JPH0381006B2 - - Google Patents

Info

Publication number
JPH0381006B2
JPH0381006B2 JP3169986A JP3169986A JPH0381006B2 JP H0381006 B2 JPH0381006 B2 JP H0381006B2 JP 3169986 A JP3169986 A JP 3169986A JP 3169986 A JP3169986 A JP 3169986A JP H0381006 B2 JPH0381006 B2 JP H0381006B2
Authority
JP
Japan
Prior art keywords
valve
oil chamber
path
pilot
small diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3169986A
Other languages
Japanese (ja)
Other versions
JPS62194005A (en
Inventor
Katsuhisa Yamaguchi
Masaru Sugyama
Katsushi Hiraiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP3169986A priority Critical patent/JPS62194005A/en
Publication of JPS62194005A publication Critical patent/JPS62194005A/en
Publication of JPH0381006B2 publication Critical patent/JPH0381006B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)
  • Fluid-Driven Valves (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流体供給源と貯槽をアクチユエータに
接続して同アクチユエータの一方向作動と他方向
作動をそれぞれ別個に制御するメータイン・メー
タアウト流量制御回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides meter-in/meter-out flow rate control in which a fluid supply source and a storage tank are connected to an actuator to separately control one-way operation and other-direction operation of the actuator. Regarding circuits.

〔従来技術〕[Prior art]

従来のメータイン・メータアウト流量制御回路
は、第6図にて示したように、流体供給源Pに接
続される流入路1と貯槽Tに接続される流出路2
及びアクチユエータ(油圧シリンダ)Aの両油室
A1,A2にそれぞれ接続される第1と第2の負
荷路3,4の連通を切換える切換弁5と、第2負
荷路4中に介装した第1流量調整弁6、第2流量
調整弁7及びパイロツト式チエツク弁8によつて
構成されている。
The conventional meter-in/meter-out flow rate control circuit, as shown in FIG. 6, has an inflow path 1 connected to a fluid supply source P and an outflow path 2 connected to a storage tank T.
and a switching valve 5 for switching communication between the first and second load paths 3 and 4 connected to both oil chambers A1 and A2 of the actuator (hydraulic cylinder) A, respectively, and a switching valve 5 interposed in the second load path 4. It is composed of a first flow rate adjustment valve 6, a second flow rate adjustment valve 7, and a pilot type check valve 8.

この流量制御回路においては、切換弁5が図示
状態にあるときチエツク弁8の作用により油室A
2から貯槽Tへの流れが阻止され、アクチユエー
タAが図示状態に保持される。また、切換弁5に
より流入路1が第2負荷路4にかつ流出路2が第
1負荷路3にそれぞれ接続されると、流体供給源
Pから油室A2に供給される流量が第1流量調整
弁6により絞られてアクチユエータAの作動がメ
ータイン制御される。一方、切換弁5により流入
路1が第1負荷路3にかつ流出路2が第2負荷路
4にそれぞれ接続されると、油室A2から貯槽T
に排出される流量が第2流量調整弁7により絞ら
れてアクチユエータAの作動がメータアウト制御
される。
In this flow rate control circuit, when the switching valve 5 is in the state shown in the figure, the oil chamber A is
2 to reservoir T is blocked and actuator A is held in the state shown. Further, when the inflow path 1 is connected to the second load path 4 and the outflow path 2 is connected to the first load path 3 by the switching valve 5, the flow rate supplied from the fluid supply source P to the oil chamber A2 becomes the first flow rate. The adjustment valve 6 throttles the operation of the actuator A to perform meter-in control. On the other hand, when the inflow path 1 is connected to the first load path 3 and the outflow path 2 is connected to the second load path 4 by the switching valve 5, the oil chamber A2 is connected to the storage tank T.
The flow rate discharged is throttled by the second flow rate regulating valve 7, and the operation of the actuator A is controlled in a meter-out manner.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記した従来のメータイン・メータ
アウト流量制御回路においては、その構成部材、
すなわち切換弁5、第1流量調整弁6、第2流量
調整弁7及びパイロツト式チエツク弁8が全て大
流量を制御するものであつて大型であるため、当
該制御回路が大型となり、取付スペースやコスト
面で問題がある。
By the way, in the conventional meter-in/meter-out flow rate control circuit described above, its constituent members,
In other words, the switching valve 5, the first flow rate adjustment valve 6, the second flow rate adjustment valve 7, and the pilot type check valve 8 all control a large flow rate and are large, so the control circuit becomes large and requires installation space and space. There is a cost issue.

