown in FIG. 2, a water-cooled condenser (2), a pressure reducing device (3) such as an expansion valve,
A bypass pipe (6) connects the refrigerant outlet side of the compressor (1) and the refrigerant outlet side of the pressure reducing device (3) by sequentially connecting the evaporator (4) and the accumulator (5) to form a refrigeration cycle.
In the circuit provided with the solenoid valve (6a) provided in the circuit, a specific solenoid valve (7) was provided at the refrigerant inlet of the water-cooled condenser (2).
第1図の運転タイムチャートにもとづき、前記電磁弁(
7)の作用を中心に説明すると、図中斜線を施しである
時間帯が電磁弁(6a)(7)の開を示している。Based on the operation time chart in Figure 1, the solenoid valve (
To explain the action of 7), the hatched time periods in the figure indicate when the solenoid valves (6a) and (7) are open.
冷却運転は除霜終了時に凝縮器(2)の冷媒入口部の電
磁弁(7)は開にし、バイパス管路(6)の電磁弁(6
a)は閉にするものであり、これらはタイマー等に設定
した時点に従ってそれぞれの電磁弁に信号を送るもので
あり、冷却運転時の冷凍装置の動作は従来例の場合とま
ったく同じであるから説明を省略する。During cooling operation, when defrosting is finished, the solenoid valve (7) at the refrigerant inlet of the condenser (2) is opened, and the solenoid valve (6) at the bypass pipe (6) is opened.
A) is for closing, and these are for sending a signal to each solenoid valve according to the time set on a timer, etc., and the operation of the refrigeration system during cooling operation is exactly the same as in the conventional case. The explanation will be omitted.
次に、除霜運転について説明すると、除霜開始の時点は
、タイマー等の設定に従って凝縮器(2)の冷媒入口部
の電磁弁(7)には閉の信号を送らないでしばらく開の
状態を続けさせ、一方この間にバイパス管路(6)の電
磁弁(6a)に信号を送って閉にする。Next, to explain the defrosting operation, when defrosting starts, the solenoid valve (7) at the refrigerant inlet of the condenser (2) is kept open for a while without sending a close signal according to the settings of the timer, etc. During this period, a signal is sent to the solenoid valve (6a) of the bypass line (6) to close it.
そうすると、圧縮機(1)から吐出される高温高圧冷媒
ガスの一部はバイパス管路の電磁弁(6a)を通過して
蒸発器(4)に流入するが、他は水冷式凝縮器(2)に
流入して、ここで水冷されて常温高圧の冷媒液となり、
さらに減圧装置(3)を通過して低温低圧の冷媒液とな
って蒸発器(4)に流入し、そこで蒸発するから冷媒液
のままでアキュムレーター(5)に流入する量はきわめ
て少ない。Then, a part of the high-temperature, high-pressure refrigerant gas discharged from the compressor (1) passes through the solenoid valve (6a) of the bypass line and flows into the evaporator (4), but the rest flows into the water-cooled condenser (2). ), where it is water-cooled and becomes a refrigerant liquid at room temperature and high pressure.
Furthermore, it passes through the pressure reducing device (3), becomes a low-temperature, low-pressure refrigerant liquid, and flows into the evaporator (4), where it evaporates, so the amount that flows into the accumulator (5) as a refrigerant liquid is extremely small.
