JPS62194005A - Meter-in, meter-out flow-rate control circuit - Google Patents

Meter-in, meter-out flow-rate control circuit

Info

Publication number
JPS62194005A
JPS62194005A JP3169986A JP3169986A JPS62194005A JP S62194005 A JPS62194005 A JP S62194005A JP 3169986 A JP3169986 A JP 3169986A JP 3169986 A JP3169986 A JP 3169986A JP S62194005 A JPS62194005 A JP S62194005A
Authority
JP
Japan
Prior art keywords
valve
oil chamber
pilot
path
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3169986A
Other languages
Japanese (ja)
Other versions
JPH0381006B2 (en
Inventor
Katsuhisa Yamaguchi
勝久 山口
Masaru Sugiyama
優 杉山
Katsushi Hiraiwa
平岩 克師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP3169986A priority Critical patent/JPS62194005A/en
Publication of JPS62194005A publication Critical patent/JPS62194005A/en
Publication of JPH0381006B2 publication Critical patent/JPH0381006B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)
  • Fluid-Driven Valves (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To make the captioned circuit compact, by forming the circuit with a main valve and a switching valve, both of which are used to control the large flow-rate, in addition to the first and second pilot valves, both of which are used to control the small flow-rate. CONSTITUTION:A meter-in, meter-out flow-rate control circuit is made up of a main valve 10, the first pilot valve 20, the second pilot valve 30, the third pilot valve 40, and an electromagnetic switching valve 50. If the pilot pressure given to an oil chamber R3 is changed by varying the current value to a relief valve in the first pilot valve 20, the position of a valve body 12 of the main valve 10 can be adjusted, or the flow-rate can be controlled. With this contrivance, the circuit can sharply be miniaturized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流体供給源と貯槽をアクチュエータに接続して
同アクチュエータの一方向作動と他方向作動をそれぞれ
別個に制御するメータイン・メータアウト流量制御回路
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to meter-in/meter-out flow rate control in which a fluid supply source and a storage tank are connected to an actuator to separately control one-way operation and other-direction operation of the actuator. Regarding circuits.

(従来技術〕 従来のメータイン・メータアウト流量制御回路は、第6
図にて示したように、流体供給源Pに接続される流入路
1と貯槽Tに接続される流出路2及びアクチュエータ(
油圧シリンダ)Aの両部室A1.A2にそれぞれ接続さ
れる第1と第2の負荷路3.4の連通を切換える切換弁
5と、第2fi荷路4中に介装した第1流量調整弁6.
第2流量稠整弁7及びパイロット式チェック弁8によっ
て構成されている。
(Prior art) The conventional meter-in/meter-out flow rate control circuit
As shown in the figure, an inflow path 1 connected to a fluid supply source P, an outflow path 2 connected to a storage tank T, and an actuator (
Hydraulic cylinder) A's both chambers A1. A switching valve 5 that switches communication between the first and second load paths 3.4 connected to A2, respectively, and a first flow rate regulating valve 6.4 interposed in the second fi load path 4.
It is composed of a second flow control valve 7 and a pilot type check valve 8.

この流量制御回路においては、切換弁5が図示状態にあ
るときチェック弁8の作用により油室A2から貯槽Tへ
の流れが阻止され、アクチュエータAが図示状態に保持
される。また、切換弁5により流入路1が第2負荷路4
にかつ流出路2が第1負荷路3にそれぞれ接続されると
、流体供給源Pから油室へ2に供給される流量が第1流
量調整弁6により絞られてアクチュエータAの作動がメ
ータイン制御される。一方、切換弁5により流入路Iが
第1負荷路3にかつ流出路2が第2負荷路4にそれぞれ
接続されると、油室A2から貯槽′rに排出される流量
が第2流量調整弁7により絞られてアクチュエータAの
作動がメータアウト制御される。
In this flow rate control circuit, when the switching valve 5 is in the illustrated state, the flow from the oil chamber A2 to the storage tank T is blocked by the action of the check valve 8, and the actuator A is maintained in the illustrated state. In addition, the switching valve 5 allows the inflow path 1 to be connected to the second load path 4.
In addition, when the outflow path 2 is connected to the first load path 3, the flow rate supplied from the fluid supply source P to the oil chamber 2 is throttled by the first flow rate regulating valve 6, and the operation of the actuator A is controlled by meter-in control. be done. On the other hand, when the inflow path I is connected to the first load path 3 and the outflow path 2 is connected to the second load path 4 by the switching valve 5, the flow rate discharged from the oil chamber A2 to the storage tank 'r is adjusted by the second flow rate adjustment. The valve 7 throttles the operation of the actuator A to perform meter-out control.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記した従来のメータイン・メータアウト流
量制御回路においては、その構成部材、すなわち切換弁
5.第1流量調整弁6.第2流量調整弁7及びパイロッ
ト式チェ7り弁8が全て大流量を制御するものであって
大型であるため、当該制御回路が大型となり、取付スペ
ースやコスト面で問題がある。
By the way, in the above-described conventional meter-in/meter-out flow rate control circuit, its constituent members, namely the switching valve 5. First flow rate regulating valve6. Since the second flow rate regulating valve 7 and the pilot type check valve 8 are all large in size and control a large flow rate, the control circuit becomes large, which poses problems in terms of installation space and cost.

