JPS62192609A - Depth measuring method for fine irregularity - Google Patents

Depth measuring method for fine irregularity

Info

Publication number
JPS62192609A
JPS62192609A JP61034275A JP3427586A JPS62192609A JP S62192609 A JPS62192609 A JP S62192609A JP 61034275 A JP61034275 A JP 61034275A JP 3427586 A JP3427586 A JP 3427586A JP S62192609 A JPS62192609 A JP S62192609A
Authority
JP
Japan
Prior art keywords
axial
electron beam
sample
electron
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61034275A
Other languages
Japanese (ja)
Inventor
Osamu Ishiwatari
石渡 統
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61034275A priority Critical patent/JPS62192609A/en
Publication of JPS62192609A publication Critical patent/JPS62192609A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To take an accurate measurement without being restricted by a visual field by controlling the values of currents supplied to an X-axial and a Y-axial deflecting coils provided on the electron beam passage between an electron gun and a sample independently by an electron beam control part. CONSTITUTION:The image of the sample 3 which has a longitudinal section including a finely irregular part as a surface is magnified by a scanning type electron microscope to measure the depth of the irregularity. At this time, the electron beam control part 4 supplies currents having optional values to the X-axial and Y-axial deflecting coils 8 and 8a, and 9 and 9a arranged opposite each other through X-axial deflecting devices 10 and 11. Thus, the scan amplitude of an electron beam 2 which illuminates the surface of the sample 3 is controlled independently in the X-axial and Y-axial directions. Consequently, the magnification of the image displayed on the screen of a CRT 5 with the secondary electron beam 6 is made larger in the depth direction of the irregularity than in the plane direction. Thus, the irregularity shape is grasped accurately and then the depth is measured; and this kind of measurement is facilitated and the accuracy of information for an analysis of an extremely small area is improved.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は基体上に形成された微小な凹凸部の深さを測定
する方法に関する。
The present invention relates to a method for measuring the depth of minute irregularities formed on a substrate.

【従来技術とその問題点】[Prior art and its problems]

