JPS61176810A - Size measuring instrument - Google Patents

Size measuring instrument

Info

Publication number
JPS61176810A
JPS61176810A JP1838785A JP1838785A JPS61176810A JP S61176810 A JPS61176810 A JP S61176810A JP 1838785 A JP1838785 A JP 1838785A JP 1838785 A JP1838785 A JP 1838785A JP S61176810 A JPS61176810 A JP S61176810A
Authority
JP
Japan
Prior art keywords
circuit
sample
threshold value
size
pulse waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1838785A
Other languages
Japanese (ja)
Inventor
Naotake Saito
斉藤 尚武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1838785A priority Critical patent/JPS61176810A/en
Priority to GB08601077A priority patent/GB2170596A/en
Publication of JPS61176810A publication Critical patent/JPS61176810A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Abstract

PURPOSE:To measure efficiently the size of a sample with high accuracy without receiving the influence of the material of the sample by measuring the size of the sample by a method for superposing a cursor line and setting the threshold value of the pulse waveform obtd. when the sample surface is subjected to linear scanning in accordance with the measured value thereof. CONSTITUTION:The pulse waveform obtd. by linear scanning of the sample surface by using a linear scanning circuit 19 is amplified by an amplifier 14 and is then inputted to a threshold setting circuit 21. The signal of the measured value of the sample size measured by the method for superposing the cursor line using a cursor matching circuit 18 and a length measuring circuit 20 is inputted to the circuit 21 from the circuit 20 in this stage. The threshold value of the circuit 21 is set by the output signal from the circuit 20. The threshold value of the circuit 21 is automatically set in accordance with the measured value if the operation for measuring just once the sample size by the method for superposing the cursor line is carried out even if the sample material is different. The subsequent size measurement is automatically carreid out by using such threshold value.

Description

【発明の詳細な説明】 【発明の利用分野〕 本発明は、半導体ウェハ上の回路パターン幅などの微細
な寸法を電子ビームを用いて測定する寸法測定装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a dimension measuring device that measures minute dimensions such as the width of a circuit pattern on a semiconductor wafer using an electron beam.

〔発明の背景〕[Background of the invention]

従来、この種の寸法測定装置として第2図に示すように
走査形電子顕微鏡を用いたものが知られている。
Conventionally, as this type of dimension measuring apparatus, one using a scanning electron microscope as shown in FIG. 2 is known.

この従来装置において、電子銃1から発射され、かつ陽
極2,3によって加速された電子ビーム4は、収束レン
ズ5と対物レンズ6で細く収束された後、試料8の表面
に照射される。このとき、電子ビーム4は、偏向器7に
より2次元的に偏向され、試料8の表面上を4a、4b
の如く走査する。
In this conventional apparatus, an electron beam 4 emitted from an electron gun 1 and accelerated by anodes 2 and 3 is narrowly focused by a converging lens 5 and an objective lens 6, and then irradiated onto the surface of a sample 8. At this time, the electron beam 4 is two-dimensionally deflected by the deflector 7 and passes over the surface of the sample 8 at 4a, 4b.
Scan like this.

電子ビーム4の照射により、試料8の表面から発生した
2次電子9の試料信号は、検出器10および増巾器14
により像信号として増幅された後、表示器(CRT)1
5のグリッド電極17に入力されることにより、表示器
15の画面上に試料像として写し出される。なお、11
は電子ビーム発生のための高圧電源、12はレンズ電源
、13は偏向電源であり、この偏向電源13は偏光器7
と同期して表示器15の偏向器16も駆動する。
A sample signal of secondary electrons 9 generated from the surface of the sample 8 by the irradiation of the electron beam 4 is transmitted to a detector 10 and an amplifier 14.
After being amplified as an image signal by
By inputting it to the grid electrode 17 of No. 5, it is projected as a sample image on the screen of the display 15. In addition, 11
1 is a high-voltage power source for generating an electron beam, 12 is a lens power source, and 13 is a deflection power source, and this deflection power source 13 is connected to the polarizer 7.
The deflector 16 of the display 15 is also driven in synchronization with this.