一方、高温高圧の冷媒ガスのまま電磁弁(6a)を通過
した冷媒ガスは、蒸発器(4)に流入して除霜のために
放熱して液化し、冷媒は気液混合状でアキュムレーター
(5)に送られ、ここで気液分離される。そこで、アキ
ュムレーター(5)の気液分離能力を勘案して適切な時
間を設定したうえで、水冷式凝縮器(2)の入口部の電
磁弁(7)を信号によって閉にすると、冷媒圧縮機(1
)から吐出される高温高圧の冷媒ガスの水冷式凝縮器(
2)への流入が阻止され、すべての高温高圧の冷媒ガス
はバイパス管路(6)の電磁弁(6a)を通過すること
になる。その結果、蒸発器(4)での高温高圧の冷媒ガ
スの液化量は一定量となってアキュムレーター(5)で
の気液分離能力の範囲でおさまるように除霜時間を設定
しておいて、水冷式凝縮器(2)の冷媒入口部の電磁弁
(7)を開き、電磁弁(6a)を閉にする。On the other hand, the refrigerant gas that passes through the solenoid valve (6a) as a high-temperature, high-pressure refrigerant gas flows into the evaporator (4), radiates heat for defrosting, and becomes liquefied. (5), where it is separated into gas and liquid. Therefore, by setting an appropriate time in consideration of the gas-liquid separation capacity of the accumulator (5) and closing the solenoid valve (7) at the inlet of the water-cooled condenser (2) using a signal, the refrigerant is compressed. machine (1
A water-cooled condenser for the high-temperature, high-pressure refrigerant gas discharged from the
2), and all high temperature, high pressure refrigerant gas passes through the solenoid valve (6a) of the bypass line (6). As a result, the defrosting time is set so that the amount of high-temperature, high-pressure refrigerant gas liquefied in the evaporator (4) becomes a constant amount and falls within the range of the gas-liquid separation capacity of the accumulator (5). , open the solenoid valve (7) at the refrigerant inlet of the water-cooled condenser (2), and close the solenoid valve (6a).
このようにすれば、アキュムレーター(5)より圧縮機
(1)に冷媒液が吸入されることはな(、除霜運転が冷
却運転に切り換えられる。In this way, the refrigerant liquid is not sucked into the compressor (1) from the accumulator (5) (defrosting operation is switched to cooling operation).
以上述べたように本発明の冷凍装置の運転制御方法は、
圧縮機、水冷式凝縮器、減圧装置、蒸発器、アキュムレ
ーターを順次接続して冷凍サイクルを構成し、前記圧縮
機の冷媒出口側と減圧装置の冷媒出口側とを電磁弁を介
在させた除霜用のバイパス管路で連結し、また、水冷式
凝縮器の冷媒流入側に電磁弁を設けた冷凍装置において
、除霜運転中に蒸発器での冷媒の液化量が一定量となり
、しかもアキュムレーターの気液分離能力の範囲内で除
霜を完了させることができるから、アキュムレーターよ
り圧縮機へ液冷媒が吸入されるいわゆる液戻り現象の不
都合も解消される。その結果、圧縮機の寿命を延ばすこ
とができる。また、以上の除霜運転は小型のアキュムレ
ーターでもその気液分離能力の範囲内で可能であるから
、冷凍装置を小型化できるという効果もある。As described above, the refrigeration equipment operation control method of the present invention includes:
A refrigeration cycle is constructed by sequentially connecting a compressor, a water-cooled condenser, a pressure reducing device, an evaporator, and an accumulator. In a refrigeration system that is connected by a frost bypass pipe and is equipped with a solenoid valve on the refrigerant inflow side of a water-cooled condenser, the amount of refrigerant liquefied in the evaporator during defrosting operation is constant, and the amount of Since defrosting can be completed within the gas-liquid separation capacity of the accumulator, the inconvenience of the so-called liquid return phenomenon in which liquid refrigerant is sucked into the compressor from the accumulator is also eliminated. As a result, the life of the compressor can be extended. Furthermore, since the above-mentioned defrosting operation is possible even with a small accumulator within its gas-liquid separation capacity, there is also the effect that the refrigeration apparatus can be made smaller.
第1図は本発明の冷凍装置の運転制御方法の実施例を示
すタイムチャート、第2図は冷凍装置のブロック図、第
3図は従来例を示す運転タイムチャートである。
(1)・・・圧縮機 (2)・・・水冷式凝縮器(
3)・・・減圧装置 (4)・・・蒸発器(5)・・
・アキュムレーター
(6)・・・バイパス管路(6a)・・・電磁弁(7)
・・・電磁弁
代理人 弁理士 大音 増雄
第1図FIG. 1 is a time chart showing an embodiment of the refrigeration system operation control method of the present invention, FIG. 2 is a block diagram of the refrigeration system, and FIG. 3 is an operation time chart showing a conventional example. (1)...Compressor (2)...Water-cooled condenser (
3)...Pressure reduction device (4)...Evaporator (5)...