例えば半導体素子の表面に被着される配線や保護膜など
のように下地との不連続な段差を有する薄膜は、最近の
集積密度を高めた半導体素子に見られるように配線など
の幅寸法が小さくなり、線間の溝寸法も狭く、−オーダ
またはそれ以下のものも多い、このような薄膜の厚さを
測定する場合、そのiの表面を針状接触子でトレースし
、膜の段差部も含めて接触子の振幅を増幅し記録して、
この振幅から膜厚を求めるという従来よく知られている
触針法を用いたのでは、接触子の先端の直径が通常数−
もあるために、上述のような微小寸法の薄膜の段差とな
っている溝部分を正しくトレースすることは最早困難と
なってきた。また接触子の先端径をこの目的に適うよう
に小さくするのは不可能である。そこで下地の基体を含
めて薄膜を縦に切断した断面試料を光学顕微鏡や走査型
電子顕微鏡などを用いて拡大し、拡大された薄膜の縦断
面形状から膜厚を測長する直接観察法が、より正確であ
り薄い膜厚を測定するのに有力である。 、;への方法は例えば半導体素子のシリコン基板に電橿
として配線されたアルミニウム膜などのように基板と膜
の境界が明らかに観察できるものは膜P′!。 を測長しやすい大きさまで膜厚方向に拡大すればよい。 しかしながら、例えばGaAs結晶板にGaAsのエピ
タキシャルFlll膜を成長させその一部を窓明けして
用いる半導体素子などのエピタキシャル膜の厚さを測定
する場合には縦断面試料を作製してこれを拡大観察して
も基板と膜とが同じ材料であるからそれらの境界は明瞭
に現われない、この関係を第2図の模式的断面図に示し
た。第2図においてGaAs結晶板12の上に形成した
エピタキシャル膜13の膜厚Aを測定したいとき、断面
試料を拡大しても結晶板12とエピタキシャル膜13と
の第2図では点線で示した境界が明らかでない。したが
ってこの場合膜[Aの測定の基準線となる窓明は底部B
を顕微鏡視野に入れなければならない、ところが通常の
光学顕微鏡や走査型電子I!Ji微鏡により観察試料を
拡大するときは、二次元的に一様に拡大されるべて膜厚
を測定する断面試料の場合、膜厚の測長が行ないやすい
ように、十分大きく拡大すると、それに伴って膜面方向
も同じ倍率で拡大されてしまう0例えば第2図において
Aが0.01pm、  B部の外径が1μ−であるとき
、Aを4鶴とするために40万倍に拡大するとB部は4
0C1lとなり、光学顕微鏡や走査型電子顕微鏡の視野
に入らず、膜面方向の基準線を正しく捕えることができ
なくなる。すなわち、このようなとき断面を拡大した顕
微鏡像を観察する方法は視野の制約を受けて不可能にな
るという問題が生ずる。勿論触針法は先述した通り適用
することができない。 以上説明の便宜・上背膜の厚さを求める方法と問題につ
いて述べたが、要するに微小な凹凸部の深さを測定する
には、断面の形状を走査型電子顕微鏡を用いて拡大して
直接観察するのがよいが、その際凹凸形状を同一視野に
収めるようにする必要があるということである。なお微
小な凹凸部は表面だけでなく、例えば接合部の境界など
のように物体の内部に形成される場合も同様である。 4ζ明″。的] 本発明は上述の点に鑑みてなされたものであり、その目
的は縦断面試料を用いて基体に形成された微小な凹凸の
深さを測定するに当たり、視野の大きさに制約されるこ
となく、深さ方向を面方向より拡大した顕微鏡像を得る
ことにより、容易に精度よく測定することが可能な方法
を提供することにある。
For example, thin films with discontinuous steps from the underlying layer, such as wiring or protective films deposited on the surface of semiconductor devices, are difficult to maintain due to the width of wiring, etc., as seen in recent semiconductor devices with increased integration density. When measuring the thickness of such a thin film, which is small and has narrow groove dimensions between the lines, often on the order of - or less, trace the surface of the i with a needle-like contact and measure the step part of the film. Amplify and record the amplitude of the contact, including the
When using the well-known stylus method, which calculates the film thickness from this amplitude, the diameter of the tip of the contact is usually several -
Because of this, it has become difficult to correctly trace the groove portions that form the steps of the thin film with such minute dimensions as described above. Furthermore, it is impossible to reduce the diameter of the tip of the contact so as to suit this purpose. Therefore, a direct observation method involves enlarging a cross-sectional sample of a thin film, including the underlying substrate, cut vertically using an optical microscope or scanning electron microscope, and measuring the film thickness from the enlarged longitudinal cross-sectional shape of the thin film. It is more accurate and effective for measuring thin film thicknesses. For example, if the boundary between the substrate and the film can be clearly observed, such as an aluminum film wired as a wire on the silicon substrate of a semiconductor device, the method for . What is necessary is to enlarge it in the film thickness direction to a size that is easy to measure. However, when measuring the thickness of an epitaxial film used in a semiconductor device, for example, by growing a GaAs epitaxial Full film on a GaAs crystal plate and opening a window in a part of the film, a vertical section sample is prepared and observed under magnification. However, since the substrate and film are made of the same material, the boundary between them does not appear clearly, and this relationship is shown in the schematic cross-sectional view of FIG. When you want to measure the film thickness A of the epitaxial film 13 formed on the GaAs crystal plate 12 in FIG. 2, even if you enlarge the cross-sectional sample, the boundary between the crystal plate 12 and the epitaxial film 13 in FIG. is not clear. Therefore, in this case, the window brightness that serves as the reference line for the measurement of the membrane [A] is at the bottom B.
must be brought into the field of view of a microscope, but with ordinary optical microscopes and scanning electron I! When enlarging an observation sample with a Ji microscope, in the case of a cross-sectional sample whose film thickness is to be measured because it is uniformly enlarged two-dimensionally, if it is enlarged sufficiently large to make it easy to measure the film thickness, Along with this, the film surface direction is also enlarged by the same magnification. For example, in Figure 2, if A is 0.01 pm and the outer diameter of part B is 1 μ-, it will be magnified 400,000 times to make A 4 cranes. When enlarged, part B is 4
0C1l, it does not enter the field of view of an optical microscope or a scanning electron microscope, and the reference line in the direction of the film surface cannot be correctly captured. That is, in such a case, a problem arises in that it is impossible to observe a microscope image with an enlarged cross section due to field of view limitations. Of course, the stylus method cannot be applied as mentioned above. For convenience of explanation, the method and problem of determining the thickness of the epidural membrane have been described above, but in short, in order to measure the depth of minute irregularities, the shape of the cross section is enlarged using a scanning electron microscope and directly measured. It is best to observe it, but when doing so, it is necessary to make sure that the uneven shape is included in the same field of view. It should be noted that minute irregularities are not only formed on the surface, but also apply to cases where they are formed inside the object, such as at the boundaries of joints, for example. The present invention has been made in view of the above-mentioned points, and its purpose is to improve the size of the field of view when measuring the depth of minute irregularities formed on a substrate using a longitudinal section sample. It is an object of the present invention to provide a method that allows easy and accurate measurement by obtaining a microscopic image that is enlarged in the depth direction than in the surface direction without being restricted by the above.

