JPS5824726B2 - Scanning length measuring device - Google Patents

Scanning length measuring device

Info

Publication number
JPS5824726B2
JPS5824726B2 JP51040069A JP4006976A JPS5824726B2 JP S5824726 B2 JPS5824726 B2 JP S5824726B2 JP 51040069 A JP51040069 A JP 51040069A JP 4006976 A JP4006976 A JP 4006976A JP S5824726 B2 JPS5824726 B2 JP S5824726B2
Authority
JP
Japan
Prior art keywords
measured
image
length
scanning
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51040069A
Other languages
Japanese (ja)
Other versions
JPS52123646A (en
Inventor
栄 宮内
優 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP51040069A priority Critical patent/JPS5824726B2/en
Publication of JPS52123646A publication Critical patent/JPS52123646A/en
Publication of JPS5824726B2 publication Critical patent/JPS5824726B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は荷電粒子線にて極めて微少な被測長図形を有す
る被測定体表面を2次元的に走査することにより被測定
体表面像を表示装置上に表示すると共に、該表示装置上
に表示された前記被測長図形の測長を行うための装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention displays an image of the surface of the object to be measured on a display device by two-dimensionally scanning the surface of the object to be measured, which has an extremely small length figure to be measured, with a charged particle beam. , relates to an apparatus for measuring the length of the figure to be measured displayed on the display device.

近時、荷電粒子線を用いての露光或いは加工技術が著る
しく進歩し、集積回路製造技術等にはなくて−はならな
いものとなっている。
In recent years, exposure and processing techniques using charged particle beams have made remarkable progress and have become indispensable for integrated circuit manufacturing techniques.

集積回路製造過程に於いては、形成された素子の形状観
察や測長が要求されることがある。
In the integrated circuit manufacturing process, it is sometimes necessary to observe the shape and measure the length of formed elements.

このような場合、形状観察については走査型電子顕微鏡
等で行うことができるが、充分な精度で且つ簡単に前記
素子等の測長を行い得る従来装置はない。
In such a case, shape observation can be performed using a scanning electron microscope or the like, but there is no conventional device that can easily measure the length of the element etc. with sufficient accuracy.

このような従来の問題は集積回路技術の急激な発展によ
り高精度に測定したい寸法が0.1μmのオーダーとな
った現今では大きな問題であり、新しい装置の出現が強
く望まれでいた。
These conventional problems are a big problem now that the dimensions that need to be measured with high precision are on the order of 0.1 μm due to the rapid development of integrated circuit technology, and the emergence of a new device has been strongly desired.

本発明はこのような要求にそってなされたもので、以下
図面に基づき本発明の実施例を詳述する。
The present invention has been made in response to such demands, and embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例装置を概略的に示すための図
であり、図面において1は真空筐体であり、該筐体1の
上部には電子銃2が設けられている。
FIG. 1 is a diagram schematically showing an apparatus according to an embodiment of the present invention. In the drawing, 1 is a vacuum casing, and an electron gun 2 is provided on the top of the casing 1.

該電子銃より発生する電子線3は第1段及び第2段集束
レンズ4,5により集束された後、水平及び垂直偏向系
6,7によって偏向され被測定物8の表面に投射される
The electron beam 3 generated by the electron gun is focused by first and second focusing lenses 4 and 5, then deflected by horizontal and vertical deflection systems 6 and 7 and projected onto the surface of an object to be measured 8.

その結果、該測定物8の表面より2次電子が発生し、2
次電子検出器9によって検出される。
As a result, secondary electrons are generated from the surface of the measurement object 8, and 2
It is detected by the secondary electron detector 9.

該検出器9よりの信号は増幅器10を介して陰極線管1
1のカソード12に供給される。
The signal from the detector 9 is sent to the cathode ray tube 1 via an amplifier 10.
1 cathode 12.