また、各流量調整弁6,7による流量調整は、
通常大流量を絞る弁体の移動量を規制する調整ね
じを手で回転して行うものであるため、その作業
性が悪いばかりか、大流量を直接調整するもので
あるため微調整が難かしいといつた問題もある。
In addition, the flow rate adjustment by each flow rate adjustment valve 6, 7 is as follows.
Normally, this is done by manually rotating the adjustment screw that regulates the amount of movement of the valve body that throttles the large flow rate, which not only makes it difficult to work with, but also makes fine adjustments difficult because the large flow rate is directly adjusted. There is also a problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記した問題を解決するために、当該
メータイン・メータアウト流量制御回路を、 大径孔の両端に同一径の小径孔をそれぞれ連設
してなり一方の連設段部に弁座を形成してなる弁
本体と、前記大径孔内に圧力バランスされた状態
にて嵌挿されて第1流路に常時連通する第1油室
を形成し前記弁座に着座したり離脱して同弁座を
開閉するポペツト弁部と同ポペツト弁部の一側に
連設されて前記一方の小径孔内に延び同小径孔と
の間に第2流路に常時連通しかつ前記弁座を通し
て前記第1油室に連通する第2油室を形成する連
結部と同連結部に連設されて前記一方の小径孔に
摺動自在に嵌挿され同小径孔端に第3油室を形成
するピストン部を一体的に備えるとともに前記ポ
ペツト弁部の他側に連設されて前記他方の小径孔
に摺動自在に嵌挿され同小径孔端に前記第1又は
第2油室に絞りを介して接続される第4油室を形
成する小径部を一体的に備える弁体と、同弁体を
前記第3油室に向けて付勢するばねを具備してな
る主弁と、 前記第3油室に付与されるパイロツト圧を電流
付与値に応じて比例制御する第1パイロツト弁
と、 前記パイロツト圧が設定値未満であるとき前記
第4油室と戻り路の連通を遮断しまた前記パイロ
ツト圧が設定値以上であるとき前記第4油室と前
記戻り路を連通させる第2パイロツト弁と、 流体供給源に接続される流入路と貯槽に接続さ
れる流出路及びアクチユエータに接続される第1
と第2の負荷路の連通を切換える切換弁を備えて
なり、 前記両負荷路にいずれか一方に前記第1流路及
び第2流路が介在するようにした。
In order to solve the above-mentioned problems, the present invention provides a meter-in/meter-out flow rate control circuit in which small diameter holes of the same diameter are connected to both ends of a large diameter hole, and a valve seat is installed in one of the connected steps. The valve body is fitted into the large-diameter hole in a pressure-balanced state to form a first oil chamber that is constantly in communication with the first flow path, and is seated on or removed from the valve seat. A poppet valve part that opens and closes the valve seat is connected to one side of the poppet valve part, extends into the small diameter hole of the one, and is in constant communication with the second flow path between the small diameter hole and the valve seat. A connecting part that forms a second oil chamber that communicates with the first oil chamber; and a connecting part that is connected to the connecting part and is slidably inserted into the one small diameter hole to form a third oil chamber at the end of the small diameter hole. A piston is integrally provided with a piston part that is connected to the other side of the poppet valve part, and is slidably inserted into the other small diameter hole, and a throttle is provided in the first or second oil chamber at the end of the small diameter hole. a main valve comprising: a valve body integrally provided with a small diameter portion forming a fourth oil chamber connected through the main valve; and a spring urging the valve body toward the third oil chamber; a first pilot valve that proportionally controls the pilot pressure applied to the third oil chamber according to the current applied value; and a first pilot valve that cuts off communication between the fourth oil chamber and the return path when the pilot pressure is less than a set value; a second pilot valve that communicates the fourth oil chamber with the return path when the pilot pressure is equal to or higher than a set value; an inflow path connected to a fluid supply source; an outflow path connected to a storage tank; and an actuator. 1st
and a switching valve for switching communication between the load path and the second load path, and the first flow path and the second flow path are interposed in either one of the load paths.

〔発明の作用〕[Action of the invention]

本発明によるメータイン・メータアウト流量制
御回路においては、切換弁によつて流入路が両負
荷路に対して遮断され、また第1パイロツト弁へ
の電流付与値が設定値未満であつてパイロツト圧
が設定値未満であれば、第2パイロツト弁が第4
油室と戻り路の連通を遮断しているため、主弁の
弁体は第1又は第2流路から絞りを通して第4油
室に付与される油圧及びばねの作用力によりポペ
ツト弁部を弁座に着座させており、第2負荷路が
主弁により遮断されている。したがつて、主弁か
らアクチユエータに至る回路内の油圧が保持さ
れ、アクチユエータはその停止状態に保持され
る。
In the meter-in/meter-out flow rate control circuit according to the present invention, the inflow path is cut off from both load paths by the switching valve, and the current applied to the first pilot valve is less than the set value and the pilot pressure is If it is less than the set value, the second pilot valve switches to the fourth
Since the communication between the oil chamber and the return passage is cut off, the valve body of the main valve opens the poppet valve part by the hydraulic pressure applied to the fourth oil chamber from the first or second flow passage through the throttle and the acting force of the spring. The vehicle is seated on a seat, and the second load path is blocked by the main valve. Therefore, the oil pressure in the circuit from the main valve to the actuator is maintained, and the actuator is maintained in its stopped state.

また、切換弁によつて流入路を第2負荷路にか
つ流出路を第1負荷路にそれぞれ接続し、また第
1パイロツト弁への電流付与値を設定値以上とし
て主弁の第3油室に付与されるパイロツト圧を設
定値以上にすると、第2パイロツト弁が作動して
第4油室を戻り路に連通させるため、第4油室内
の油圧が略ゼロとなり、主弁の弁体は第3油室内
のパイロツト圧による押圧力とばねの力がバラン
スする位置まで移動して保持され第1流路と第2
流路間を流れる流量を絞る。したがつて、第1流
路及び第2流路が第2負荷路に介在しておれば、
流体供給源から第2負荷路を通つてアクチユエー
タに供給される流量が絞られてアクチユエータの
作動がメータイン制御される。
In addition, the inflow path is connected to the second load path and the outflow path is connected to the first load path by the switching valve, and the current applied to the first pilot valve is set to be equal to or higher than the set value, and the third oil chamber of the main valve is connected to the second load path. When the pilot pressure applied to the main valve exceeds the set value, the second pilot valve operates and communicates the fourth oil chamber with the return path, so the oil pressure in the fourth oil chamber becomes almost zero, and the valve body of the main valve It is moved to a position where the pressing force by the pilot pressure in the third oil chamber and the force of the spring are balanced and held.
Throttle the flow rate between channels. Therefore, if the first flow path and the second flow path are interposed in the second load path,
The flow rate supplied from the fluid supply source to the actuator through the second load path is throttled to perform meter-in control of the actuator operation.

一方、切換弁によつて流入路を第1負荷路にか
つ流出路を第2負荷路にそれぞれ接続し、また第
1パイロツト弁への電流付与値を設定値以上とし
て主弁の第3油室に付与されるパイロツト圧を設
定値以上にすると、上述したのと同様に第2パイ
ロツト弁が作動して第4油室を戻り路に連通させ
るため、第4油室内の油圧が略ゼロとなり、主弁
の弁体は第3油室内のパイロツト圧による押圧力
とばねの力がバランスする位置まで移動して保持
され第1流路と第2流路間を流れる流量を絞る。
したがつて、第1流路及び第2流路が第2負荷路
に介在しておれば、アクチユエータから第2負荷
路を通つて貯槽に排出される流量が絞られてアク
チユエータの作動がメータアウト制御される。
On the other hand, the inflow path is connected to the first load path and the outflow path is connected to the second load path by the switching valve, and the current applied to the first pilot valve is set to be equal to or higher than the set value, so that the third oil chamber of the main valve is connected to the third oil chamber of the main valve. When the pilot pressure applied to the oil chamber becomes equal to or higher than the set value, the second pilot valve operates in the same manner as described above and communicates the fourth oil chamber with the return path, so the oil pressure in the fourth oil chamber becomes approximately zero. The valve body of the main valve is moved to a position where the pressing force due to the pilot pressure in the third oil chamber and the force of the spring are balanced and held, thereby restricting the flow rate between the first flow path and the second flow path.
Therefore, if the first flow path and the second flow path are interposed in the second load path, the flow rate discharged from the actuator to the storage tank through the second load path is throttled, and the operation of the actuator is metered out. controlled.