【発明の要点】[Key points of the invention]

本発明は走査型電子顕微鏡を用いて、真空容器内で断面
試料表面に電子線を照射し、電子プローブを試料表面上
に走査して試料表面から放射する二次電子を検出して、
二次電子像をCRT (CathodeRay Tub
e)面に表示するが、このとき電子線を発生し加速する
電子銃と試料間の電子線通路に設けられ、それぞれ一対
として対向配置されたX軸偏向コイルとY軸偏向コイル
に流す電流の大きさを電子線制御部でそれぞれ独立に制
御することにより、C27面上に表示される二次電子像
の深さ方向(X軸)の拡大倍率を大きくしても、平面方
向(Y軸)の拡大倍率は観測可能な範囲にとどめること
ができるようにしたものである。
The present invention uses a scanning electron microscope to irradiate the surface of a cross-sectional sample with an electron beam in a vacuum container, scan an electron probe over the sample surface, and detect secondary electrons emitted from the sample surface.
A secondary electron image is transferred to a CRT (CathodeRay Tub).
e) The current flowing through the X-axis deflection coil and Y-axis deflection coil, which are installed in the electron beam path between the electron gun that generates and accelerates the electron beam and the sample, and which are arranged opposite each other as a pair. By independently controlling the size using the electron beam control unit, even if the magnification in the depth direction (X-axis) of the secondary electron image displayed on the C27 plane is increased, the magnification in the plane direction (Y-axis) The magnification of the image is set so that it can be kept within the observable range.