また、各流量調整弁6.7による流量調整は、通常大流
量を絞る弁体の移動量を規制する調整ねじを手で回転し
て行うものであるため、その作業性が悪いばかりか、大
流量を直接調整するものであるため微調整が難かしいと
いった問題もある。
In addition, the flow rate adjustment using each flow rate adjustment valve 6.7 is usually done by manually rotating the adjustment screw that regulates the amount of movement of the valve body that throttles the large flow rate. Since the flow rate is directly adjusted, there is also the problem that fine adjustment is difficult.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記した問題を解決するために、当該メータイ
ン・メータアウト流量制御回路を、大径孔の両端に同一
径の小径孔をそれぞれ連設してなり一方の連設段部に弁
座を形成してなる弁本体と、前記大径孔内に圧力バラン
スされた状態にて嵌挿されて第1流路に常時連通する第
1油室を形成し前記弁座に着座したり離脱して同弁座を
開閉するポペット弁部と同ポペット弁部の一側に連設さ
れて前記一方の小径孔内に延び同小径孔との間に第2流
路に常時連通しかつ前記弁座を通して前記第1油室に連
通ずる第2油室を形成する連結部と同連結部に連設され
て前記一方の小径孔に摺動自在に嵌挿され同小径孔端に
第3油室を形成するピストン部を一体的に備えるととも
に前記ポペット弁部の他側に連設されて前記他方の小径
孔に摺動自在に嵌挿され同小径孔端に前記第1又は第2
油室に絞りを介して接続される第4油室を形成する小径
部を一体的に備える弁体と、同弁体を前記第3油室に向
けて付勢するばねを具備してなる主弁と、 前記第3油室に付与されるパイロット圧を電流付与値に
応じて比例制御する第1バイロフト弁と、前記パイロッ
ト圧が設定値未満であるとき前記第4油室と戻り路の連
通を遮断しまた前記パイロット圧が設定値以上であると
き前記第4油室と前記戻り路を連通させる第2パイロ7
)弁と、流体供給源に接続される流入路と貯槽に接続さ
れる流出路及びアクチュエータに接続される第1と第2
の負荷路の連通を切換える切換弁を備えてなり、 前記両負荷路のいずれか一方に前記第1流路及び第2流
路が介在するようにした。
In order to solve the above-mentioned problems, the present invention provides a meter-in/meter-out flow rate control circuit in which small diameter holes of the same diameter are connected to both ends of a large diameter hole, and a valve seat is installed in one of the connected steps. The valve body is fitted into the large-diameter hole in a pressure-balanced state to form a first oil chamber that is constantly in communication with the first flow path, and is seated on or removed from the valve seat. A poppet valve part that opens and closes the valve seat is connected to one side of the poppet valve part, extends into the small diameter hole of the one, and is in constant communication with the second flow path between the small diameter hole and the valve seat. A connecting portion that forms a second oil chamber that communicates with the first oil chamber; and a connecting portion that is connected to the connecting portion and is slidably inserted into the one small diameter hole to form a third oil chamber at the end of the small diameter hole. The first or second piston is integrally provided with a piston part that is connected to the other side of the poppet valve part and is slidably inserted into the other small diameter hole.
A main body comprising: a valve body integrally provided with a small diameter portion forming a fourth oil chamber connected to the oil chamber via a throttle; and a spring urging the valve body toward the third oil chamber. a first viroft valve that proportionally controls pilot pressure applied to the third oil chamber according to a current applied value; and communication between the fourth oil chamber and a return path when the pilot pressure is less than a set value. a second pyro 7 which interrupts the flow and communicates the fourth oil chamber with the return path when the pilot pressure is equal to or higher than a set value;
) a valve, an inflow passageway connected to a fluid supply source, an outflow passageway connected to a reservoir, and first and second valves connected to an actuator;
A switching valve is provided for switching communication between the load paths, and the first flow path and the second flow path are interposed in either one of the load paths.

〔発明の作用〕[Action of the invention]

本発明によるメータイン・メータアウト流量制御回路に
おいては、切換弁によって流入路が両負荷路に対して遮
断され、また第1パイロット弁への電流付与値が設定値
未満であってパイロット圧が設定値未満であれば、第2
パイロット弁が第4油室と戻り路の連通を遮断している
ため、主弁の弁体は第1又は第2流路から絞りを通して
第4油室に付与される油圧及びばねの作用力によりポベ
ソト弁部を弁座に着座させており、第2負荷路が主弁に
より遮断されている。したがって、主弁からアクチュエ
ータに至る回路内の油圧が保持され、アクチュエータは
その停止状態に保持される。
In the meter-in/meter-out flow control circuit according to the present invention, the inflow path is cut off from both load paths by the switching valve, and the current applied to the first pilot valve is less than the set value, and the pilot pressure is set to the set value. If it is less than the second
Since the pilot valve blocks communication between the fourth oil chamber and the return passage, the valve body of the main valve is moved by the hydraulic pressure applied to the fourth oil chamber from the first or second flow passage through the throttle and the acting force of the spring. The Pobesoto valve portion is seated on the valve seat, and the second load path is blocked by the main valve. Therefore, the oil pressure in the circuit from the main valve to the actuator is maintained, and the actuator is maintained in its stopped state.

また、切換弁によって流入路を第2負荷路にかつ流出路
を第1負荷路にそれぞれ接続し、また第1パイロット弁
への電流付与値を設定値以上として主弁の第3油室に付
与されるパイロット圧を設定値以上にすると、第2パイ
ロット弁が作動して第4油室を戻り路に連通させるため
、第4油室内の油圧が略ゼロとなり、主弁の弁体は第3
油室内のパイロット圧による押圧力とばねの力がバラン
スする位置まで移動して保持され第1流路と第2流路間
を流れる流量を絞る。したがって、第1流路及び第2流
路が第2負荷路に介在しておれば、流体供給源から第2
負荷路を通ってアクチュエータに供給される流量が絞ら
れてアクチュエータの作動がメータイン制御される。
In addition, the inflow path is connected to the second load path and the outflow path is connected to the first load path by the switching valve, and the current applied to the first pilot valve is set to a set value or more and is applied to the third oil chamber of the main valve. When the pilot pressure exceeds the set value, the second pilot valve operates and communicates the fourth oil chamber with the return path, so the oil pressure in the fourth oil chamber becomes almost zero, and the valve body of the main valve
It is moved to a position where the pressing force due to the pilot pressure in the oil chamber and the force of the spring are balanced and held, thereby restricting the flow rate between the first flow path and the second flow path. Therefore, if the first flow path and the second flow path are interposed in the second load path, the second flow path is connected to the second load path from the fluid supply source.
The flow rate supplied to the actuator through the load path is throttled to perform meter-in control of the actuator operation.

