JPH0234139B2 - - Google Patents

Info

Publication number
JPH0234139B2
JPH0234139B2 JP55143308A JP14330880A JPH0234139B2 JP H0234139 B2 JPH0234139 B2 JP H0234139B2 JP 55143308 A JP55143308 A JP 55143308A JP 14330880 A JP14330880 A JP 14330880A JP H0234139 B2 JPH0234139 B2 JP H0234139B2
Authority
JP
Japan
Prior art keywords
electron
aperture
alignment
lens
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55143308A
Other languages
Japanese (ja)
Other versions
JPS5767912A (en
Inventor
Mamoru Nakasuji
Kanji Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14330880A priority Critical patent/JPS5767912A/en
Publication of JPS5767912A publication Critical patent/JPS5767912A/en
Publication of JPH0234139B2 publication Critical patent/JPH0234139B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems

Description

【発明の詳細な説明】 本発明は簡易にして高精度な軸合せを行い得る
電子光学鏡筒の軸合せ方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for aligning an electron optical lens barrel that allows simple and highly accurate alignment.

従来、可変寸法ビーム形の電子光学鏡筒のビー
ム軸合せは、一旦、電子ビームのクロスオーバ縮
小像を形成し、このビームで試料面を走査して試
料像を検出してCRTに画像表示し、電子レンズ
の励磁を微小変化させたときに上記像の所謂ボケ
のみが変化するようにして軸合せコイルを調整
し、しかるのち正規の整形ビーム用電子レンズの
強度を調整することにより行われている。また別
の方法として、鏡筒の途中にフアラデーカツプや
半導体検出器等のセンサを配置し、このセンサに
より得られる軸ずれ情報を以つて軸合せ調整を行
つている。ところが前者方法では、レンズの強度
を変えるとそのレンズの軸心位置が多少変動する
ので、上述したようにクロスオーバ縮小像で軸合
せを行つても、その後整形ビームにすると軸が狂
うことが多かつた。また後者の方法にあつては、
鏡筒内部に絶縁物で支持された部品(センサ)を
配置するから、ガス放出の増加やそのチヤージン
グ等によつてビームの不安定化が生じ、これ故効
果的な軸合せが望めなかつた。
Conventionally, when aligning the beam axis of an electron optical column with a variable beam shape, a crossover reduced image of the electron beam is formed, and this beam scans the sample surface to detect the sample image and display the image on a CRT. This is done by adjusting the alignment coil so that only the so-called blur of the image changes when the excitation of the electron lens is minutely changed, and then adjusting the strength of the regular shaped beam electron lens. There is. As another method, a sensor such as a Faraday cup or a semiconductor detector is placed in the middle of the lens barrel, and alignment adjustment is performed using information on axis deviation obtained from this sensor. However, in the former method, when the strength of the lens is changed, the axial center position of the lens changes somewhat, so even if the axis is aligned using the crossover reduction image as described above, the axis often becomes misaligned when the beam is subsequently converted to a shaped beam. It was. Also, for the latter method,
Since a component (sensor) supported by an insulator is placed inside the lens barrel, the beam becomes unstable due to increased gas emission and charging, and therefore effective alignment cannot be expected.

本発明はこのような事情を考慮してなされたも
ので、その目的とするところは、可変寸法ビーム
用の電子光学鏡筒の全レンズの軸合せを簡易にし
て能率良く高精度に行い得る実用的な電子光学鏡
筒の軸合せ方法を提供せんことにある。
The present invention has been made in consideration of these circumstances, and its purpose is to provide a practical method for easily and efficiently aligning the axes of all lenses of an electron optical lens barrel for a variable beam beam. The object of the present invention is to provide a method for aligning the axis of an electron optical lens barrel.

本発明は、電子ビームの通路に複数の電子レン
ズ1個以上のビーム整形用アパーチヤマスクを備
えた電子光学鏡筒における軸合せ方法において、
所定のアパーチヤ上を電子ビームで走査したと
き、試料面に設けられた低電子反射率基板上に高
電子反射率微粒子を付着させてなるターゲツト、
いわゆる微粒子ターゲツトから得られるアパーチ
ヤ像を表示し、表示されたアパーチヤ像の位置が
電子レンズの励起量の変化に対して変化しないよ
うに軸合せ用偏向手段を可変調整することによ
り、軸合せを行なうことを特徴とする。
The present invention provides an axis alignment method for an electron optical lens barrel including a plurality of electron lenses and one or more beam shaping aperture masks in the electron beam path.
When a predetermined aperture is scanned with an electron beam, a target consisting of fine particles with high electron reflectance attached to a low electron reflectance substrate provided on the sample surface,
Axis alignment is performed by displaying an aperture image obtained from a so-called fine particle target and variably adjusting the alignment deflection means so that the position of the displayed aperture image does not change with changes in the amount of excitation of the electron lens. It is characterized by