また、本発明によるメータイン・メータアウト
流量制御回路においては、上記したメータイン・
メータアウト制御中において、第1パイロツト弁
への電流付与値(但し、設定値以上の値)を変え
て第3油室に付与されるパイロツト圧を変えれ
ば、主弁の弁体の位置を調整できて、第1流路及
び第2流路が介在する負荷路を流れる流量を調整
することができる。この場合には勿論のこと上記
したメータイン・メータアウト制御中において
も、主弁の弁体に作用する第1流路及び第2流路
内圧力がそれぞれ常に相殺されているため、第1
流路及び第2流路内圧力の変動によつて主弁の弁
体が押動されることはない。
Further, in the meter-in/meter-out flow rate control circuit according to the present invention, the meter-in/meter-out flow rate control circuit described above
During meter-out control, if you change the current applied to the first pilot valve (a value greater than the set value) and change the pilot pressure applied to the third oil chamber, you can adjust the position of the main valve's valve body. Therefore, it is possible to adjust the flow rate flowing through the load path in which the first flow path and the second flow path are interposed. In this case, of course, even during the above-mentioned meter-in/meter-out control, the pressures in the first flow path and the second flow path acting on the valve body of the main valve are always offset, so that
The valve body of the main valve is not pushed due to fluctuations in the pressure within the flow path and the second flow path.

〔発明の効果〕〔Effect of the invention〕

本発明によるメータイン・メータアウト流量制
御回路は、大流量を制御する主弁及び切換弁と、
小流量を制御する第1及び第2パイロツト弁をそ
の構成部材としているため、第6図に示した従来
の流量制御回路に比して大巾に小型化することが
できて、取付スペースの削減やコスト低減を図る
ことができる。
The meter-in/meter-out flow rate control circuit according to the present invention includes a main valve and a switching valve that control a large flow rate,
Since the first and second pilot valves that control small flow rates are used as its constituent members, it can be made much smaller than the conventional flow rate control circuit shown in Figure 6, reducing installation space. and cost reduction.

また、本発明によるメータイン・メータアウト
流量制御回路においては、主弁の弁体に作用する
第1及び第2流路内圧力がそれぞれ常に相殺され
ていて、負荷路内圧力の変動によつて主弁の弁体
が押動されることはない。したがつて、第1パイ
ロツト弁への電流付与値を決定することにより、
主弁の弁体の位置を正確に設定できて負荷路を流
れる流量を調整でき、その流量を容易に微調整す
ることができるとともに、流量調整の作業性を向
上させることができる。
Furthermore, in the meter-in/meter-out flow rate control circuit according to the present invention, the pressures in the first and second flow paths acting on the valve body of the main valve are always canceled out, and the pressure in the main flow path is adjusted by fluctuations in the pressure in the load path. The valve body of the valve is not pushed. Therefore, by determining the value of current applied to the first pilot valve,
The position of the valve body of the main valve can be set accurately, the flow rate flowing through the load path can be adjusted, the flow rate can be easily finely adjusted, and the workability of adjusting the flow rate can be improved.

〔実施例〕〔Example〕

以下に本発明の一実施例を図面に基づいて説明
する。
An embodiment of the present invention will be described below based on the drawings.

第1図は本発明によるメータイン・メータアウ
ト流量制御回路を示していて、同流量制御回路は
主弁10、第1パイロツト弁20、第2パイロツ
ト弁30、第3パイロツト弁40及び電磁切換弁
50によつて構成されている。
FIG. 1 shows a meter-in/meter-out flow rate control circuit according to the present invention, which includes a main valve 10, a first pilot valve 20, a second pilot valve 30, a third pilot valve 40, and a solenoid switching valve 50. It is composed of.

主弁10は、第1図及び第2図にて示したよう
に、第1部材11A、第2部材11B及び第3部
材11Cからなる弁本体11と、この弁本体11
の内孔内に軸方向へ摺動自在に嵌挿した弁体12
と、この弁体12を図示左方へ付勢するばね13
によつて構成されている。弁本体11は、大径孔
11aの左右両端に同一径の小径孔11b,11
cをそれぞれ連設してなり左方の連設段部に弁座
11dを形成してなる段付内孔を有するととも
に、第1流路P1が連通する環状溝11eや第2
流路P2が連通する環状溝11fを有している。
As shown in FIGS. 1 and 2, the main valve 10 includes a valve body 11 consisting of a first member 11A, a second member 11B, and a third member 11C;
The valve body 12 is slidably inserted in the inner hole in the axial direction.
and a spring 13 that urges this valve body 12 to the left in the figure.
It is composed of. The valve body 11 has small diameter holes 11b, 11 of the same diameter at both left and right ends of the large diameter hole 11a.
It has a stepped inner hole with a valve seat 11d formed in the left continuous stepped part, and an annular groove 11e with which the first flow path P1 communicates, and a second
It has an annular groove 11f with which the flow path P2 communicates.