一方、切換弁によって流入路を第1負荷路にかつ流出路
を第2負荷路にそれぞれ接続し、また第1パイロット弁
への電流付与値を設定値以上として主弁の第3油室に付
与されるパイロ7)圧を設定値以上にすると、上述した
のと同様に第2パイロット弁が作動して第4油室を戻り
路に連通さ一仕るため、第4油室内の油圧が略ゼロとな
り、主弁の弁体は第3浦室内・のパイロット圧による押
圧力とばねの力がバランスする位置まで移動して保持さ
れ第1流路と第2流路間を流れる流量を絞る。
On the other hand, the inflow path is connected to the first load path and the outflow path is connected to the second load path by the switching valve, and the current applied to the first pilot valve is set to a set value or higher and applied to the third oil chamber of the main valve. When the pyro 7) pressure exceeds the set value, the second pilot valve operates in the same way as described above and communicates the fourth oil chamber with the return path, so the oil pressure in the fourth oil chamber is approximately The valve body of the main valve is moved to a position where the pressing force due to the pilot pressure in the third chamber and the force of the spring are balanced and held, thereby throttling the flow rate between the first flow path and the second flow path.

したがって、第1流路及び第2流路が第2負荷路に介在
しておれば、アクチュエータから第2負荷路を通って貯
槽に排出される流量が絞られてアクチュエータの作動が
メータアウト;ν制御される。
Therefore, if the first flow path and the second flow path are interposed in the second load path, the flow rate discharged from the actuator to the storage tank through the second load path is throttled, and the operation of the actuator is metered out; ν controlled.

また、本発明によるメータイン・メータアウト流量制御
回路においては、上記したメータイン・メータアウト制
御中において、第1パイロット弁への電流付与値(但し
、設定値以上の値)を変えて第3油室に付与されるパイ
ロット圧を変えれば、主弁の弁体の位置を調整できて、
第1流路及び第2流路が介在する負荷路を流れる流量を
調整することができる。この場合には勿論のこと上記し
たメータイン・メータアウト制御中においても、主弁の
弁体に作用する第1流路及び第2流路内圧力がそれぞれ
常に相殺されているため、第1流路及び第2流路内圧力
の変動によって主弁の弁体が押動されることはない。
Furthermore, in the meter-in/meter-out flow rate control circuit according to the present invention, during the above-described meter-in/meter-out control, the current applied to the first pilot valve (however, a value greater than or equal to the set value) is changed to By changing the pilot pressure applied to the main valve, the position of the valve body of the main valve can be adjusted.
The flow rate flowing through the load path in which the first flow path and the second flow path are interposed can be adjusted. In this case, of course, even during the above-mentioned meter-in/meter-out control, the pressures in the first flow path and the second flow path acting on the valve body of the main valve are always offset, so that the pressure in the first flow path Also, the valve body of the main valve is not pushed due to fluctuations in the pressure within the second flow path.

〔発明の効果〕〔Effect of the invention〕

本発明によるメータイン・メータアウト流量制御回路は
、大流量を制御する主弁及び切換弁と、小流量を制御す
る第1及び第2パイロット弁をその構成部材としている
ため、第6図に示した従来の流量制御回路に比して大巾
に小型化することができて、取付スペースの削減やコス
ト低減を図ることができる。
The meter-in/meter-out flow rate control circuit according to the present invention has a main valve and a switching valve that control a large flow rate, and first and second pilot valves that control a small flow rate as its constituent members. Compared to conventional flow rate control circuits, it can be made much more compact, reducing installation space and cost.

また、本発明によるメータイン・メータアウト流量制御
回路においては、主弁の弁体に作用する第1及び第2流
路内圧力がそれぞれ常に相殺されていて、負荷路内圧力
の変動によって主弁の弁体が押動されることはない。し
たがって、第1パイロット弁への電流付与値を決定する
ことにより、主弁の弁体の位置を正確に設定できて負荷
路を流れる流量を調整でき、その流量を容易に微調整す
ることができるとともに、流量調整の作業性を向上させ
ることができる。
Furthermore, in the meter-in/meter-out flow rate control circuit according to the present invention, the pressures in the first and second flow paths acting on the valve body of the main valve are always canceled out, and the pressure in the main valve changes due to fluctuations in the pressure in the load path. The valve body is not pushed. Therefore, by determining the value of current applied to the first pilot valve, the position of the valve body of the main valve can be set accurately, the flow rate flowing through the load path can be adjusted, and the flow rate can be easily finely adjusted. At the same time, the workability of adjusting the flow rate can be improved.

〔実施例〕〔Example〕

以下に本発明の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below based on the drawings.

第1図は本発明によるメータイン・メータアウト流量制
御回路を示していて、同流量制御回路は主弁10.第1
バイロフト弁20.第2パイロット弁30.第3パイロ
ット弁40及び電磁切換弁50によって構成されている
FIG. 1 shows a meter-in/meter-out flow control circuit according to the present invention, which includes the main valve 10. 1st
Viloft valve 20. Second pilot valve 30. It is composed of a third pilot valve 40 and an electromagnetic switching valve 50.

主弁10は、第1図及び第2図にて示したように、第1
部材11A、第2部材11B及び第3部材11Gからな
る弁本体11と、この弁本体11の内孔内に軸方向へ摺
動自在に嵌挿した弁体12と、この弁体12を図示左方
へ付勢するばね13によって構成されている。弁本体1
1は、大径孔11aの左右両端に同一径の小径孔11b
、11Cをそれぞれ連設してなり左方の連設段部に弁座
lidを形成してなる段付内孔を有するとともに、第】
流路P1が連通ずる環状溝lieや第2流路P2が連通
ずる環状rizrを有している。
As shown in FIGS. 1 and 2, the main valve 10 has a first
A valve body 11 consisting of a member 11A, a second member 11B, and a third member 11G, a valve body 12 fitted into an inner hole of this valve body 11 so as to be slidable in the axial direction, and this valve body 12 shown on the left in the figure. It is constituted by a spring 13 that biases it in the direction. Valve body 1
1 is a small diameter hole 11b having the same diameter at both left and right ends of a large diameter hole 11a.
, 11C, respectively, and has a stepped inner hole in which a valve seat lid is formed in the left continuous step part, and
It has an annular groove lie through which the flow path P1 communicates and an annular rizr through which the second flow path P2 communicates.