・Accumulator (6)...Bypass pipe line (6a)...Solenoid valve (7)
... Solenoid valve agent, patent attorney Masuo Ohone Figure 1
Claims (1)
ーターを冷媒配管で順次接続して冷凍サイクルを構成し
、前記圧縮機の冷媒出口側と減圧装置の冷媒出口側とを
電磁弁を介在させた除霜用のバイパス管路で連絡し、ま
た、水冷式凝縮器の冷媒流入側に電磁弁を設けた冷凍装
置において、凝縮器の冷媒流入側の電磁弁は、バイパス
管路の電磁弁が開いてからしばらくして閉じ、このバイ
パス管路の電磁弁が閉じると同時に開くことを特徴とし
た冷凍装置の運転制御方法。A refrigeration cycle is constructed by sequentially connecting a compressor, water-cooled condenser, pressure reducing device, evaporator, and accumulator with refrigerant piping, and a solenoid valve is interposed between the refrigerant outlet side of the compressor and the refrigerant outlet side of the pressure reducing device. In a refrigeration system that is connected by a bypass pipe for defrosting, and also has a solenoid valve on the refrigerant inflow side of the water-cooled condenser, the solenoid valve on the refrigerant inflow side of the condenser is connected to the solenoid valve in the bypass pipe. A method for controlling the operation of a refrigeration system, characterized in that the valve is opened and then closed after a while, and the solenoid valve of the bypass pipe is opened at the same time as the solenoid valve is closed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6521386A JPS62223570A (en) | 1986-03-24 | 1986-03-24 | Method of controlling operation of refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6521386A JPS62223570A (en) | 1986-03-24 | 1986-03-24 | Method of controlling operation of refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62223570A true JPS62223570A (en) | 1987-10-01 |
Family
ID=13280409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6521386A Pending JPS62223570A (en) | 1986-03-24 | 1986-03-24 | Method of controlling operation of refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62223570A (en) |
-
1986
- 1986-03-24 JP JP6521386A patent/JPS62223570A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR930002429B1 (en) | Refrigerating cycle apparatus | |
JP3882056B2 (en) | Refrigeration air conditioner | |
JPH10267503A (en) | Method for circulating refrigerant for defrosting, and refrigerator using the method | |
JP2001108345A (en) | Two stage compression freezer/refrigerator | |
JPH09318205A (en) | Refrigerating device | |
JPH0726775B2 (en) | Dual refrigerator | |
JPS62223570A (en) | Method of controlling operation of refrigerator | |
JPH06123527A (en) | Refrigerating cycle of deep freezing refrigerating unit | |
JPH05308943A (en) | Freezing equipment | |
JPH09318229A (en) | Refrigerating device | |
JPH06185836A (en) | Freezer | |
JPH10288427A (en) | Refrigerating device | |
JPH03170758A (en) | Air conditioner | |
JPH025336Y2 (en) | ||
JPS62196582A (en) | Refrigerator | |
JPH0821664A (en) | Refrigerating cycle device | |
JP2816526B2 (en) | Multi-source refrigeration equipment | |
JPH11304265A (en) | Air conditioner | |
JPH07234041A (en) | Cascade refrigerating equipment | |
JPS595815B2 (en) | Two-stage compression refrigeration equipment | |
JPS62196581A (en) | Refrigerator | |
JPS6015081Y2 (en) | Refrigeration equipment | |
JPH065586Y2 (en) | Freezer / Refrigerator Open Showcase | |
JPS5952175A (en) | Cooling device | |
JPH07218053A (en) | Refrigerating apparatus |