前記水平偏向系6には水平走査信号発生回路13より第
2図aに示すような水平走査信号が倍率可変回路14を
構成する第1の増幅率可変増幅器15を介して供給され
て−おり、又垂直偏向系7には垂直走査信号発生回路1
6より第2図すに示すような垂直走査信号が前記倍率可
変回路14を構成する第2の増幅率可変増幅器17を介
しで供給される。
A horizontal scanning signal, as shown in FIG. The vertical deflection system 7 also includes a vertical scanning signal generation circuit 1.
6, a vertical scanning signal as shown in FIG.

又前記水平及び垂直走査信号発生回路13.16の前記
出力倍長は各々増幅器18.19を介して前記陰極線管
11の水平及び垂直偏向系20.21に供給される。
Further, the output doubles of the horizontal and vertical scanning signal generating circuits 13.16 are supplied to the horizontal and vertical deflection systems 20.21 of the cathode ray tube 11 via amplifiers 18.19, respectively.

従って前記電子線3は被測定物8上の矩形領域を2次元
的に走査し、又陰極線管11の電子線22もこれに同期
して走査せられる。
Therefore, the electron beam 3 two-dimensionally scans a rectangular area on the object to be measured 8, and the electron beam 22 of the cathode ray tube 11 is also scanned in synchronization with this.

そのため前記2次電子検出器9より得られた信号に基づ
いて被測定物8の走査2次電子像が陰極線管11に表示
される。
Therefore, a scanned secondary electron image of the object to be measured 8 is displayed on the cathode ray tube 11 based on the signal obtained from the secondary electron detector 9.

23は前記陰極線管11に表示される走査2次電子像上
に測長の基準垂直線を重畳して表示するための電圧を発
生する電圧発生回路であり、該発生回路23は両端に一
定電圧Eが印加された第1、第2の抵抗24及び25と
を有し、該抵抗に摺動する端子26.27を介して電圧
E以下の任意電圧を取り出せるようになっている。
23 is a voltage generating circuit that generates a voltage for superimposing and displaying a reference vertical line for length measurement on the scanning secondary electron image displayed on the cathode ray tube 11, and the generating circuit 23 has a constant voltage at both ends. It has first and second resistors 24 and 25 to which voltage E is applied, and any voltage below voltage E can be taken out through terminals 26 and 27 that slide on the resistors.

該電圧Eは前記陰極線管11に供給される前記水平走査
信号の鋸歯状波の波高値に一致したものである。
The voltage E corresponds to the peak value of the sawtooth wave of the horizontal scanning signal supplied to the cathode ray tube 11.

28は前記抵抗25に電圧Eを印加するための電源ある
Reference numeral 28 denotes a power source for applying voltage E to the resistor 25.

前記摺電端子26,27に検出された電圧はスイッチ回
路29を介してコンパレーター30に供給し得るように
なっているが、該スイッチ回路29の切換如何によりい
ずれか一方のみが前記コンパレーター30に供給される
The voltage detected at the sliding terminals 26 and 27 can be supplied to the comparator 30 via a switch circuit 29, but depending on whether the switch circuit 29 is switched, only one of the voltages can be supplied to the comparator 30. supplied to

該コンパレーター30には前記陰極線管11の水平偏向
系20に供給されているところの水平走査信号が供給さ
れており、スイッチ回路29によって選択されてきたと
ころの前記電圧発生回路23よりの電圧信号が前記水平
走査信号と比較され、両信号の信号値が一致した瞬間に
バイレベルの矩形信号を出力する。
The comparator 30 is supplied with the horizontal scanning signal that is supplied to the horizontal deflection system 20 of the cathode ray tube 11, and the voltage signal from the voltage generation circuit 23 that has been selected by the switch circuit 29 is supplied to the comparator 30. is compared with the horizontal scanning signal, and at the moment when the signal values of both signals match, a bi-level rectangular signal is output.