弁体12は、大径孔11a内に圧力バランスされた状態
(左右両端部に第1流路Pl内の圧力を受けた状態)に
て摺動自在に嵌挿されて両部室Ro、R1を形成し弁座
lidに着座したり離脱して両流路PI、P2間を連通
遮断(開閉)するポペット弁部12aと、同ポペット弁
部12aの左側に連設されて左方の小径孔11b内に延
び同小径孔11bとの間に第2流路P2が常時連通する
油室R2を形成する連結部12bと、同連結部12bに
連設されて左方の小径孔11bに摺動自在に嵌挿され同
小径孔11b端に油室R3を形成するピストン部12c
を一体的に備えるとともに、ポペット弁部12aの右側
に右方の小径孔11cに摺動自在に嵌挿され同小径孔1
1c端に油室R4を形成する小径筒部12dを一体的に
備えている。しかして、油室Roは絞り14を介して第
1流路P1に接続されるとともに第3パイロット弁40
に接続され、油室R1は第1流路P1を通して油圧シリ
ンダへの下室A2に接続され、油室R2は第2流路P2
を通して電磁切換弁50に接続されている。また油室R
3は第1パイロット弁20に接続されるとともに第2パ
イロット弁30の第1切換弁31に接続され、油室R4
は油室R1に絞り15を介して接続されるとともに、第
2パイロット弁30の第2切換弁32と第3パイロット
弁40の切換弁42に接続されている。
The valve body 12 is slidably inserted into the large-diameter hole 11a in a pressure-balanced state (with both left and right ends receiving pressure in the first flow path Pl), and opens both chambers Ro and R1. A poppet valve part 12a is formed and seats on or leaves the valve seat lid to block communication (open/close) between the flow paths PI and P2, and a left small diameter hole 11b is connected to the left side of the poppet valve part 12a. A connecting portion 12b that extends inward and forms an oil chamber R2 between which a second flow path P2 is always in communication with the small diameter hole 11b, and a connecting portion 12b that is connected to the connecting portion 12b and can freely slide into the left small diameter hole 11b. A piston portion 12c is fitted into the small diameter hole 11b and forms an oil chamber R3 at the end of the small diameter hole 11b.
The small diameter hole 11c is slidably inserted into the right small diameter hole 11c on the right side of the poppet valve portion 12a.
A small diameter cylindrical portion 12d forming an oil chamber R4 is integrally provided at the 1c end. Thus, the oil chamber Ro is connected to the first flow path P1 via the throttle 14, and the third pilot valve 40
The oil chamber R1 is connected to the lower chamber A2 to the hydraulic cylinder through the first flow path P1, and the oil chamber R2 is connected to the second flow path P2.
It is connected to the electromagnetic switching valve 50 through. Also oil room R
3 is connected to the first pilot valve 20 and the first switching valve 31 of the second pilot valve 30, and the oil chamber R4
is connected to the oil chamber R1 via the throttle 15, and is also connected to the second switching valve 32 of the second pilot valve 30 and the switching valve 42 of the third pilot valve 40.

第1パイロット弁20は、流入路Ppを通して導入され
た圧油を所定値に減圧する減圧弁21と、この減圧弁2
1から絞り22を通して油室R3に付与されるパイロッ
ト圧を電流付与値に応じて比例制御する電流制御リリー
フ弁23によって構成されている。第2パイロット弁3
0は、第1図及び第3図にて示したように、油室R3に
付与されるパイロット圧により作動を制御される第1切
換弁31と、この第1切換弁31によって作動を制御さ
れる第2切換弁32によって構成されている。
The first pilot valve 20 includes a pressure reducing valve 21 that reduces the pressure of the pressure oil introduced through the inflow path Pp to a predetermined value, and this pressure reducing valve 2
The current control relief valve 23 proportionally controls the pilot pressure applied from 1 to the oil chamber R3 through the throttle 22 in accordance with the current applied value. 2nd pilot valve 3
0, as shown in FIGS. 1 and 3, includes a first switching valve 31 whose operation is controlled by pilot pressure applied to the oil chamber R3, and a valve whose operation is controlled by this first switching valve 31. It is configured by a second switching valve 32.

第1切換弁31は、スプール弁体31aとばね31bを
備えていて、油室R3から油室R5に通路P3を通して
付与されるパイロット圧が設定値未満であるとき図示の
ように非作動状態にあって流入路Ppと第2切換弁32
の接続を断ち、またパイロット圧が設定値以上であると
き作動状態となって流入路ppを第2切換弁32に接続
させる。
The first switching valve 31 includes a spool valve body 31a and a spring 31b, and is in an inoperable state as shown in the figure when the pilot pressure applied from the oil chamber R3 to the oil chamber R5 through the passage P3 is less than a set value. The inflow path Pp and the second switching valve 32
When the pilot pressure is equal to or higher than the set value, the valve is activated to connect the inflow passage pp to the second switching valve 32.

第2切換弁32は、突起を一体的に有するピストン32
a、ポペット弁体32b及びばね32cを備えていて、
第1切換弁31によって油室R6が流入路ppに接続さ
れたとき作動して油室R4に連通する通路P4と貯槽T
に連通する戻り路P5を連通させ、また第1切換弁31
によって油室1)6が流入路Ppとの接続を断たれて戻
り路P5に接続されたとき図示のように非作動となって
油室R4に連通ずる通1?8P4と戻り路P5の連通を
遮断する。
The second switching valve 32 includes a piston 32 that integrally has a protrusion.
a, comprising a poppet valve body 32b and a spring 32c,
A passage P4 and a storage tank T that are activated when the oil chamber R6 is connected to the inflow passage pp by the first switching valve 31 and communicate with the oil chamber R4.
The return path P5 is connected to the first switching valve 31.
When the oil chamber 1)6 is disconnected from the inflow path Pp and connected to the return path P5, it becomes inoperable as shown in the figure and communicates with the oil chamber R4. cut off.