本発明によれば、電子レンズの励起量の変化に
対して、前記の微粒子ターゲツトから得られるア
パーチヤ像の表示位置が変化しないように軸合せ
用偏向手段を可変調整するという簡単な手順によ
り、能率的に軸合せを行なうことができる。
According to the present invention, efficiency can be improved by a simple procedure of variably adjusting the alignment deflection means so that the display position of the aperture image obtained from the fine particle target does not change in response to changes in the excitation amount of the electron lens. axis alignment can be performed.

また、本発明では特に軸合せ時に必要なアパー
チヤ像を得るのに微粒子ターゲツトを用いるた
め、軸合せ時の電子ビームは実際の使用時と同じ
く可変寸法ビームの整形ビームででよい。このた
め、軸合せ時には電子ビームを絞つてクロスオー
バ縮小像を形成し、軸合せ後にレンズの励起量を
大きく変えて正規の整形ビームに戻す従来の方法
のような、整形ビームに戻したときに軸合せが狂
うという問題が解決される。さらに、軸ずれ情報
を得るためのセンサを鏡筒内部に配置する方法に
おけるビームの不安定化という問題もない。
Further, in the present invention, since a fine particle target is used to obtain an aperture image required especially during alignment, the electron beam during alignment may be a shaped beam with variable dimensions as in actual use. For this reason, when returning to a shaped beam, the conventional method involves focusing the electron beam to form a crossover reduced image during alignment, and returning it to a regular shaped beam by greatly changing the excitation amount of the lens after alignment. The problem of misalignment is solved. Furthermore, there is no problem of beam instability caused by the method of arranging a sensor for obtaining information on axis deviation inside the lens barrel.

以下、図面を参照して本発明の実施例につき説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は軸合せに供せられる電子光学鏡筒の概
略構成を示す図で、1は電子銃である。この電子
銃1から出力された電子ビームは軸合せコイル2
によつてコンデンサレンズ3の中心に入射され、
同レンズ3により集束されて第1のビーム整形ア
パーチヤ4に照明される。このアパーチヤ4によ
る電子ビームのアパーチヤ像は電子レンズ5によ
り第2のビーム整形アパーチヤ6に投影され、こ
の際上記電子ビームは軸合せコイル7の制御を受
けて上記電子レンズ5の中心位置を通過する。し
かるのち、電子レンズ5の中心位置を通つた電子
ビームは軸合せコイル8の制御により縮小レンズ
9の中心に入射され、しかるのち軸合せコイル1
0の制御を受けて対物レンズアパーチヤ11の中
心位置に入射される。しかして前記縮小レンズ9
によつて第2のビーム整形アパーチヤ6による電
子ビームのアパーチヤ像が2段構成された偏向系
12a,12bを介して対物レンズアパーチヤ1
1に導かれ、同レンズアパーチヤ11を介して試
料面13上に照射される。この対物レンズアパー
チヤ11によつてビーム収差が小さくなるように
制御されている。
FIG. 1 is a diagram showing a schematic configuration of an electron optical lens barrel used for axis alignment, and 1 is an electron gun. The electron beam output from this electron gun 1 is aligned with the alignment coil 2.
is incident on the center of the condenser lens 3 by
The beam is focused by the same lens 3 and illuminated onto the first beam shaping aperture 4 . The aperture image of the electron beam formed by this aperture 4 is projected onto a second beam shaping aperture 6 by an electron lens 5, and at this time, the electron beam passes through the center position of the electron lens 5 under the control of an alignment coil 7. . Thereafter, the electron beam passing through the center position of the electron lens 5 is incident on the center of the reduction lens 9 under the control of the alignment coil 8, and then the electron beam passes through the center position of the alignment coil 1.
0 and enters the center position of the objective lens aperture 11. However, the reduction lens 9
As a result, the aperture image of the electron beam by the second beam shaping aperture 6 is transmitted to the objective lens aperture 1 via the two-stage deflection system 12a, 12b.
1 and is irradiated onto the sample surface 13 through the same lens aperture 11. The objective lens aperture 11 is controlled to reduce beam aberration.