即ち、いま例えばコンパレーター30に第2図Cにおい
で実線イで示す如き水平走査信号と、細線口で示す如き
スイッチ回路29によって選択された出力信号とが供給
されると該コンパレーター30より第2図dに示す如き
矩形波信号が発生する。
That is, for example, when the comparator 30 is supplied with a horizontal scanning signal as shown by the solid line A in FIG. A rectangular wave signal as shown in FIG. 2d is generated.

該コンパレーター30よりの信号は単安定マルチバイブ
レーク−31に供給され、その結果、該単安定マルチバ
イブレーク−31より第2図eに示す如き短い一定の時
間幅を有する負電圧パルスが発生し、該発生したパルス
は陰極線管11のカソード12に供給される。
The signal from the comparator 30 is supplied to the monostable multi-bi break-31, and as a result, the mono-stable multi-bi break-31 generates a negative voltage pulse having a short constant time width as shown in FIG. 2e, The generated pulses are supplied to the cathode 12 of the cathode ray tube 11.

その結果陰極線管11面上には該パルスが供給された瞬
間のみ螢光面に到達する電子線量が多くなるため輝点が
表示される。
As a result, a bright spot is displayed on the surface of the cathode ray tube 11 because the amount of electron beam reaching the fluorescent surface increases only at the moment when the pulse is supplied.

このような輝点は各水平走査線の同一位置上に表われる
ため、陰極線管11面上では縦方向の輝線として表示さ
れる。
Since such bright spots appear at the same position on each horizontal scanning line, they are displayed as vertical bright lines on the surface of the cathode ray tube 11.

前記電圧発生回路23に戻ると、該回路23の前記摺動
子26の出力電圧と摺動子27の出力電圧との差電圧は
第3の抵抗32の両端に印加されるようになっており、
該差電圧は第3の抵抗32に摺動する校正用摺動子33
を介して電圧Vとして取り出された後、校正用微調整器
34を介してデジタルボルトメーター35に供給されて
いる。
Returning to the voltage generation circuit 23, the voltage difference between the output voltage of the slider 26 and the output voltage of the slider 27 of the circuit 23 is applied to both ends of the third resistor 32. ,
The differential voltage is applied to a calibration slider 33 that slides on the third resistor 32.
After being taken out as a voltage V via the calibration fine adjuster 34, it is supplied to the digital voltmeter 35.

該デジタルボルトメーターは前記倍率可変回路14に連
動しており、前記倍率可変回路14の増幅器15.17
の増幅率を変化させて被測定物8の撮像を例えば1,0
00倍、10,000倍、ioo、ooo倍と3段階に
変;化させるに伴い該デジタルボルトメーターの表示部
における小数点位置が1つづつ移動する。
The digital voltmeter is linked to the variable magnification circuit 14, and the amplifier 15.17 of the variable magnification circuit 14
For example, the object to be measured 8 is imaged by changing the amplification factor of 1,0
The decimal point position on the display section of the digital voltmeter moves one by one as the value changes in three stages: 00 times, 10,000 times, ioo, and ooo times.

校正用微調整器34も前記倍率可変回路14に連動して
おり、前記倍率可変回路14による設定倍率と実際の倍
率との間に誤差がある場合、前記差電圧を該誤差量に対
応した量だけ補償するための回路である。
The calibration fine adjuster 34 is also linked to the variable magnification circuit 14, and when there is an error between the magnification set by the variable magnification circuit 14 and the actual magnification, the differential voltage is adjusted to an amount corresponding to the amount of error. This is a circuit for only compensation.

即ち例えば前記倍率可変回路14による設定倍率が10
00倍の時に実際の倍率が998倍だと前記電圧■は校
正用微調整器34によって000 ]「[倍された後、デジタルボルトメーター35に供給
される。
That is, for example, if the magnification set by the variable magnification circuit 14 is 10
When the actual magnification is 998 times when the voltage is 00 times, the voltage (1) is multiplied by the calibration fine adjuster 34 to 000 times and then supplied to the digital voltmeter 35.