【発明の実施例】[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 第1図は本発明に用いられる走査型電子ra微鏡を説明
するために要部を模式的に示した装置の系統図である。 第1図において電子銃1から放射し加速された電子線2
は細く絞り込まれた電子プローブとして縦断面試料3の
表面を照射する。電子プローブで二次元的に走査した試
料面から電子と試料3を構成する物質との相互作用によ
り二次電子を発生させる一方、試料面の走査と同期して
電子線制御部4によりCRT5のビームを走査させてお
く、試料面から発生した二次電子6を検出器7により検
出・増幅して、その強度に応じてCRTの輝度を変調す
れば検出された二次電子による試料像をC27面上に得
ることができる。この過程で走査型電子顕微鏡には電子
銃1と試料3との間の照射電子vA2の通路に°それぞ
れ一対として対向配置されたX軸偏向コイル8,8aと
Y軸偏向コイル9.98とが互いに直交するように備え
られており、電子線制御部4に接続されたX軸電子偏向
装置10およびY軸電子偏向装置11からのコイル電流
によって試料面上での電子プローブの走査振幅が決めら
れる。そして試料面上の電子プローブの走査振幅に対す
るCRT5のビームの走査振幅の比が顕微鏡としての倍
率となる。したがって試料面上の走査振幅を小さくすれ
ば顕微鏡倍率を大きくすることができ、走査振幅を大き
くすれば顕微鏡倍率は小さくなる。通常の走査型電子顕
微鏡ではX方向の走査振幅とY方向の走査振幅の関係は
1:lとなるように固定されているから、顕微鏡像とし
ては縦方向も横方向も等倍率に拡大されるのに対して、
本発明が従来と異なる所は、X軸側向コイル8,8aと
Y軸部向コイル9.9aにそれぞれX軸電子偏向装置l
OおよびYIIII電子偏向装置11から任意の大きさ
の電流を流すことが可能な電子線制御部4によってX軸
側向コイル8.8aとY軸部向コイル9,9aに流れる
電流を互いに独立に制御するようにした点にある。すな
わち、このことによってそれぞれ独立して設定された縦
方向倍率と横方向倍率をもった顕微鏡像がCRT面上に
表示される。したがって微小な凹凸の深さを測長する断
面試料を走査型電子顕微鏡を用いて観測するときは、以
上のようにして深さ方向は拡大率を大きくし、平面方向
は拡大率を小さくすることにより、必要とする凹凸形状
部分を同−g−rt a鏡視野内に出現させることがで
き、本発明によれば深さ方向で1n11前後、凹部底の
幅寸法は数nmから数1まで広範囲に実測することが可
能となる。縦横両方向の拡大率はそれぞれ単独に任意に
設定できるから、被測定試料の実状に応じて測定しやす
いように定めるのがよい。 なお第1図において電子銃1.縦断面試料3゜検出器7
.X軸側向コイル8,8a、およびY軸部向コイル9.
98はいずれも真空容器中に配設されるものであるが、
第1図では真空容器の図示を省略しである。また照射電
子線2および二次電子6を点線で表わし、これらの進行
方向を矢印で示した。
The present invention will be explained below based on examples. FIG. 1 is a system diagram of an apparatus schematically showing essential parts for explaining a scanning electronic RA microscope used in the present invention. In Fig. 1, an electron beam 2 emitted from an electron gun 1 and accelerated
irradiates the surface of the longitudinal section sample 3 as a finely focused electron probe. While secondary electrons are generated from the sample surface two-dimensionally scanned by an electron probe through interaction with the material constituting the sample 3, the beam of the CRT 5 is generated by the electron beam controller 4 in synchronization with the scanning of the sample surface. If the secondary electrons 6 generated from the sample surface are detected and amplified by the detector 7, and the brightness of the CRT is modulated according to the intensity, the sample image by the detected secondary electrons can be created on the C27 surface. You can get on top. In this process, the scanning electron microscope has X-axis deflection coils 8, 8a and Y-axis deflection coils 9.98, which are arranged as a pair facing each other in the path of the irradiated electrons vA2 between the electron gun 1 and the sample 3. The scanning amplitude of the electron probe on the sample surface is determined by the coil currents from the X-axis electron deflection device 10 and the Y-axis electron deflection device 11, which are arranged perpendicular to each other and connected to the electron beam control unit 4. . The ratio of the scanning amplitude of the beam of the CRT 5 to the scanning amplitude of the electron probe on the sample surface becomes the magnification of the microscope. Therefore, by decreasing the scanning amplitude on the sample surface, the microscope magnification can be increased, and by increasing the scanning amplitude, the microscope magnification can be decreased. In a normal scanning electron microscope, the relationship between the scanning amplitude in the X direction and the scanning amplitude in the Y direction is fixed at 1:l, so the microscopic image is magnified to the same magnification in both the vertical and horizontal directions. In contrast,
The present invention differs from the conventional art in that the X-axis side coils 8, 8a and the Y-axis side coils 9,9a each have an
The electron beam control unit 4, which is capable of passing a current of arbitrary magnitude from the O and YIII electron deflection device 11, controls the current flowing to the X-axis side coil 8.8a and the Y-axis side coils 9, 9a independently of each other. The point is that it is controlled. That is, as a result, microscopic images having independently set vertical magnification and horizontal magnification are displayed on the CRT surface. Therefore, when observing a cross-sectional sample to measure the depth of minute irregularities using a scanning electron microscope, it is necessary to increase the magnification in the depth direction and decrease the magnification in the plane direction as described above. According to the present invention, the required concavo-convex shaped portion can be made to appear within the mirror field of view, and according to the present invention, the depth direction can be approximately 1n11, and the width of the bottom of the concave portion can be formed over a wide range from several nanometers to several tens of nanometers. It becomes possible to actually measure the Since the magnification ratios in both the vertical and horizontal directions can be independently set arbitrarily, it is preferable to set them so as to facilitate measurement according to the actual condition of the sample to be measured. In addition, in FIG. 1, the electron gun 1. Vertical section sample 3° detector 7
.. X-axis side coils 8, 8a, and Y-axis side coils 9.
98 are all arranged in a vacuum container,
In FIG. 1, illustration of the vacuum container is omitted. Further, the irradiation electron beam 2 and the secondary electrons 6 are represented by dotted lines, and their traveling directions are shown by arrows.