第3パイロット弁40は、絞り14を通して付与される
第1流路Pl内の油圧が設定値以上になったとき作動し
て油室RO内の作動油を戻り路1)5に流すリリーフ弁
41とこのリリーフ弁41の作動に応答して作動する切
換弁42によって構成されている。切換弁42は、第1
図及び第4図にて示したように、弁体42aとばね42
bを備えていて、油室R7に通路P6を通して付与され
る第1流路P1内の油圧がリリーフ弁41によってリリ
ーフされていないとき図示のように非作動状態にあって
油室R4に連通する油室R8と戻り路P5の接続を断ぢ
、また油室R7に付与される油圧がリリーフ弁41によ
ってリリーフされたとき通路P7を通して油室R9に付
与される第1流路Pi内の油圧によって弁体42aがば
ね42bに抗して摺動して油室R8を戻り路P5に接続
させる。
The third pilot valve 40 is a relief valve 41 that operates when the oil pressure in the first flow path Pl applied through the throttle 14 exceeds a set value and causes the hydraulic oil in the oil chamber RO to flow to the return path 1)5. and a switching valve 42 that operates in response to the operation of the relief valve 41. The switching valve 42 is a first
As shown in the figure and FIG. 4, the valve body 42a and the spring 42
b, and when the oil pressure in the first flow path P1 applied to the oil chamber R7 through the passage P6 is not relieved by the relief valve 41, it is in a non-operating state as shown in the figure and communicates with the oil chamber R4. When the oil chamber R8 and the return path P5 are disconnected, and the oil pressure applied to the oil chamber R7 is relieved by the relief valve 41, the oil pressure in the first passage Pi is applied to the oil chamber R9 through the passage P7. The valve body 42a slides against the spring 42b to connect the oil chamber R8 to the return path P5.

電磁切換弁50は、流体供給源Pに接続される流入路P
pと貯槽Tに接続される流出路P【及び油圧シリンダA
の上部油室A1に接続される第1負荷路Paと油圧シリ
ンダAの下部油室A2に接続され上記した主弁10の第
1流路pt及び第2流路P2を介在させてなる第2負荷
路pbの連通を切換える切換弁であり、図示中立状態に
て両負荷路Pa、Pbを流入路Ppから断ち流出路Pt
に連通させる。この電磁切換弁50においては、そのソ
レノイド51への通電によって流入路Ppが第2負荷路
Pbに接続されるとともに流出路I)tが第1負荷路P
aに接続され、またソレノイド52への通電によって流
入路Ppが第1負荷路Paに接続されるとともに流出路
ptが第2負荷路Pbに接続される。
The electromagnetic switching valve 50 has an inflow path P connected to a fluid supply source P.
p and an outflow passage P connected to a storage tank T [and a hydraulic cylinder A
A second load path Pa connected to the upper oil chamber A1 of the hydraulic cylinder A and a second flow path connected to the lower oil chamber A2 of the hydraulic cylinder A with the first flow path PT and the second flow path P2 of the main valve 10 mentioned above interposed therebetween. This is a switching valve that switches communication of the load path pb, and in the neutral state shown in the figure, cuts off both load paths Pa and Pb from the inflow path Pp and connects the outflow path Pt.
communicate with. In this electromagnetic switching valve 50, by energizing the solenoid 51, the inflow path Pp is connected to the second load path Pb, and the outflow path I)t is connected to the first load path Pb.
When the solenoid 52 is energized, the inflow path Pp is connected to the first load path Pa, and the outflow path pt is connected to the second load path Pb.

上記のように構成した本実施例においては、電磁切換弁
50によって流入路Ppが両負荷路Pa。
In this embodiment configured as described above, the electromagnetic switching valve 50 allows the inflow path Pp to be connected to both load paths Pa.

pbに対して遮断され、また第1パイロット弁20の電
流制御リリーフ弁23への電流付与値が設定値未満であ
って主弁10の油室R3に付与されるパイロット圧が設
定値未満であれば、第2パイロット弁30の両切換弁3
1.32が作動せず主弁10の油室R4と戻り路P5の
連通が遮断され与される油圧及びばね13の作用力によ
り図示左方へ押圧されてポベント弁部12aを弁座li
dに着座させており、第2負荷路pbが主弁10により
遮断されている。したがって、主弁10から油圧シリン
ダAの下部油室A2に至る回路内の油圧が保持され、油
圧シリンダAはその停止状態に保持される。この場合に
おいて、油圧シリンダAに過大な負荷が作用して下部油
室A2内の油圧が上昇し、第1流路Pl内の油圧が第3
パイロット弁40のリリーフ弁41にて設定した値以上
になると、油路P6内の圧油が戻り路P5に流れて切換
弁42が作動し、主弁lOの油室R4内の圧油が切換弁
42を通して戻り路P5に流れる。このため、かかる場
合には、主弁10の油室R3内の油圧により主弁12が
ばね13に抗して押動されて第1流路PIと第2流路P
2が連通ずる。したがって、油圧シリンダAの下部油室
A2から貯槽Tに圧油が流れて油圧シリンダAが保護さ
れる。
If the current applied to the current control relief valve 23 of the first pilot valve 20 is less than the set value and the pilot pressure applied to the oil chamber R3 of the main valve 10 is less than the set value. For example, the dual switching valve 3 of the second pilot valve 30
1.32 does not operate, and the communication between the oil chamber R4 of the main valve 10 and the return path P5 is cut off, and the applied hydraulic pressure and the acting force of the spring 13 push the povent valve portion 12a to the left in the figure.
d, and the second load path pb is blocked by the main valve 10. Therefore, the oil pressure in the circuit from the main valve 10 to the lower oil chamber A2 of the hydraulic cylinder A is maintained, and the hydraulic cylinder A is maintained in its stopped state. In this case, an excessive load acts on the hydraulic cylinder A, the oil pressure in the lower oil chamber A2 increases, and the oil pressure in the first flow path Pl increases.
When the value exceeds the value set by the relief valve 41 of the pilot valve 40, the pressure oil in the oil passage P6 flows to the return passage P5, the switching valve 42 is activated, and the pressure oil in the oil chamber R4 of the main valve IO is switched. It flows through the valve 42 to the return path P5. Therefore, in such a case, the main valve 12 is pushed against the spring 13 by the oil pressure in the oil chamber R3 of the main valve 10, and the first flow path PI and the second flow path P
2 is connected. Therefore, pressure oil flows from the lower oil chamber A2 of the hydraulic cylinder A to the storage tank T, and the hydraulic cylinder A is protected.