今、第3図(a)に示すような断面形状を有するパター
ン幅Ωのウェハパターンを走査形電子顕微鏡で観察した
場合、電子ビームの2次元的走査によって第2図(b)
に示すような裏面像が得られる、また、パターンの一部
を第2図(b)の矢印方向に線走査した時には第2図(
c)に示すようなパルス波形が得られる。
Now, when a wafer pattern with a pattern width Ω and a cross-sectional shape as shown in FIG. 3(a) is observed with a scanning electron microscope, the shape shown in FIG. 2(b) is obtained by two-dimensional scanning of the electron beam.
When a part of the pattern is line-scanned in the direction of the arrow in FIG. 2(b), a back image as shown in FIG. 2(b) is obtained.
A pulse waveform as shown in c) is obtained.

そこで、第2図(b)に示す表面像を写真撮影して寸法
巴。を測定するか、第4図(a)に示すように表示器1
5の画面にカーソル線16を写し出し、このカーソル線
16の位置を矢印で示すように移動して記号16aで示
すような試料表面像のエツジ部分に重ね合わせ、この時
のカーソル線16の距離a0を求め、さらにこの距離を
観察倍率Mで割算するCrte /M)ことによってウ
ェハパターンの寸法を測定することができる。
Therefore, the surface image shown in Fig. 2(b) was photographed and its dimensions were determined. or display 1 as shown in Figure 4(a).
Project the cursor line 16 on the screen of step 5, move the position of this cursor line 16 as indicated by the arrow, and superimpose it on the edge part of the sample surface image as shown by symbol 16a. The dimensions of the wafer pattern can be measured by determining this distance and further dividing this distance by the observation magnification M (Crte/M).

一方また、第2図(Q)に示したパルス波形のしきい値
Tkを適宜設定し、このしきい値T、を用いて第4図(
b)に示すようにパ塁ス波形のパルス幅息、を求めるこ
とにより、ウェハパターンの寸法a1を測定することが
できる。
On the other hand, the threshold value Tk of the pulse waveform shown in FIG. 2 (Q) is set appropriately, and this threshold value T is used to
By determining the pulse width of the pulse waveform as shown in b), the dimension a1 of the wafer pattern can be measured.

ところが、カーソル線を用いる測定方法によれば、カー
ソル線16を重ね合わせを高精度で行うことによってウ
ェハパターンの寸法を高精度で測定できるという利点が
ある反面、人間の手作業を伴うために作業効率が悪いと
いう問題点がある。
However, the measurement method using cursor lines has the advantage that the dimensions of the wafer pattern can be measured with high precision by overlapping the cursor lines 16 with high precision; The problem is that it is inefficient.

一方、パルス波形のパルス幅によって測定する方法によ
れば、しきい値T、の設定作業のみで残りの測定作業を
自動化できるという利点がある反面、しきい値T1の設
定の仕方によって測定値に誤差が発生し、さらにウェハ
パターンの断面形状が第4図(c) 、  (d) 、
  Ce5)に示すようなものであった場合や、ウェハ
パターンの材質の影響によってパルス波形が第4図(f
)に示すようなものになる場合には測定不能になるなど
の問題点があった・ 〔発明の目的〕 本発明は、試料の材質による影響を受けずに高精度で、
しかも効率的に試料の寸法を測定することができる寸法
測定装置を提供することにある。
On the other hand, the method of measuring based on the pulse width of the pulse waveform has the advantage that the rest of the measurement work can be automated by only setting the threshold value T, but on the other hand, depending on how the threshold value T1 is set, the measurement value An error occurs, and the cross-sectional shape of the wafer pattern changes as shown in Fig. 4 (c), (d),
If the pulse waveform is as shown in Figure 4 (f) or due to the influence of the material of the wafer pattern,
), there were problems such as measurement being impossible. [Objective of the Invention] The present invention provides high precision, unaffected by the material of the sample.
Moreover, it is an object of the present invention to provide a dimension measuring device that can efficiently measure the dimensions of a sample.

〔発明の概要〕[Summary of the invention]

本発明では、カーソル線の重ね合わせ法によって試料寸
法を測定し、この測定値に基づいて試料表面を線走査し
た時に得られるパルス波形のしきい値を設定するように
したものである。
In the present invention, the sample dimensions are measured by a method of superimposing cursor lines, and the threshold value of the pulse waveform obtained when the sample surface is line-scanned is set based on this measurement value.