【発明の効果】【Effect of the invention】

例えば表面や接合部などのように、微小な凹凸形状をも
つ物体の凹凸の深さ寸法を定量的に求めるとき、凹凸部
を含めてその物体の縦断面を表面とする試料を用いて走
査型電子S!JIm鏡により拡大観察し測長するのが好
ましいが、従来の方法では顕微鏡で拡大される像は、X
軸方向、Y軸方向ともに等倍に拡大されてしまうので、
凹凸部の深さ方向を測長しやすいように十分拡大すると
平面方向も必要以上に拡大されて同一視野に入らなくな
り、凹凸形状を正しく捕えることができなかったのに対
し、本発明では実施例で述べたごとく、走査型電子顕微
鏡のX軸偏向コイルとY軸偏向コイルに流す電流の大き
さをそれぞれ任意に制御することにより、試料面上の電
子プローブの走査振幅をX軸方向、Y軸方向に関してそ
れぞれ独立に設定してCRT面上に顕微鏡像を表示する
ようにしたため、凹凸の深さ方向に対して測長を容易に
するよう十分に拡大しても、平面方向の像が視野から逸
脱しない程度に平面方向の拡大率を小さくすることがで
きるから凹凸形状を正確に把握した上で深さを測長する
ことが可能となり、この種の測定が容易に実施できると
ともに、微小領域の解析を行なうに際して得られる情報
の精度を高めるものである。
For example, when quantitatively determining the depth of an object with minute irregularities, such as a surface or a joint, a scanning method is used using a sample whose surface is a longitudinal section of the object, including the irregularities. Electronic S! It is preferable to perform magnified observation and length measurement using a JIm mirror, but in the conventional method, the image magnified with a microscope is
Since it will be enlarged to the same size in both the axial direction and the Y-axis direction,
If the depth direction of the uneven part is magnified sufficiently to make it easy to measure the length, the planar direction is also enlarged more than necessary and it becomes impossible to capture the same field of view, making it impossible to accurately capture the uneven shape.In contrast, in the present invention, the embodiment As mentioned above, by controlling the magnitude of the current flowing through the X-axis deflection coil and Y-axis deflection coil of a scanning electron microscope, the scanning amplitude of the electron probe on the sample surface can be adjusted in the X-axis direction and the Y-axis direction. Since the microscopic image is displayed on the CRT screen by setting each direction independently, even if the magnification is sufficiently large to facilitate length measurement in the depth direction of the unevenness, the image in the plane direction will not be visible from the field of view. Since the magnification ratio in the plane direction can be reduced to the extent that deviation does not occur, it is possible to measure the depth after accurately grasping the uneven shape. This type of measurement is easy to perform, and it is also possible to This improves the accuracy of information obtained when performing analysis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は走査型電子顕微鏡の要部系統図、第2図は半導
体素子の模式断面図である。 1:電子銃、2:照射電子線、3:縦断面試料、4:電
子線制御部、5 : CRT、6:二次電子、7:検出
器、8.8asX軸偏向コイル、9,9a:Y軸偏向コ
イル、10:X軸電子偏向装置、11:Y軸電子偏向装
置。
FIG. 1 is a system diagram of essential parts of a scanning electron microscope, and FIG. 2 is a schematic cross-sectional view of a semiconductor element. 1: Electron gun, 2: Irradiation electron beam, 3: Longitudinal section sample, 4: Electron beam control section, 5: CRT, 6: Secondary electron, 7: Detector, 8.8as X-axis deflection coil, 9, 9a: Y-axis deflection coil, 10: X-axis electron deflection device, 11: Y-axis electron deflection device.

Claims (1)