弁体12は、大径孔11a内に圧力バランスさ
れた状態(左右両端部に第1流路P1内の圧力を
受けた状態)にて摺動自在に嵌挿されて両油室
Ro,R1を形成し弁座11dに着座したり離脱
して両流路P1,P2間を連通遮断(開閉)する
ポペツト弁部12aと、同ポペツト弁部12aの
左側に連設されて左方の小径孔11b内に延び同
小径孔11bとの間に第2流路P2が常時連通す
る油室R2を形成する連結部12bと、同連結部
12bに連設されて左方の小径孔11bに摺動自
在に嵌挿され同小径孔11b端に油室R3を形成
するピストン部12cを一体的に備えるととも
に、ポペツト弁部12aの右側に右方の小径孔1
1cに摺動自在に嵌挿され同小径孔11c端に油
室R4を形成する小径筒部12dを一体的に備え
ている。しかして、油室Roは絞り14を介して
第1流路P1に接続されるとともに第3パイロツ
ト弁40に接続され、油室R1は第1流路P1を
通して油圧シリンダAの下室A2に接続され、油
室R2は第2流路P2を通して電磁切換弁50に
接続されている。また油室R3は第1パイロツト
弁20に接続されるとともに第2パイロツト弁3
0の第1切換弁31に接続され、油室R4は油室
R1に絞り15を介して接続されるとともに、第
2パイロツト弁30の第2切換弁32と第3パイ
ロツト弁40の切換弁42に接続されている。
The valve body 12 is slidably inserted into the large-diameter hole 11a in a pressure-balanced state (with both left and right ends receiving pressure in the first flow path P1), and is inserted into both oil chambers.
A poppet valve part 12a forms Ro, R1 and seats on or leaves the valve seat 11d to cut off communication (open/close) between both flow paths P1 and P2, and a poppet valve part 12a is connected to the left side of the poppet valve part 12a and is connected to the left side. A connecting portion 12b that extends into the small diameter hole 11b and forms an oil chamber R2 with which the second flow path P2 is always in communication with the small diameter hole 11b, and a small diameter hole 11b on the left that is connected to the small diameter hole 11b. A piston part 12c is integrally fitted into the small diameter hole 11b to form an oil chamber R3 at the end of the small diameter hole 11b.
It is integrally provided with a small diameter cylindrical portion 12d that is slidably inserted into the small diameter hole 11c and forms an oil chamber R4 at the end of the small diameter hole 11c. Thus, the oil chamber Ro is connected to the first passage P1 via the throttle 14 and also to the third pilot valve 40, and the oil chamber R1 is connected to the lower chamber A2 of the hydraulic cylinder A through the first passage P1. The oil chamber R2 is connected to the electromagnetic switching valve 50 through the second flow path P2. Further, the oil chamber R3 is connected to the first pilot valve 20 and the second pilot valve 3.
The oil chamber R4 is connected to the oil chamber R1 through the throttle 15, and the second pilot valve 30 and the third pilot valve 40 are connected to It is connected to the.

第1パイロツト弁20は、流入路Ppを通して
導入された圧油を所定値に減圧する減圧弁21
と、この減圧弁21から絞り22を通して油室R
3に付与されるパイロツト圧を電流付与値に応じ
て比例制御する電流制御リリーフ弁23によつて
構成されている。第2パイロツト弁30は、第1
図及び第3図にて示したように、油室R3に付与
されるパイロツト圧により作動を制御される第1
切換弁31と、この第1切換弁31によつて作動
を制御される第2切換弁32によつて構成されて
いる。第1切換弁31は、スプール弁体31aと
ばね31bを備えていて、油室R3から油室R5
に通路P3を通して付与されるパイロツト圧が設
定値未満であるとき図示のように非作動状態にあ
つて流入路Ppと第2切換弁32の接続を断ち、
またパイロツト圧が設定値以上であるとき作動状
態となつて流入路Ppを第2切換弁32に接続さ
せる。第2切換弁32は、突起を一体的に有する
ピストン32a、ポペツト弁体32b及びばね3
2cを備えていて、第1切換弁31によつて油室
R6が流入路Ppに接続されたとき作動して油室
R4に連通する通路P4と貯槽Tに連通する戻り
路P5を連通させ、また第1切換弁31によつて
油室R6が流入路Ppとの接続を断たれて戻り路
P5に接続されたとき図示のように非作動となつ
て油室R4に連通する通路P4と戻り路P5の連
通を遮断する。
The first pilot valve 20 is a pressure reducing valve 21 that reduces the pressure of the pressure oil introduced through the inflow path Pp to a predetermined value.
The pressure reducing valve 21 passes through the throttle 22 to the oil chamber R.
The current control relief valve 23 proportionally controls the pilot pressure applied to the valve 3 in accordance with the current applied value. The second pilot valve 30
As shown in FIG. 3 and FIG. 3, the first
It is composed of a switching valve 31 and a second switching valve 32 whose operation is controlled by the first switching valve 31. The first switching valve 31 includes a spool valve body 31a and a spring 31b, and has an oil chamber R3 to an oil chamber R5.
When the pilot pressure applied through the passage P3 is less than the set value, the inflow passage Pp and the second switching valve 32 are disconnected from each other in the non-operating state as shown in the figure.
Further, when the pilot pressure is equal to or higher than a set value, the valve is activated and connects the inflow passage Pp to the second switching valve 32. The second switching valve 32 includes a piston 32a integrally having a protrusion, a poppet valve body 32b, and a spring 3.
2c, which operates when the oil chamber R6 is connected to the inflow path Pp by the first switching valve 31, and connects the passage P4 communicating with the oil chamber R4 and the return passage P5 communicating with the storage tank T; Further, when the oil chamber R6 is disconnected from the inflow path Pp and connected to the return path P5 by the first switching valve 31, it becomes inoperable as shown in the figure, and the passage P4 communicating with the oil chamber R4 and the return The communication of path P5 is cut off.