(発明の実施例〕 以下1本発明を実施例に基づいて詳細に説明する。(Example of the invention) The present invention will be described in detail below based on examples.

第1図は本発明の一実施例を示すブロック図であり、第
2図と同一部分は同一記号で示している。
FIG. 1 is a block diagram showing one embodiment of the present invention, and the same parts as in FIG. 2 are indicated by the same symbols.

第1図において、従来構成と異なる点はカーソル合わせ
回路18.線走査回路19.測長回路20、しきい値設
定回路21および表示選択回路22が付加さ九ているこ
とである。
In FIG. 1, the difference from the conventional configuration is that the cursor alignment circuit 18. Line scanning circuit 19. A length measuring circuit 20, a threshold setting circuit 21, and a display selection circuit 22 are added.

この構成においては、カーソル合わせ回路18と測長回
路20とを用いてカーソル線の重ね合わせ法によって試
料寸法が測定される。この測定値は表示選択回路22を
介して表示器15のグリッド電極17に入力されること
により、試料像に代えて数字表示される。
In this configuration, the sample size is measured using the cursor alignment circuit 18 and the length measurement circuit 20 by a method of overlapping cursor lines. This measured value is input to the grid electrode 17 of the display 15 via the display selection circuit 22, so that it is displayed numerically instead of the sample image.

一方、線走査回路19を用いて試流表面を線走査するこ
とによって得られたパルス波形は増幅器14で増幅され
た後、しきい値設定回路21に入力す九る。この時、し
きい値設定回路21にはカーソル線の重ね合わせ法によ
って測定された試料寸法の測定値の信号が測定回路20
から入力される。そして、しきい値設定回路21のしき
い値T、は、第4図の彦。千n、lとなるように測定回
路20の出力信号によって設定される。この時設定され
たしきい値T1は表示選択回路22を介して表示器15
に入力されることにより、表示される。
On the other hand, the pulse waveform obtained by line-scanning the sample current surface using the line-scanning circuit 19 is amplified by the amplifier 14 and then input to the threshold setting circuit 21. At this time, the threshold setting circuit 21 receives a signal of the measured value of the sample dimension measured by the cursor line superimposition method.
Input from The threshold value T of the threshold setting circuit 21 is as shown in FIG. It is set by the output signal of the measuring circuit 20 to be 1,000 n, l. The threshold value T1 set at this time is transmitted to the display 15 via the display selection circuit 22.
It is displayed by inputting it to .

しきい値設定回路21はしきい値T、が設定されると、
線走査によって得られたパルス波形のパルス幅嚢、をこ
のしきい値Thを基準として測定し、表示選択回路22
を介して表示器15に入力する。
When the threshold value T is set in the threshold setting circuit 21,
The pulse width range of the pulse waveform obtained by line scanning is measured using this threshold value Th as a reference, and the display selection circuit 22
The information is input to the display 15 via the .