【特許請求の範囲】[Claims] 1)微小な凹凸部を有する物体の該凹凸部を含む縦断面
を表面とする試料を用いて走査型電子顕微鏡により前記
凹凸形状を拡大し、前記凹凸の深さを測定するに当たり
、電子線制御部によりX軸電子偏向装置とY軸電子偏向
装置を介して、それぞれ一対として対向配置されたX軸
偏向コイルとY軸偏向コイルに任意の大きさの電流を流
し、前記試料表面に照射する電子線の走査振幅をX軸方
向とY軸方向に関してそれぞれ独立に制御することによ
り、CRT面上に表示される二次電子像の拡大率を前記
凹凸の平面方向より深さ方向を大とすることを特徴とす
る微小凹凸の深さ測定方法。
1) Using a sample whose surface is a vertical cross section of an object having minute irregularities, the irregular shape is enlarged using a scanning electron microscope, and the depth of the irregularities is measured using electron beam control. A current of an arbitrary magnitude is passed through an X-axis electron deflection device and a Y-axis electron deflection device, respectively, to the X-axis deflection coil and the Y-axis deflection coil, which are arranged facing each other as a pair, to generate electrons that irradiate the sample surface. By independently controlling the scanning amplitude of the line in the X-axis direction and the Y-axis direction, the magnification ratio of the secondary electron image displayed on the CRT surface is made larger in the depth direction than in the plane direction of the unevenness. A method for measuring the depth of minute irregularities.
JP61034275A 1986-02-19 1986-02-19 Depth measuring method for fine irregularity Pending JPS62192609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61034275A JPS62192609A (en) 1986-02-19 1986-02-19 Depth measuring method for fine irregularity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034275A JPS62192609A (en) 1986-02-19 1986-02-19 Depth measuring method for fine irregularity

Publications (1)

Publication Number Publication Date
JPS62192609A true JPS62192609A (en) 1987-08-24

Family

ID=12409608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034275A Pending JPS62192609A (en) 1986-02-19 1986-02-19 Depth measuring method for fine irregularity

Country Status (1)

Country Link
JP (1) JPS62192609A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138864A (en) * 2001-08-29 2006-06-01 Hitachi Ltd Sample dimension measuring method and scanning electron microscope
JP2007003535A (en) * 2001-08-29 2007-01-11 Hitachi Ltd Sample dimension measuring method, and scanning electron microscope
JP2008139085A (en) * 2006-11-30 2008-06-19 Hitachi High-Technologies Corp Pattern dimension measuring method, and scanning transmission charged particle microscope
US7659508B2 (en) 2001-08-29 2010-02-09 Hitachi, Ltd. Method for measuring dimensions of sample and scanning electron microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138864A (en) * 2001-08-29 2006-06-01 Hitachi Ltd Sample dimension measuring method and scanning electron microscope
JP2007003535A (en) * 2001-08-29 2007-01-11 Hitachi Ltd Sample dimension measuring method, and scanning electron microscope
US7659508B2 (en) 2001-08-29 2010-02-09 Hitachi, Ltd. Method for measuring dimensions of sample and scanning electron microscope
US8080789B2 (en) 2001-08-29 2011-12-20 Hitachi, Ltd. Sample dimension measuring method and scanning electron microscope
JP2008139085A (en) * 2006-11-30 2008-06-19 Hitachi High-Technologies Corp Pattern dimension measuring method, and scanning transmission charged particle microscope

Similar Documents

Publication Publication Date Title
US8080789B2 (en) Sample dimension measuring method and scanning electron microscope
US7923701B2 (en) Charged particle beam equipment
CN112313782B (en) Semiconductor inspection device
JPH07191449A (en) Method for correcting defect in phase shift mask and device therefor
US5164596A (en) Focused ion beam irradiating apparatus
JPS62192609A (en) Depth measuring method for fine irregularity
JP2010103320A (en) Semiconductor inspection apparatus
JPH0982771A (en) Method and apparatus for evaluating semiconductor material
US9595420B2 (en) Method for preparing lamella
JPH09265931A (en) Image acquisition device and its method
DE112012007146T5 (en) A semiconductor inspection device and inspection method using a charged particle beam
RU2704390C2 (en) Method of three-dimensional reconstruction of surface of sample using images obtained using raster electronic microscope
JP4007305B2 (en) Method for evaluating resolution of electron microscope and method for adjusting electron microscope
JP3121619B2 (en) Image processing method for scanning tunneling microscope
JPH10213427A (en) Method for measuring size of circuit pattern
JP2610913B2 (en) Scanning tunneling microscope with gain control means
JPS59114834A (en) Method for measuring deep impurity level or crystal defect level contained in semiconductor device
JPH04206941A (en) Detection of fine lattice distortion of semiconductor substrate
JPH0372923B2 (en)
JP3950599B2 (en) Sample observation and measurement equipment
JPS6119044A (en) Stereoscanning-type electron microscope
JPH07134966A (en) Visual field turning device for scanning electron microscope
JPH02216748A (en) Sample surface unevenness observation method by reflection electron beam diffraction
JPH0690156B2 (en) Fine structure measurement method
JPS61176810A (en) Size measuring instrument