また、ソレノイド51への通電によって電磁切換弁50
を作動させて流入路ppを第2負荷路Pbにかつ流出路
Ptを第1負荷路paにそれぞれ接続し、また第1パイ
ロット弁20の電流制御リリーフ弁23への電流付与値
を設定値以上として主弁10の油室R3に付与されるパ
イロット圧を設定値以上にすると、第2パイロット弁3
0の両切換弁31.32が作動して主弁10の油室R4
を戻りVRP5に連通させるため、油室R4内の油圧が
略ゼロとなり、主弁10の弁体12は油室R3内のパイ
ロット圧による押圧力とばね13の力がバランスする位
置まで移動して保持され第1流路P1と第2流路P2間
を流れる流量を絞る。したがって、流体供給源Pから第
2負荷路Pbを通って油圧シリンダへの下部油室A2に
供給される流量が絞られて油圧シリンダAの作動がメー
タイン制御される。
In addition, by energizing the solenoid 51, the electromagnetic switching valve 50
to connect the inflow path pp to the second load path Pb and the outflow path Pt to the first load path pa, and set the current applied value to the current control relief valve 23 of the first pilot valve 20 to be equal to or higher than the set value. When the pilot pressure applied to the oil chamber R3 of the main valve 10 exceeds the set value, the second pilot valve 3
Both switching valves 31 and 32 of the main valve 10 operate and the oil chamber R4 of the main valve 10 is activated.
In order to connect the return valve to VRP5, the oil pressure in the oil chamber R4 becomes approximately zero, and the valve body 12 of the main valve 10 moves to a position where the pressing force due to the pilot pressure in the oil chamber R3 and the force of the spring 13 are balanced. The flow rate that is held and flows between the first flow path P1 and the second flow path P2 is throttled. Therefore, the flow rate supplied from the fluid supply source P to the lower oil chamber A2 to the hydraulic cylinder through the second load path Pb is throttled, and the operation of the hydraulic cylinder A is meter-in controlled.

一方、ソレノイド52への通電によって電磁切換弁50
を作動させて流入路Ppを第1負荷路Paにかつ流出路
ptを第2負荷路pbにそれぞれ接続し、また第1パイ
ロット弁20の電流制御リリーフ弁23への電流付与値
を設定値以上として主弁10の油室R3に付与されるパ
イロット圧を設定値以上にすると、上述したのと同様に
第2パイロット弁30の両切換弁31.32が作動して
主弁10の油室R4を戻り路P5に連通させるため、油
室R4内の油圧が略ゼロとなり、主弁lOの弁体12は
油室R3内のパイロ7)圧による押圧力とばね13の力
がバランスする位置まで移動して保持され第1流路P1
と第2流路P2間を流れる流量を絞る。したがって、油
圧シリンダAの下部油室A2から第2負荷路pbを通っ
て貯槽′rに排出される流量が絞られて油圧シリンダA
の作動がメータアウト制御される。
On the other hand, by energizing the solenoid 52, the electromagnetic switching valve 50
is operated to connect the inflow path Pp to the first load path Pa and the outflow path PT to the second load path pb, and also set the current applied value to the current control relief valve 23 of the first pilot valve 20 to be equal to or higher than the set value. When the pilot pressure applied to the oil chamber R3 of the main valve 10 becomes equal to or higher than the set value, the both switching valves 31 and 32 of the second pilot valve 30 are operated in the same way as described above, and the oil chamber R4 of the main valve 10 is activated. In order to communicate with the return path P5, the oil pressure in the oil chamber R4 becomes almost zero, and the valve body 12 of the main valve 1O reaches a position where the pressing force due to the pyro pressure in the oil chamber R3 and the force of the spring 13 are balanced. The first flow path P1 is moved and held.
and the second flow path P2. Therefore, the flow rate discharged from the lower oil chamber A2 of the hydraulic cylinder A to the storage tank 'r through the second load path pb is throttled and the hydraulic cylinder A
operation is meter-out controlled.

また、本実施例のメータイン・メータアウト流量制御回
路においては、上記したメータイン・メータアウト制御
中において、第1パイロット弁20の電流制御リリーフ
弁23への電流付与値(但し、設定値以上の値)を変え
て油室R3に付与されるパイロット圧を変えれば、主弁
10の弁体12の位置を調整できて、第2負荷路pbを
流れる流量を調整することができる。この場合には勿論
のこと上記したメータイン・メータアウト制御中におい
ても、主弁10の弁体12に作用する第1流路P1及び
第2流路P2内圧力がそれぞれ常に相殺されているため
、第1流路PI及び第2流路P2内圧力(すなわち第2
負荷路pb内圧力)の変動によって主弁10の弁体12
が押動されることはない。
In addition, in the meter-in/meter-out flow rate control circuit of this embodiment, during the above-described meter-in/meter-out control, the current applied value to the current control relief valve 23 of the first pilot valve 20 (however, a value greater than or equal to the set value) ) by changing the pilot pressure applied to the oil chamber R3, the position of the valve body 12 of the main valve 10 can be adjusted, and the flow rate flowing through the second load path pb can be adjusted. In this case, of course, even during the above-mentioned meter-in/meter-out control, the pressures in the first flow path P1 and the second flow path P2 acting on the valve body 12 of the main valve 10 are always canceled out, so that The pressure inside the first flow path PI and the second flow path P2 (i.e., the pressure inside the second flow path P2 is
The valve body 12 of the main valve 10 due to fluctuations in the pressure inside the load passage pb
will not be pushed.

以上の説明から明らかなように、本実施例のメータイン
・メータアウト流量制御回路は、大流けを1制御する主
弁10及び電磁切換弁50と、小流量を制御する第1.
第2及び第3パイロット弁20.30.40をその構成
部材としているため、第6図に示した従来の流量制御回
路に比して大巾に小型化することができて、取付スペー
スの削減やコスト低減を図ることができる。
As is clear from the above description, the meter-in/meter-out flow rate control circuit of this embodiment includes the main valve 10 and the electromagnetic switching valve 50 that control one large flow rate, and the first one that controls a small flow rate.
Since the second and third pilot valves 20, 30, and 40 are used as its constituent members, it can be made much smaller than the conventional flow control circuit shown in Fig. 6, reducing installation space. and cost reduction.