前記設定倍率と実際の倍率との誤差は設定倍率ごとに異
なっているため、各設定倍率に合わせて校正用微調整器
34による補償率が自動的に切換えられる。
Since the error between the set magnification and the actual magnification differs depending on the set magnification, the compensation rate by the calibration fine adjuster 34 is automatically switched in accordance with each set magnification.

このような装置によって1例えば第3図に示すような極
微少な被測長図形Aを有する被測定物を撮像し、該被測
長図形Aの幅を測定するものとする。
Assume that such an apparatus is used to image an object having a very small length-measurable figure A as shown in FIG. 3, for example, and measure the width of the length-measuring figure A.

倍率可変回路14によって被測定物8の撮像倍率を適宜
に選び電子線3により被測定物8上を走査し、被測定物
8の像を陰極線管11に表示すれば、該管面上には第4
図aに示す如き像が表示される。
If the imaging magnification of the object to be measured 8 is appropriately selected by the variable magnification circuit 14 and the object to be measured 8 is scanned by the electron beam 3 and the image of the object to be measured 8 is displayed on the cathode ray tube 11, the image on the tube surface is Fourth
An image as shown in Figure a is displayed.

ここでA’が前記被測長図形像である。次にスイッチ回
路29を端子aに接続すると摺動端子26からの電圧信
号がコンパレーター30に供給され前述した動作により
第4図すにおいてBで示す如き縦方向の輝線が表示され
る。
Here, A' is the figure image to be measured. Next, when the switch circuit 29 is connected to the terminal a, the voltage signal from the sliding terminal 26 is supplied to the comparator 30, and the above-described operation causes a vertical bright line as shown by B in FIG. 4 to be displayed.

而して26を調整するとコンパレーター30への電圧が
変化し、該輝線はそれと直角方向に移動するので該輝線
Bを前記被測長図形像Aの右端に一致(第4図すにおい
て点線H1で示される)させる。
When 26 is adjusted, the voltage to the comparator 30 changes, and the bright line moves in a direction perpendicular to it, so that the bright line B coincides with the right end of the length figure image A to be measured (dotted line H1 in Figure 4). ).

次にスイッチ回路29をb端子に切換えて摺動子27よ
り取り出される電圧がコンパレーター30に供給される
ようにする。
Next, the switch circuit 29 is switched to the b terminal so that the voltage taken out from the slider 27 is supplied to the comparator 30.

斯くして摺動子27を移動せしめれば、この場合にも第
4図すにおいてBで示される如き縦方向の輝線が横方向
に平行移動する。
When the slider 27 is moved in this manner, the bright line in the vertical direction as indicated by B in FIG. 4 also moves in parallel in the horizontal direction.

該輝線Bを観察しつつ該輝線Bが前記被測長図形像A′
の左端に一致する(第4図すにおいて点線H2で示され
る)位置まで移動したら摺動子27の移動を停止する。
While observing the bright line B, the bright line B becomes the length-measured figure image A'.
When the slider 27 moves to a position corresponding to the left end of the slider 27 (indicated by the dotted line H2 in FIG. 4), the slider 27 stops moving.

斯くして電圧発生回路23の端子26,27によって取
り出された電圧の差電圧が抵抗32の摺動子33より検
出さ右、校正用微調整器34を介してデジタルボルトメ
ーター35に供給される。
The voltage difference between the voltages taken out by the terminals 26 and 27 of the voltage generating circuit 23 is detected by the slider 33 of the resistor 32 and supplied to the digital voltmeter 35 via the calibration fine adjuster 34. .

その結果該デジタルボルトメーターには前記被測長図形
の横幅を表わす計数値が表示される。
As a result, a count value representing the width of the length figure to be measured is displayed on the digital voltmeter.