第3パイロツト弁40は、絞り14を通して付
与される第1流路P1内の油圧が設定値以上にな
つたとき作動して油室Ro内の作動油を戻り路P
5に流すリリーフ弁41とこのリリーフ弁41の
作動に応答して作動する切換弁42によつて構成
されている。切換弁42は、第1図及び第4図に
て示したように、弁体42aとばね42bを備え
ていて、油室R7に通路P6を通して付与される
第1流路P1内の油圧がリリーフ弁41によつて
リリーフされていないとき図示のように非作動状
態にあつて油室R4に連通する油室R8と戻り路
P5の接続を断ち、また油室R7に付与される油
圧がリリーフ弁41によつてリリーフされたとき
通路P7を通して油室R9に付与される第1流路
P1内の油圧によつて弁体42aがばね42bに
抗して摺動して油室R8を戻り路P5に接続させ
る。
The third pilot valve 40 operates when the hydraulic pressure in the first flow path P1 applied through the throttle 14 exceeds a set value, and returns the hydraulic oil in the oil chamber Ro to the return path P1.
5 and a switching valve 42 that operates in response to the operation of the relief valve 41. As shown in FIGS. 1 and 4, the switching valve 42 includes a valve body 42a and a spring 42b, and the hydraulic pressure in the first passage P1 applied to the oil chamber R7 through the passage P6 is relieved. When it is not relieved by the valve 41, it is in a non-operating state as shown in the figure, and the connection between the oil chamber R8 communicating with the oil chamber R4 and the return path P5 is cut off, and the oil pressure applied to the oil chamber R7 is applied to the relief valve. 41, the valve body 42a slides against the spring 42b due to the hydraulic pressure in the first flow path P1 applied to the oil chamber R9 through the passage P7, and the oil chamber R8 returns to the oil chamber R9 through the return path P5. Connect to.

電磁切換弁50は、流体供給源Pに接続される
流入路Ppと貯槽Tに接続される流出路Pt及び油
圧シリンダAの上部油室A1に接続される第1負
荷路Paと油圧シリンダAの下部油室A2に接続
され上記した主弁10の第1流路P1及び第2流
路P2を介在させてなる第2負荷路Pbの連通を
切換える切換弁であり、図示中立状態にて両負荷
路Pa,Pbを流入路Ppから断ち流出路Ptに連通さ
せる。この電磁切換弁50においては、そのソレ
ノイド51への通電によつて流入路Ppが第2負
荷路Pbに接続されるとともに流出路Ptが第1負
荷路Paに接続され、またソレノイド52への通
電によつて流入路Ppが第1負荷路Paに接続され
るとともに流出路Ptが第2負荷路Pbに接続され
る。
The electromagnetic switching valve 50 has an inflow path Pp connected to the fluid supply source P, an outflow path Pt connected to the storage tank T, a first load path Pa connected to the upper oil chamber A1 of the hydraulic cylinder A, and a first load path Pa connected to the upper oil chamber A1 of the hydraulic cylinder A. This is a switching valve that is connected to the lower oil chamber A2 and switches the communication of the second load path Pb, which is formed by interposing the first flow path P1 and the second flow path P2 of the main valve 10 described above. Paths Pa and Pb are cut off from the inflow path Pp and communicated with the outflow path Pt. In this electromagnetic switching valve 50, when the solenoid 51 is energized, the inflow path Pp is connected to the second load path Pb, and the outflow path Pt is connected to the first load path Pa, and the solenoid 52 is energized. The inflow path Pp is connected to the first load path Pa, and the outflow path Pt is connected to the second load path Pb.

上記のように構成した本実施例においては、電
磁切換弁50によつて流入路Ppが両負荷路Pa,
Pbに対して遮断され、また第1パイロツト弁2
0の電流制御リリーフ弁23への電流付与値が設
定値未満であつて主弁10の油室R3に付与され
るパイロツト圧が設定値未満であれば、第2パイ
ロツト弁30の両切換弁31,32が作動せず主
弁10の油室R4と戻り路P5の連通が遮断され
ているため、主弁10の弁体12は第1流路P1
及び第1油室R1から絞り15を通して油室R4
に付与される油圧及びばね13の作用力により図
示左方へ押圧されてポペツト弁部12aを弁座1
1dに着座させており、第2負荷路Pbが主弁1
0により遮断されている。したがつて、主弁10
から油圧シリンダAの下部油室A2に至る回路内
の油圧が保持され、油圧シリンダAはその停止状
態に保持される。この場合において、油圧シリン
ダAに過大な負荷が作用して下部油室A2内の油
圧が上昇し、第1流路P1内の油圧が第3パイロ
ツト弁40のリリーフ弁41にて設定した値以上
になると、油路P6内の圧油が戻り路P5に流れ
て切換弁42が作動し、主弁10の油室R4内の
圧油が切換弁42を通して戻り路P5に流れる。
このため、かかる場合には、主弁10の油室R3
内の油圧により主弁12がばね13に抗して押動
されて第1流路P1と第2流路P2が連通する。
したがつて、油圧シリンダAの下部油室A2から
貯槽Tに圧油が流れて油圧シリンダAが保護され
る。
In this embodiment configured as described above, the inflow path Pp is connected to both load paths Pa and Pp by the electromagnetic switching valve 50.
Pb is blocked and the first pilot valve 2
If the value of current applied to the current control relief valve 23 of No. 0 is less than the set value and the pilot pressure applied to the oil chamber R3 of the main valve 10 is less than the set value, the dual switching valve 31 of the second pilot valve 30 , 32 are not operating and the communication between the oil chamber R4 of the main valve 10 and the return path P5 is cut off.
and oil chamber R4 from the first oil chamber R1 through the throttle 15.
The poppet valve portion 12a is pressed to the left in the figure by the hydraulic pressure applied to the valve seat 1 and the acting force of the spring 13.
1d, and the second load path Pb is the main valve 1.
Blocked by 0. Therefore, the main valve 10
The oil pressure in the circuit from the lower oil chamber A2 to the lower oil chamber A2 of the hydraulic cylinder A is maintained, and the hydraulic cylinder A is maintained in its stopped state. In this case, an excessive load acts on the hydraulic cylinder A, causing the oil pressure in the lower oil chamber A2 to rise, and the oil pressure in the first flow path P1 to exceed the value set by the relief valve 41 of the third pilot valve 40. Then, the pressure oil in the oil passage P6 flows to the return passage P5 and the switching valve 42 is activated, and the pressure oil in the oil chamber R4 of the main valve 10 flows to the return passage P5 through the switching valve 42.
Therefore, in such a case, the oil chamber R3 of the main valve 10
The main valve 12 is pushed against the spring 13 by the hydraulic pressure inside, and the first flow path P1 and the second flow path P2 communicate with each other.
Therefore, pressure oil flows from the lower oil chamber A2 of the hydraulic cylinder A to the storage tank T, and the hydraulic cylinder A is protected.