また、本実施例のメータイン・メータアウト流量制御回
路においては、主弁lOの弁体12に作用する第1及び
第2流路Pi、R2内圧力がそれぞれ常に相殺されてい
て、第2負荷路Pb内圧力の変動によって主弁10の弁
体12が押動されることはない。したがって、第1パイ
ロット弁20の電流制御リリーフ弁23への電流付与値
を決定することにより、主弁10の弁体12の位置を正
確に設定できて第2負荷路pbを流れる流量を調整でき
、その流量を容易に微調整することができるとともに、
流量調整の作業性を向上させることができる。
Furthermore, in the meter-in/meter-out flow rate control circuit of this embodiment, the pressures in the first and second flow paths Pi and R2 acting on the valve body 12 of the main valve IO are always offset, and the pressures in the second load path The valve body 12 of the main valve 10 is not pushed due to fluctuations in the Pb internal pressure. Therefore, by determining the current applied value to the current-controlled relief valve 23 of the first pilot valve 20, the position of the valve body 12 of the main valve 10 can be accurately set, and the flow rate flowing through the second load path pb can be adjusted. , the flow rate can be easily fine-tuned, and
The workability of flow rate adjustment can be improved.

〔変形例〕[Modified example]

上記実施例においては、主弁10の第1流路P1を油圧
シリンダAの下部油室A2に接続しかつ第2流路P2を
電磁切換弁50に接続するとともに、油室R1と油室R
4を接続する通路中に絞り15を介装して本発明を実施
したが、第5図にて示たように、主弁IOAの第1流路
P1を電磁切換弁50に接続しかつ第2流路P2を油圧
シリンダAの下部油室Δ2に接続するとともに、弁体1
2に設けた油室R1とR2を連通させる通路中に絞り1
5を介装して本発明を実施することも可能である。この
場合には、油室R2内の油圧が絞り15を通して油室R
4に付与されて上記した実施例と同様の作動が得られる
In the above embodiment, the first flow path P1 of the main valve 10 is connected to the lower oil chamber A2 of the hydraulic cylinder A, the second flow path P2 is connected to the electromagnetic switching valve 50, and the oil chamber R1 and the oil chamber R
The present invention was implemented by interposing a throttle 15 in the passage connecting the main valve IOA, but as shown in FIG. 2 flow path P2 is connected to the lower oil chamber Δ2 of the hydraulic cylinder A, and the valve body 1 is connected to the lower oil chamber Δ2 of the hydraulic cylinder A.
A throttle 1 is installed in the passage connecting the oil chambers R1 and R2 provided in 2.
It is also possible to implement the present invention by interposing 5. In this case, the oil pressure in the oil chamber R2 passes through the throttle 15 to the oil chamber R2.
4 to obtain the same operation as the above-described embodiment.