上述したように、本発明によれば、被測■長図形の大き
さに合わせて観察倍率を選択し、最適な大きさで被測長
図形を表示装置に表示した後、マークを移動させで被測
長物に合わせるだけで、極めて微細な図形を簡単且つ高
精度に測長することができる。
As described above, according to the present invention, the observation magnification is selected according to the size of the length figure to be measured, and after the length figure to be measured is displayed on the display device at the optimal size, the mark can be moved. By simply aligning it with the length of the object to be measured, extremely minute figures can be measured easily and with high precision.

尚、上述した実施例において校正用摺動子33の位置設
定については以下のようにして行う。
In the above embodiment, the position of the calibration slider 33 is set as follows.

即ち、まずレーザー測長器等の既知の沖1長手段により
予め測長が行なわれた基準図形を有する被測定物を適宜
の倍率で撮像し、該撮像によって得られた像と、前記輝
線とを観察しつつ上述したプロセスと全(同じプロセス
により、測長結果をデジタルボルトメーター35に表示
する。
That is, first, an object to be measured having a reference figure whose length has been measured in advance by a known length measuring device such as a laser length measuring device is imaged at an appropriate magnification, and the image obtained by this imaging and the above-mentioned bright line are The length measurement results are displayed on the digital voltmeter 35 through the same process as described above while observing the length.

該表示数値と予め得ている測長数値とを対比し、両数値
が一致していなければ校正用摺動子33を微少量移動せ
しめてデジタルボルトメーター35による表示値が前記
予め得ている測長数値に一致するようにし、一致が完了
した位置が校正用摺動子33の設定位置となる。
Compare the displayed value with the previously obtained length measurement value, and if the two values do not match, move the calibration slider 33 by a small amount so that the value displayed by the digital voltmeter 35 matches the previously obtained measurement value. The position where the matching is completed becomes the set position of the calibration slider 33.

また校正用微調整器34による微調整も実際には校正用
摺動子33による位置設定が終了した後に行なわれ、こ
れらの設定は一度設定したら殆んど再設定する必要はな
い。
Further, the fine adjustment by the calibration fine adjuster 34 is actually performed after the position setting by the calibration slider 33 is completed, and once these settings are set, there is almost no need to reset them.

尚、上述した実施例は本発明の基本的な一実施例に過ぎ
ず、幾多の変形が考えられる。
It should be noted that the embodiment described above is only one basic embodiment of the present invention, and many modifications can be made.

例えば上述した実施例においては輝線を縦方向に表示し
て横幅を測長する場合を例示したが、輝線を横方向に表
示して被測長図形の縦の長さを測定することもできる。
For example, in the above-described embodiment, the bright line is displayed in the vertical direction to measure the width, but the bright line can also be displayed in the horizontal direction to measure the vertical length of the figure to be measured.

又測長図形像が斜めになっている場合には表示像を斜め
に回転するか、前記輝線を斜めに回転するかして測長を
行うことができる。
Further, when the length measurement figure image is oblique, the length measurement can be performed by rotating the displayed image obliquely or by rotating the bright line obliquely.

又第5図aに示すように陰極線管面上に中心位置及び半
径を自由に調整できる円Cを表示し、該円Cを同図にお
いてDで示される被測長図形像の測長すべき端部に一致
するまで中心位置及び半径の変更を行い、然る後円Cの
半径を例えば電圧信号差として取り出しデジタルボルト
メーター等に表示して測長を行うようにすることもでき
る。
In addition, as shown in Fig. 5a, a circle C whose center position and radius can be freely adjusted is displayed on the surface of the cathode ray tube, and this circle C is used to measure the length of the length-measuring figure image indicated by D in the same figure. It is also possible to change the center position and radius until they coincide with the ends, and then take out the radius of the circle C as, for example, a voltage signal difference and display it on a digital voltmeter or the like to measure the length.