従って、試料材質が異なる場合であってもカーソル線の
重ね合わせ法によって試料寸法を1度だけ測定する作業
を行えば、この時の測定値に基づいてしきい値設定回路
21のしきい値が自動的に一定され、以後の寸法測定は
このしきい値T−を用いて自動的に行われる。
Therefore, even if the specimen materials are different, if the specimen dimensions are measured only once using the method of overlapping cursor lines, the threshold value of the threshold setting circuit 21 can be set based on the measured value at this time. It is automatically fixed, and subsequent dimension measurements are automatically performed using this threshold T-.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、試料の
材質による影響を受けずに高精度で、しかも効率的に試
料寸法を測定することができる。
As is clear from the above description, according to the present invention, the dimensions of a sample can be measured with high precision and efficiently without being affected by the material of the sample.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図。 第2図は従来装置の構成を示すブロック図、第3図はウ
ェハパターンの断面形状をその2次電子像および線走査
時のパルス波形を示す図、第411はウェハパターンの
断面形状の種類と従来の測定方法を示す図である。 4・・・電子線、7・・・偏向器、8・・・試料、9・
・・2次電子、10・・・検出器、13・・・偏向電源
、15・・・表示器、16・・・偏向器、17・・・グ
リッド電極、18・・・カーソル合わせ回路、19・・
・線走査回路、20・・・測長回路、21・・・しきい
値設定回路、22・・・表示選択回路。
FIG. 1 is a block diagram showing one embodiment of the present invention. Figure 2 is a block diagram showing the configuration of a conventional device, Figure 3 is a diagram showing the cross-sectional shape of a wafer pattern, its secondary electron image and pulse waveform during line scanning, and Figure 411 shows the types of cross-sectional shapes of the wafer pattern. FIG. 3 is a diagram showing a conventional measurement method. 4... Electron beam, 7... Deflector, 8... Sample, 9...
... Secondary electron, 10 ... Detector, 13 ... Deflection power supply, 15 ... Display device, 16 ... Deflector, 17 ... Grid electrode, 18 ... Cursor alignment circuit, 19・・・
- Line scanning circuit, 20... Length measurement circuit, 21... Threshold setting circuit, 22... Display selection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、試料表面を電子ビームによって走査し、試料表面か
ら発生した2次電子によって試料の表面像およびこの表
面像に対応したパルス波形を取出す第1の回路を、前記
表面像にカーソル線を重ね合わせることによって試料表
面の寸法を測定する第2の回路と、この第2の回路の測
定値を基準としてしきい値が設定され、このしきい値を
基に前記パルス波形を比較して試料表面の寸法を測定す
る第3の回路とを備えて成る寸法測定装置。
1. A first circuit that scans the sample surface with an electron beam and extracts a sample surface image and a pulse waveform corresponding to this surface image using secondary electrons generated from the sample surface, and superimposes a cursor line on the surface image. A second circuit measures the dimensions of the sample surface, and a threshold value is set based on the measured value of this second circuit, and the pulse waveform is compared based on this threshold value to determine the size of the sample surface. A dimension measuring device comprising: a third circuit for measuring dimensions.
JP1838785A 1985-02-01 1985-02-01 Size measuring instrument Pending JPS61176810A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1838785A JPS61176810A (en) 1985-02-01 1985-02-01 Size measuring instrument
GB08601077A GB2170596A (en) 1985-02-01 1986-01-17 Measuring dimensions with electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1838785A JPS61176810A (en) 1985-02-01 1985-02-01 Size measuring instrument

Publications (1)

Publication Number Publication Date
JPS61176810A true JPS61176810A (en) 1986-08-08

Family

ID=11970301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1838785A Pending JPS61176810A (en) 1985-02-01 1985-02-01 Size measuring instrument

Country Status (2)

Country Link
JP (1) JPS61176810A (en)
GB (1) GB2170596A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2579197A (en) * 1997-03-12 1998-09-29 Ilyin, Mikhail Julievich Method for measuring linear dimensions

Also Published As

Publication number Publication date
GB8601077D0 (en) 1986-02-19
GB2170596A (en) 1986-08-06

Similar Documents

Publication Publication Date Title
US4807159A (en) Apparatus and method for controlling irradiation of an electron beam at a fixed position in an electron beam tester system
JPS59163506A (en) Electronic beam measuring device
JPH04500126A (en) Method and apparatus for rapid spectral analysis of signals at single or multiple measurement points
KR100274265B1 (en) Converged ion beam device
US5128545A (en) Method and apparatus for background correction in analysis of a specimen surface
JPH06243814A (en) Scanning electron microscope
JP3494068B2 (en) Charged particle beam equipment
JPS61176810A (en) Size measuring instrument
EP0050475B1 (en) Scanning-image forming apparatus using photo electric signal
JP2005174883A (en) Scanning electron microscope
JPH0467550A (en) Electron beam device and image extracting method thereof
JPH03272554A (en) Scanning electron microscope for section observation and section observing method using it
US3479505A (en) Method of operating an ion microprobe using secondary elections
KR830002115B1 (en) Sample analysis device using particle beam
SU1027653A1 (en) Device for checking semiconductor devices by photo response
JPH024442Y2 (en)
JPH06132187A (en) Ion beam machining device
SU884005A1 (en) Method of measuring diameter of electronic probe in raster electron microscope
JPS60161514A (en) Measurement of length by electron beam scanning
JPH0417250A (en) Electron beam device
JPH01239949A (en) Electron beam probe apparatus
JPS6312146A (en) Pattern-dimension measuring apparatus
JPS5824726B2 (en) Scanning length measuring device
JPS62271424A (en) Exposure to charged particle beam
JPS61294749A (en) Charged beam irradiating apparatus