また、ソレノイド51への通電によつて電磁切
換弁50を作動させて流入路Ppを第2負荷路Pb
にかつ流出路Ptを第1負荷路Paにそれぞれ接続
し、また第1パイロツト弁20の電流制御リリー
フ弁23への電流付与値を設定値以上として主弁
10の油室R3に付与されるパイロツト圧を設定
値以上にすると、第2パイロツト弁30の両切換
弁31,32が作動して主弁10の油室R4を戻
り路P5に連通させるため、油室R4内の油圧が
略ゼロとなり、主弁10の弁体12は油室R3内
のパイロツト圧による押圧力とばね13の力がバ
ランスする位置まで移動して保持され第1流路P
1と第2流路P2間を流れる流量を絞る。したが
つて、流体供給源Pから第2負荷路Pbを通つて
油圧シリンダAの下部油室A2に供給される流量
が絞られて油圧シリンダAの作動がメータイン制
御される。
Also, by energizing the solenoid 51, the electromagnetic switching valve 50 is actuated to change the inflow path Pp to the second load path Pb.
In addition, the outflow path Pt is connected to the first load path Pa, and the current applied to the current control relief valve 23 of the first pilot valve 20 is set to be equal to or higher than the set value, and the pilot is applied to the oil chamber R3 of the main valve 10. When the pressure exceeds the set value, both switching valves 31 and 32 of the second pilot valve 30 operate to communicate the oil chamber R4 of the main valve 10 with the return path P5, so the oil pressure in the oil chamber R4 becomes approximately zero. , the valve body 12 of the main valve 10 is moved to a position where the pressing force due to the pilot pressure in the oil chamber R3 and the force of the spring 13 are balanced and held, and the first flow path P
The flow rate flowing between the flow path P1 and the second flow path P2 is reduced. Therefore, the flow rate supplied from the fluid supply source P to the lower oil chamber A2 of the hydraulic cylinder A through the second load path Pb is throttled, and the operation of the hydraulic cylinder A is meter-in controlled.

一方、ソレノイド52への通電によつて電磁切
換弁50を作動させて流入路Ppを第1負荷路Pa
にかつ流出路Ptを第2負荷路Pbにそれぞれ接続
し、また第1パイロツト弁20の電流制御リリー
フ弁23への電流付与値を設定値以上として主弁
10の油室R3に付与されるパイロツト圧を設定
値以上にすると、上述したのと同様に第2パイロ
ツト弁30の両切換弁31,32が作動して主弁
10の油室R4を戻り路P5に連通させるため、
油室R4内の油圧が略ゼロとなり、主弁10の弁
体12は油室R3内のパイロツト圧による押圧力
とばね13の力がバランスする位置まで移動して
保持され第1流路P1と第2流路P2間を流れる
流量を絞る。したがつて、油圧シリンダAの下部
油室A2から第2負荷路Pbを通つて貯槽Tに排
出される流量が絞られて油圧シリンダAの作動が
メータアウト制御される。
On the other hand, by energizing the solenoid 52, the electromagnetic switching valve 50 is actuated to change the inflow path Pp to the first load path Pa.
In addition, the outflow path Pt is connected to the second load path Pb, and the current applied to the current control relief valve 23 of the first pilot valve 20 is set to be equal to or higher than the set value, and the pilot is applied to the oil chamber R3 of the main valve 10. When the pressure exceeds the set value, the switching valves 31 and 32 of the second pilot valve 30 operate in the same manner as described above to communicate the oil chamber R4 of the main valve 10 with the return path P5.
The oil pressure in the oil chamber R4 becomes approximately zero, and the valve body 12 of the main valve 10 moves to a position where the pressing force due to the pilot pressure in the oil chamber R3 and the force of the spring 13 are balanced, and is held there. The flow rate flowing between the second flow paths P2 is throttled. Therefore, the flow rate discharged from the lower oil chamber A2 of the hydraulic cylinder A to the storage tank T through the second load path Pb is throttled, and the operation of the hydraulic cylinder A is controlled to be metered out.

また、本実施例のメータイン・メータアウト流
量制御回路においては、上記したメータイン・メ
ータアウト制御中において、第1パイロツト弁2
0の電流制御リリーフ弁23への電流付与値(但
し、設定値以上の値)を変えて油室R3に付与さ
れるパイロツト圧を変えれば、主弁10の弁体1
2の位置を調整できて、第2負荷路Pbを流れる
流量を調整することができる。この場合には勿論
のこと上記したメータイン・メータアウト制御中
においても、主弁10の弁体12に作用する第1
流路P1及び第2流路P2内圧力がそれぞれ常に
相殺されているため、第1流路P1及び第2流路
P2内圧力(すなわち第2負荷路Pb内圧力)の
変動によつて主弁10の弁体12が押動されるこ
とはない。
In addition, in the meter-in/meter-out flow rate control circuit of this embodiment, during the meter-in/meter-out control described above, the first pilot valve 2
If the pilot pressure applied to the oil chamber R3 is changed by changing the value of current applied to the current control relief valve 23 (however, a value greater than the set value), the valve body 1 of the main valve 10
2 can be adjusted, and the flow rate flowing through the second load path Pb can be adjusted. In this case, of course, even during the meter-in/meter-out control described above, the first valve acting on the valve body 12 of the main valve 10
Since the pressures in the flow path P1 and the second flow path P2 are always offset, the main valve The ten valve bodies 12 are never pushed.

以上の説明から明らかなように、本実施例のメ
ータイン・メータアウト流量制御回路は、大流量
を制御する主弁10及び電磁切換弁50と、小流
量を制御する第1、第2及び第3パイロツト弁2
0,30,40をその構成部材としているため、
第6図に示した従来の流量制御回路に比して大巾
に小型化することができて、取付スペースの削減
やコスト低減を図ることができる。
As is clear from the above description, the meter-in/meter-out flow rate control circuit of this embodiment includes the main valve 10 and the electromagnetic switching valve 50 that control a large flow rate, and the first, second, and third valves that control a small flow rate. Pilot valve 2
Since its constituent members are 0, 30, and 40,
Compared to the conventional flow rate control circuit shown in FIG. 6, the size can be significantly reduced, and installation space and costs can be reduced.