又第5図すに示すように中心位置及び半径が可変できる
同心円CI 、C2の間に被測長図形像りを挾むように
し、該円CI、C2の半径差に対応する電圧を表示する
ことにより測長するようにしても良い。
Further, as shown in Fig. 5, the image of the figure to be measured is placed between concentric circles CI and C2 whose center position and radius are variable, and the voltage corresponding to the difference in radius between the circles CI and C2 is displayed. The length may be measured by

同様に基準として他の図形、成るいは図形を構成する点
等の要素を表示して測定を行うこともできる。
Similarly, it is also possible to measure by displaying other figures or elements such as points constituting the figure as a reference.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置の概略図であり、第2図
は第1図に示した一実施例装置の諸回路の出力信号を示
す線図、第3図は被測定物の被測長図形を示すための図
、第4図は陰極線管面上に表示される被測長図形像と基
準輝線との関係を示すための図であり、第5図は被測長
図形像と基準円との関係を例示するための図である。 1・・・・・・真空筐体、2・・・・・・電子銃、3,
22・・・・・・電子線:4,5・・・・・・集束レン
ズ、6,20・・・・・・水平偏向系、7,21・・・
・・・垂直偏向系、8・・・・・・被測定物、9・・・
・・・2次電子検出器、10,18,19・・・・・・
増幅器、11・・・・・・陰極線管、12・・・・・・
カソード、13・・・・・・水平走査信号発生回路、1
4・・・・・・倍率可変回路、15,17・・・・・・
増幅率可変増幅器、16・・・・・・垂直走査信号発生
回路、23・・・・・・電圧発生回路、24,25,3
2・・・・・・抵抗、26,27 。 33・・・・・・摺動子、28・・・・・・電源、29
・・・・・・スイッチ回路、30・・・・・・コンパレ
ーター、31・・・・・・単安定マルチバイブレーク−
134・・・・・・校正用微調整器、35・・・・・・
デジタルボルトメーター。
FIG. 1 is a schematic diagram of an apparatus according to an embodiment of the present invention, FIG. 2 is a diagram showing output signals of various circuits of the apparatus according to the embodiment shown in FIG. Figure 4 is a diagram showing the figure to be measured, and Figure 4 is a diagram to show the relationship between the image of the figure to be measured and the reference bright line displayed on the cathode ray tube surface, and Figure 5 is the image of the figure to be measured. FIG. 4 is a diagram for illustrating the relationship between and a reference circle. 1... Vacuum housing, 2... Electron gun, 3,
22...Electron beam: 4,5...Focusing lens, 6,20...Horizontal deflection system, 7,21...
...Vertical deflection system, 8...Object to be measured, 9...
...Secondary electron detector, 10, 18, 19...
Amplifier, 11...Cathode ray tube, 12...
Cathode, 13...Horizontal scanning signal generation circuit, 1
4...Magnification variable circuit, 15, 17...
Variable gain amplifier, 16... Vertical scanning signal generation circuit, 23... Voltage generation circuit, 24, 25, 3
2...Resistance, 26,27. 33...Slider, 28...Power supply, 29
...Switch circuit, 30...Comparator, 31...Monostable multi-vibration break-
134... Fine adjuster for calibration, 35...
Digital voltmeter.

Claims (1)