また、本発明は、第5図にて示したように、上記実施例
の第3パイロット弁40を採用することなく、かつ第1
パイロット弁20に代えて電流制御減圧弁からなり第1
パイロット弁20と同等の一機能を有する第1パイロッ
ト弁20Aを採用し、また第2パイロット弁30に代え
てパイロット圧により直接作動されて油室R4と戻り路
25間を連通遮断する切換弁からなり第2パイロット弁
30と同等の機能を有する第2パイロット弁30Aを採
用して実施することも可能である。なお、第3パイロッ
ト弁40を採用しない場合は、絞り14が不要となるた
め、第5図にて示したように、上記実施例の油室Roを
油室R1に合体させることも可能である。
Further, as shown in FIG. 5, the present invention does not employ the third pilot valve 40 of the above embodiment, and the first
The first valve consists of a current-controlled pressure reducing valve instead of the pilot valve 20.
A first pilot valve 20A having the same function as the pilot valve 20 is adopted, and in place of the second pilot valve 30, a switching valve that is directly operated by pilot pressure and disconnects communication between the oil chamber R4 and the return path 25 is used. It is also possible to employ and implement the second pilot valve 30A having the same function as the second pilot valve 30. Note that if the third pilot valve 40 is not adopted, the throttle 14 is not necessary, so it is also possible to combine the oil chamber Ro of the above embodiment with the oil chamber R1, as shown in FIG. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるメータイン・メータアウト流量制
御回路の一実施例を示す全体構成図、第2図は第1図に
示した回路における主弁部分の詳細な拡大断面図、第3
図は第1図に示した回路における第2パイロット弁部分
の詳細な拡大断面図、第4図は第1図に示した回路にお
ける第3パ・イロソト弁部分の詳細な拡大断面図、第5
図は本発明による流量制御回路の他の実施例を示す全体
構成図、第6図は従来例を示す全体構成図である。 符号の説明 10・・・主弁、11・・・弁本体、lla・・・大径
孔、llb、IIC・・・小径孔、lid・・・弁座、
12・・・弁体、12a・・・ポペット弁部、12b・
・・連結部、12C・・・ピストン部、12d・・・小
径部、13・・・ばね、15・・・絞り、20・・・第
1バイロフト弁、30・・・第2パイロット弁、50・
・・電磁切換弁、Pi・・・第1流路、R2・・・第2
流路、Pp・・・流入路、R5・・・戻り路、pt・・
・流出路、Pa・・・第1負荷路、pb・・・第2負荷
路、Ro、R1・・・ (第1)油室、R2・・・ (
第2)油室、R3・・・ (第3)油室、R4・・・ 
(第4)油室、P・・・流体供給源、T・・・貯槽、A
・・・油圧シリンダ(アクチュエータ)。 出廓人  fi興り業株式会社
FIG. 1 is an overall configuration diagram showing one embodiment of a meter-in/meter-out flow rate control circuit according to the present invention, FIG. 2 is a detailed enlarged sectional view of the main valve portion of the circuit shown in FIG. 1, and FIG.
The figure is a detailed enlarged sectional view of the second pilot valve part in the circuit shown in Fig. 1, FIG. 4 is a detailed enlarged sectional view of the third pilot valve part in the circuit shown in Fig. 1, and
FIG. 6 is an overall configuration diagram showing another embodiment of the flow rate control circuit according to the present invention, and FIG. 6 is an overall configuration diagram showing a conventional example. Explanation of symbols 10...Main valve, 11...Valve body, lla...Large diameter hole, llb, IIC...Small diameter hole, lid...Valve seat,
12... Valve body, 12a... Poppet valve part, 12b.
...Connection part, 12C... Piston part, 12d... Small diameter part, 13... Spring, 15... Throttle, 20... First viroft valve, 30... Second pilot valve, 50・
...Solenoid switching valve, Pi...first flow path, R2...second
Flow path, Pp...Inflow path, R5...Return path, pt...
・Outflow path, Pa...first load path, pb...second load path, Ro, R1... (first) oil chamber, R2... (
2nd) oil chamber, R3... (3rd) oil chamber, R4...
(4th) Oil chamber, P...Fluid supply source, T...Storage tank, A
...Hydraulic cylinder (actuator). Outsourcing company fi Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 大径孔の両端に同一径の小径孔をそれぞれ連設してなり
一方の連設段部に弁座を形成してなる弁本体と、前記大
径孔内に圧力バランスされた状態にて嵌挿されて第1流
路に常時連通する第1油室を形成し前記弁座に着座した
り離脱して同弁座を開閉するポペット弁部と同ポペット
弁部の一側に連設されて前記一方の小径孔内に延び同小
径孔との間に第2流路に常時連通しかつ前記弁座を通し
て前記第1油室に連通する第2油室を形成する連結部と
同連結部に連設されて前記一方の小径孔に摺動自在に嵌
挿され同小径孔端に第3油室を形成するピストン部を一
体的に備えるとともに前記ポペット弁部の他側に連設さ
れて前記他方の小径孔に摺動自在に嵌挿され同小径孔端
に前記第1又は第2油室に絞りを介して接続される第4
油室を形成する小径部を一体的に備える弁体と、同弁体
を前記第3油室に向けて付勢するばねを具備してなる主
弁と、 前記第3油室に付与されるパイロット圧を電流付与値に
応じて比例制御する第1パイロット弁と、前記パイロッ
ト圧が設定値未満であるとき前記第4油室と戻り路の連
通を遮断しまた前記パイロット圧が設定値以上であると
き前記第4油室と前記戻り路を連通させる第2パイロッ
ト弁と、流体供給源に接続される流入路と貯槽に接続さ
れる流出路及びアクチュエータに接続される第1と第2
の負荷路の連通を切換える切換弁を備えてなり、 前記両負荷路のいずれか一方に前記第1流路及び第2流
路が介在するようにしたメータイン・メータアウト流量
制御回路。
[Scope of Claims] A valve body having a large diameter hole with small diameter holes of the same diameter connected to each other at both ends, and a valve seat formed in one of the continuous steps, and a pressure balance within the large diameter hole. a poppet valve part that is inserted into the valve seat to form a first oil chamber that is always in communication with the first flow path, and that opens and closes the valve seat by seating on and leaving the valve seat; a connection that is connected to the side and extends into the one small-diameter hole, and forms a second oil chamber between the small-diameter hole and the second oil chamber that constantly communicates with the second flow path and communicates with the first oil chamber through the valve seat; and a piston part connected to the connecting part and slidably inserted into the one small-diameter hole to form a third oil chamber at the end of the small-diameter hole, and the other side of the poppet valve part. A fourth oil chamber is connected to the other small diameter hole, is slidably inserted into the other small diameter hole, and is connected to the first or second oil chamber via a throttle at the end of the small diameter hole.
a main valve provided with a valve body integrally having a small diameter portion forming an oil chamber, and a spring that urges the valve body toward the third oil chamber; a first pilot valve that proportionally controls pilot pressure according to a current applied value; and a first pilot valve that cuts off communication between the fourth oil chamber and a return path when the pilot pressure is less than a set value, and when the pilot pressure is equal to or higher than the set value. a second pilot valve that communicates the fourth oil chamber with the return path; an inflow path connected to a fluid supply source; an outflow path connected to a storage tank; and first and second pilot valves connected to an actuator.
A meter-in/meter-out flow rate control circuit, comprising a switching valve for switching communication between load paths, wherein the first flow path and the second flow path are interposed in either one of the load paths.
JP3169986A 1986-02-15 1986-02-15 Meter-in, meter-out flow-rate control circuit Granted JPS62194005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3169986A JPS62194005A (en) 1986-02-15 1986-02-15 Meter-in, meter-out flow-rate control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3169986A JPS62194005A (en) 1986-02-15 1986-02-15 Meter-in, meter-out flow-rate control circuit

Publications (2)

Publication Number Publication Date
JPS62194005A true JPS62194005A (en) 1987-08-26
JPH0381006B2 JPH0381006B2 (en) 1991-12-26

Family

ID=12338319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3169986A Granted JPS62194005A (en) 1986-02-15 1986-02-15 Meter-in, meter-out flow-rate control circuit

Country Status (1)

Country Link
JP (1) JPS62194005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109268352A (en) * 2017-07-12 2019-01-25 博世力士乐(北京)液压有限公司 Hydraulic control system and corresponding mobile working equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109268352A (en) * 2017-07-12 2019-01-25 博世力士乐(北京)液压有限公司 Hydraulic control system and corresponding mobile working equipment

Also Published As

Publication number Publication date
JPH0381006B2 (en) 1991-12-26

Similar Documents

Publication Publication Date Title
US4145958A (en) Fluid control system with automatically actuated motor port lock-out valves
JPS63225701A (en) Hydraulic pressure controller
US6158462A (en) Hydraulic pressure control device
JP2004019873A (en) Hydraulic control device and industrial vehicle with the hydraulic control device
JP4088606B2 (en) Flow control device for heavy construction equipment
JPS62194005A (en) Meter-in, meter-out flow-rate control circuit
JP3708711B2 (en) Hydraulic control device
WO2014136649A1 (en) Pressure control valve
JP4614717B2 (en) Directional control valve
CN108884947B (en) Proportional sequence valve with pressure amplification device
JPH0443127B2 (en)
JPS5934006A (en) Fluid control device
US7080663B2 (en) Valve assembly
JPH06229402A (en) Flow rate direction control valve device
KR960006359B1 (en) Pilot check valve having low-velocity-return function
JP2004270900A (en) Hydraulic control device
JPS62194008A (en) Fluid control device
JP2561717Y2 (en) Two-way relief valve
JPS59113379A (en) Counterbalance valve
JPH0375762B2 (en)
JP2002188603A (en) Switching valve
JPH0556402B2 (en)
JPS585121Y2 (en) Pilot pressure oil extraction circuit of remote control device
JPH04258511A (en) Hydraulic control device
JPH0625682Y2 (en) Poppet type fluid control valve