また、本実施例のメータイン・メータアウト流
量制御回路においては、主弁10の弁体12に作
用する第1及び第2流路P1,P2内圧力がそれ
ぞれ常に相殺されていて、第2負荷路Pb内圧力
の変動によつて主弁10の弁体12が押動される
ことはない。したがつて、第1パイロツト弁20
の電流制御リリーフ弁23への電流付与値を決定
することにより、主弁10の弁体12の位置を正
確に設定できて第2負荷路Pbを流れる流量を調
整でき、その流量を容易に微調整することができ
るとともに、流量調整の作業性を向上させること
ができる。
Furthermore, in the meter-in/meter-out flow rate control circuit of this embodiment, the pressures in the first and second flow paths P1 and P2 acting on the valve body 12 of the main valve 10 are always offset, and the pressures in the second load path The valve body 12 of the main valve 10 is not pushed due to fluctuations in the Pb internal pressure. Therefore, the first pilot valve 20
By determining the value of current applied to the current control relief valve 23, the position of the valve body 12 of the main valve 10 can be accurately set, the flow rate flowing through the second load path Pb can be adjusted, and the flow rate can be easily fine-tuned. In addition to being able to adjust the flow rate, it is also possible to improve the workability of adjusting the flow rate.

〔変形例〕[Modified example]

上記実施例においては、主弁10の第1流路P
1を油圧シリンダAの下部油室A2に接続しかつ
第2流路P2を電磁切換弁50に接続するととも
に、油室R1と油室R4を接続する通路中に絞り
15を介装して本発明を実施したが、第5図にて
示たように、主弁10Aの第1流路P1を電磁切
換弁50に接続しかつ第2流路P2を油圧シリン
ダAの下部油室A2に接続するとともに、弁体1
2に設けた油室R1とR2を連通させる通路中に
絞り15を介装して本発明を実施することも可能
である。この場合には、油室R2内の油圧が絞り
15を通して油室R4に付与されて上記した実施
例と同様の作動が得られる。
In the above embodiment, the first flow path P of the main valve 10
1 is connected to the lower oil chamber A2 of the hydraulic cylinder A, and the second flow path P2 is connected to the electromagnetic switching valve 50, and a throttle 15 is interposed in the passage connecting the oil chamber R1 and the oil chamber R4. Although the invention was carried out, as shown in FIG. At the same time, valve body 1
It is also possible to implement the present invention by interposing a throttle 15 in the passage that communicates the oil chambers R1 and R2 provided in the oil chambers R1 and R2. In this case, the oil pressure in the oil chamber R2 is applied to the oil chamber R4 through the throttle 15, and the same operation as in the above embodiment is obtained.

また、本発明は、第5図にて示したように、上
記実施例の第3パイロツト弁40を採用すること
なく、かつ第1パイロツト弁20に代えて電流制
御減圧弁からなり第1パイロツト弁20と同等の
機能を有する第1パイロツト弁20Aを採用し、
また第2パイロツト弁30に代えてパイロツト圧
により直接作動されて油室R4と戻り路P5間を
連通遮断する切換弁からなり第2パイロツト弁3
0と同等の機能を有する第2パイロツト弁30A
を採用して実施することも可能である。なお、第
3パイロツト弁40を採用しない場合は、絞り1
4が不要となるため、第5図にて示したように、
上記実施例の油室Roを油室R1に合体させるこ
とも可能である。
Further, as shown in FIG. 5, the present invention does not employ the third pilot valve 40 of the above embodiment, and instead of the first pilot valve 20, a current-controlled pressure reducing valve is used. Adopts the first pilot valve 20A which has the same function as 20,
Further, in place of the second pilot valve 30, there is provided a switching valve which is operated directly by pilot pressure to disconnect communication between the oil chamber R4 and the return path P5.
2nd pilot valve 30A having the same function as 0
It is also possible to adopt and implement this. Note that if the third pilot valve 40 is not adopted, the throttle 1
4 is no longer necessary, so as shown in Figure 5,
It is also possible to combine the oil chamber Ro of the above embodiment with the oil chamber R1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるメータイン・メータアウ
ト流量制御回路の一実施例を示す全体構成図、第
2図は第1図に示した回路における主弁部分の詳
細な拡大断面図、第3図は第1図に示した回路に
おける第2パイロツト弁部分の詳細な拡大断面
図、第4図は第1図に示した回路における第3パ
イロツト弁部分の詳細な拡大断面図、第5図は本
発明による流量制御回路の他の実施例を示す全体
構成図、第6図は従来例を示す全体構成図であ
る。 符号の説明、10……主弁、11……弁本体、
11a……大径孔、11b,11c……小径孔、
11d……弁座、12……弁体、12a……ポペ
ツト弁部、12b……連結部、12c……ピスト
ン部、12d……小径部、13……ばね、15…
…絞り、20……第1パイロツト弁、30……第
2パイロツト弁、50……電磁切換弁、P1……
第1流路、P2……第2流路、Pp……流入路、
P5……戻り路、Pt……流出路、Pa……第1負
荷路、Pb……第2負荷路、Ro,R1……(第
1)油室、R2……(第2)油室、R3……(第
3)油室、R4……(第4)油室、P……流体供
給源、T……貯槽、A……油圧シリンダ(アクチ
ユエータ)。
FIG. 1 is an overall configuration diagram showing an embodiment of the meter-in/meter-out flow rate control circuit according to the present invention, FIG. 2 is a detailed enlarged sectional view of the main valve portion of the circuit shown in FIG. 1, and FIG. FIG. 4 is a detailed enlarged sectional view of the second pilot valve portion in the circuit shown in FIG. 1, FIG. 4 is a detailed enlarged sectional view of the third pilot valve portion in the circuit shown in FIG. FIG. 6 is an overall configuration diagram showing another embodiment of a flow control circuit according to the present invention, and FIG. 6 is an overall configuration diagram showing a conventional example. Explanation of symbols, 10... Main valve, 11... Valve body,
11a...Large diameter hole, 11b, 11c...Small diameter hole,
11d... Valve seat, 12... Valve body, 12a... Poppet valve part, 12b... Connection part, 12c... Piston part, 12d... Small diameter part, 13... Spring, 15...
... Throttle, 20... First pilot valve, 30... Second pilot valve, 50... Solenoid switching valve, P1...
First channel, P2... second channel, Pp... inflow channel,
P5... Return path, Pt... Outflow path, Pa... First load path, Pb... Second load path, Ro, R1... (first) oil chamber, R2... (second) oil chamber, R3... (third) oil chamber, R4... (fourth) oil chamber, P... fluid supply source, T... storage tank, A... hydraulic cylinder (actuator).