【特許請求の範囲】[Claims] 1 荷電粒子線を偏向するための偏向器に走査信号を供
給して被測長図形を有する被測定物表面を2次元的に走
査するための手段と、該偏向器に供給される走査信号を
増幅する増幅器の増幅率を観察倍率を切換えるため変化
させる手段と、前記走査に伴なって被測定物から発生し
た情報を検出し電気信号に変換するための手段と、該手
段よりの電気信号に基づいて前記被測定物表面の画像を
表示するための前記走査と同期走査される表示手段と、
該表示手段の画面上にi測長図形像の両端を指示するた
めの基準マーク要素を表示する手段と、該マークを画像
上で移動させる手段と、該マーク間の画像上の距離に対
応する信号を発生する手段と、該発生した信号の大きさ
を前記増幅器の増幅率の変化に連動して変化させるため
の手段と、該手段よりの出力信号を表示する手段とを具
備することを特徴とする走査型測長装置。
1. A means for two-dimensionally scanning the surface of an object having a length figure to be measured by supplying a scanning signal to a deflector for deflecting a charged particle beam; means for changing the amplification factor of an amplifier for switching the observation magnification; means for detecting information generated from the object to be measured during the scanning and converting it into an electrical signal; a display means that scans in synchronization with the scanning for displaying an image of the surface of the object to be measured based on the scanning;
means for displaying reference mark elements for indicating both ends of the i-length measurement figure image on the screen of the display means; means for moving the mark on the image; and means corresponding to the distance between the marks on the image. It is characterized by comprising means for generating a signal, means for changing the magnitude of the generated signal in conjunction with changes in the amplification factor of the amplifier, and means for displaying the output signal from the means. A scanning length measuring device.
JP51040069A 1976-04-09 1976-04-09 Scanning length measuring device Expired JPS5824726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51040069A JPS5824726B2 (en) 1976-04-09 1976-04-09 Scanning length measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51040069A JPS5824726B2 (en) 1976-04-09 1976-04-09 Scanning length measuring device

Publications (2)

Publication Number Publication Date
JPS52123646A JPS52123646A (en) 1977-10-18
JPS5824726B2 true JPS5824726B2 (en) 1983-05-23

Family

ID=12570629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51040069A Expired JPS5824726B2 (en) 1976-04-09 1976-04-09 Scanning length measuring device

Country Status (1)

Country Link
JP (1) JPS5824726B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082237A (en) * 1983-10-07 1985-05-10 Toyo Seikan Kaisha Ltd Method and apparatus for manufacturing container member
JPS6082238A (en) * 1983-10-07 1985-05-10 Nippon Alum Mfg Co Ltd:The Method of forming mouth piece structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179256U (en) * 1981-05-09 1982-11-13

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117656A (en) * 1976-03-29 1977-10-03 Hitachi Denshi Ltd Size measuring device for object

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117656A (en) * 1976-03-29 1977-10-03 Hitachi Denshi Ltd Size measuring device for object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082237A (en) * 1983-10-07 1985-05-10 Toyo Seikan Kaisha Ltd Method and apparatus for manufacturing container member
JPS6082238A (en) * 1983-10-07 1985-05-10 Nippon Alum Mfg Co Ltd:The Method of forming mouth piece structure

Also Published As

Publication number Publication date
JPS52123646A (en) 1977-10-18

Similar Documents

Publication Publication Date Title
US4289400A (en) Apparatus for measuring a gradient of a surface
US3876883A (en) Method and system for focusing and registration in electron beam projection microfabrication
US7375330B2 (en) Charged particle beam equipment
JPS59163506A (en) Electronic beam measuring device
CA1103813A (en) Apparatus for electron beam lithography
US6797965B2 (en) Charged particle beam apparatus, pattern measuring method, and pattern drawing method
JPS5824726B2 (en) Scanning length measuring device
US4152599A (en) Method for positioning a workpiece relative to a scanning field or a mask in a charged-particle beam apparatus
JPH0234139B2 (en)
JPH07302564A (en) Scanning electron microscope
JP3430788B2 (en) Sample image measuring device
JPH08227840A (en) Adjusting method and drawing method in charged-particle-line drawing apparatus
JPS6327641B2 (en)
JP3110363B2 (en) Adjustment method of charged beam writing system
GB1569299A (en) For use in the method method of producing a scanning electron microscope image having reduced distortion and scanning electron microscopes
JPH048938B2 (en)
JPS59165358A (en) Scanning electron microscope
JPH04116915A (en) Drawing-beam diameter adjusting method
JPH034884Y2 (en)
JPH11160054A (en) Pattern length measurement method
JP2000100695A (en) Method and device for charged beam drawing
JP2010016007A (en) Charged particle beam adjustment method, and charged particle beam device
JPH09190788A (en) Measuring method for focusing beam
JPS5833657B2 (en) Scanning electron microscope
JPS61176810A (en) Size measuring instrument