Claims (1)

【特許請求の範囲】 1 大径孔の両端に同一径の小径孔をそれぞれ連
設してなり一方の連設段部に弁座を形成してなる
弁本体と、前記大径孔内に圧力バランスされた状
態にて嵌挿されて第1流路に常時連通する第1油
室を形成し前記弁座に着座したり離脱して同弁座
を開閉するポペツト弁部と同ポペツト弁部の一側
に連設されて前記一方の小径孔内に延び同小径孔
との間に第2流路に常時連通しかつ前記弁座を通
して前記第1油室に連通する第2油室を形成する
連結部と同連結部に連設されて前記一方の小径孔
に摺動自在に嵌挿され同小径孔端に第3油室を形
成するピストン部を一体的に備えるとともに前記
ポペツト弁部の他側に連設されて前記他方の小径
孔に摺動自在に嵌挿され同小径孔端に前記第1又
は第2油室に絞りを介して接続される第4油室を
形成する小径部を一体的に備える弁体と、同弁体
を前記第3油室に向けて付勢するばねを具備して
なる主弁と、 前記第3油室に付与されるパイロツト圧を電流
付与値に応じて比例制御する第1パイロツト弁
と、 前記パイロツト圧が設定値未満であるとき前記
第4油室と戻り路の連通を遮断しまた前記パイロ
ツト圧が設定値以上であるとき前記第4油室と前
記戻り路を連通させる第2パイロツト弁と、 流体供給源に接続される流入路と貯槽に接続さ
れる流出路及びアクチユエータに接続される第1
と第2の負荷路の連通を切換える切換弁を備えて
なり、 前記両負荷路のいずれか一方に前記第1流路及
び第2流路が介在するようにしたメータイン・メ
ータアウト流量制御回路。
[Scope of Claims] 1. A valve body having small diameter holes of the same diameter connected to both ends of a large diameter hole, and a valve seat formed in one of the connected steps, and a A poppet valve part that is inserted in a balanced state to form a first oil chamber that is always in communication with the first flow path, and that opens and closes the valve seat by seating on and leaving the valve seat; A second oil chamber is connected to one side, extends into the one small diameter hole, and is in communication with the second flow path at all times and communicates with the first oil chamber through the valve seat. A connecting part and a piston part connected to the connecting part and slidably inserted into the one small diameter hole to form a third oil chamber at the end of the small diameter hole are integrally provided, and the poppet valve part and other parts are integrally provided. a small diameter portion that is connected to the side and is slidably inserted into the other small diameter hole and forms a fourth oil chamber that is connected to the first or second oil chamber via a throttle at the end of the small diameter hole; A main valve including a valve body integrally provided, a spring that urges the valve body toward the third oil chamber, and a pilot pressure applied to the third oil chamber according to a current applied value. a first pilot valve that proportionally controls the first pilot valve; and a first pilot valve that cuts off communication between the fourth oil chamber and the return path when the pilot pressure is less than a set value, and that connects the fourth oil chamber and the return passage when the pilot pressure is equal to or higher than the set value. a second pilot valve that communicates the return path; an inflow path connected to a fluid supply source; an outflow path connected to a storage tank; and a first pilot valve connected to an actuator.
A meter-in/meter-out flow rate control circuit, comprising: a switching valve that switches communication between the load path and the second load path, and the first flow path and the second flow path are interposed in either one of the load paths.
JP3169986A 1986-02-15 1986-02-15 Meter-in, meter-out flow-rate control circuit Granted JPS62194005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3169986A JPS62194005A (en) 1986-02-15 1986-02-15 Meter-in, meter-out flow-rate control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3169986A JPS62194005A (en) 1986-02-15 1986-02-15 Meter-in, meter-out flow-rate control circuit

Publications (2)

Publication Number Publication Date
JPS62194005A JPS62194005A (en) 1987-08-26
JPH0381006B2 true JPH0381006B2 (en) 1991-12-26

Family

ID=12338319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3169986A Granted JPS62194005A (en) 1986-02-15 1986-02-15 Meter-in, meter-out flow-rate control circuit

Country Status (1)

Country Link
JP (1) JPS62194005A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109268352A (en) * 2017-07-12 2019-01-25 博世力士乐(北京)液压有限公司 Hydraulic control system and corresponding mobile working equipment

Also Published As

Publication number Publication date
JPS62194005A (en) 1987-08-26

Similar Documents

Publication Publication Date Title
JP3703265B2 (en) Hydraulic control device
JP2004019873A (en) Hydraulic control device and industrial vehicle with the hydraulic control device
JPH0381006B2 (en)
CN108884947B (en) Proportional sequence valve with pressure amplification device
JP4614717B2 (en) Directional control valve
JPH0556402B2 (en)
KR960006359B1 (en) Pilot check valve having low-velocity-return function
JPH0556401B2 (en)
JPH06229402A (en) Flow rate direction control valve device
JP3209532B2 (en) Hydraulic control device
JPH04258511A (en) Hydraulic control device
JP2561717Y2 (en) Two-way relief valve
JPS6188008A (en) Hydraulic control device
JP2004270900A (en) Hydraulic control device
JPS62194008A (en) Fluid control device
JP3298899B2 (en) Load-sensitive control device
JPH07103360A (en) Flow amount control valve
JP2544804Y2 (en) Direction control valve device
JPS585121Y2 (en) Pilot pressure oil extraction circuit of remote control device
JP3839101B2 (en) Flow control valve
JPS6319405A (en) Flow control valve
JPH0625682Y2 (en) Poppet type fluid control valve
WO2022204599A1 (en) Hydraulic systems and methods for pressure control
JPH0232484B2 (en)
JP2003185044A (en) Line relief valve