またこれらのレンズ3,5,9と対物レンズお
よび軸合せコイル2,7,8,10はインターフ
エース14を介してCPU15の制御を受け、そ
れぞれ所定の条件で励磁駆動されている。また偏
向系12a,12bは例えば電子ビームの軸方向
ををZ軸とした場合、三次元空間を構成するX方
向、およびY方向にそれぞれ対向配置して構成さ
れた静電偏向板からなり、走査回路16の偏向走
査信号を受けて前記電子ビームを偏向制御してい
る。しかして前記試料面13に照明された電子ビ
ームの反射信号はホトマル等からなる反射電子検
出器17にて検出されており、この検出信号は増
幅器18を介してCRTモニタ19に入力されて
いる。軸合せ調整時には、このCRTモニタ19
により、前記偏向系12a,12bにおける電子
ビームの走査に同期した反射像表示がなされる。
Further, these lenses 3, 5, 9, objective lenses, and alignment coils 2, 7, 8, 10 are controlled by the CPU 15 via the interface 14, and are each excited and driven under predetermined conditions. In addition, the deflection systems 12a and 12b are composed of electrostatic deflection plates arranged to face each other in the X direction and the Y direction, which constitute a three-dimensional space, for example, when the axial direction of the electron beam is the Z axis. The deflection of the electron beam is controlled in response to a deflection scanning signal from a circuit 16. The reflected signal of the electron beam illuminated on the sample surface 13 is detected by a backscattered electron detector 17 made of a photomultiplier or the like, and this detection signal is inputted to a CRT monitor 19 via an amplifier 18. When adjusting the alignment, use this CRT monitor 19.
As a result, a reflected image is displayed in synchronization with the scanning of the electron beam in the deflection systems 12a and 12b.

尚、前記対物レンズアパーチヤ11によるビー
ム収差の抑制手段を縮小レンズ9の近傍に設ける
場合もあり、またCPU15によつて軸合せコイ
ル2,7,8,10およびレンズ3,5,9と対
物レンズにそれぞれ所定の電流を制御して印加し
ておく場合もある。
Note that a means for suppressing beam aberration by the objective lens aperture 11 may be provided near the reduction lens 9, and the CPU 15 may also control the alignment coils 2, 7, 8, 10, lenses 3, 5, 9 and the objective. In some cases, a predetermined current is controlled and applied to each lens.

ところで、このような構成を有する電子光学鏡
筒において、可変寸法ビーム制御された電子ビー
ム、すなわち整形ビームによつて試料面13を走
査する場合、2段構成された偏向系(静電偏向
板)12a,12bに互いに極性の異なる偏向電
圧を与え、一方向に偏向した電子ビームを逆方向
に偏向してビーム収差を招くことない偏向、つま
りビームシフトすることにより行われる。そこで
今、偏向系12a,12bに同極性の偏向電圧を
与えるか、あるいはその一方のみを駆動した場
合、電子ビームは2段偏向されることなく図中破
線で示す経路を辿る。つまり対物レンズアパーチ
ヤ11の中心を通る条件が満たされなくなる。こ
の為、偏向系12a,12bに上記同極性の偏向
電圧を与え、これを可変すれば、電子ビームは対
物レンズアパーチヤ11上を照明走査されること
になり、この2次元走査においてたまたまアパー
チヤ領域に走査位置が入つたときにのみ、電子ビ
ームが試料面13に到達することになる。従つ
て、このアパーチヤを透過した電子ビームをその
反射信号から検出し、上記電子ビームの偏向走査
に同期してCRTモニタ19に表示すれば、同モ
ニタ19上にアパーチヤ形状に対応した像を形成
することができる。この場合、試料面13に低電
子反射率基板上に高電子反射率微粒子を付着させ
た、いわゆる微粒子ターゲツトを設けておけば、
電子ビームに整形ビームを用いながら、アパーチ
ヤ像を良好に得ることができる。
By the way, in an electron optical column having such a configuration, when scanning the sample surface 13 with a variable-dimensional beam-controlled electron beam, that is, a shaped beam, a two-stage deflection system (electrostatic deflection plate) is used. This is accomplished by applying deflection voltages with different polarities to 12a and 12b, and deflecting an electron beam deflected in one direction in the opposite direction to perform deflection without causing beam aberration, that is, beam shift. Therefore, if deflection voltages of the same polarity are applied to the deflection systems 12a and 12b, or if only one of them is driven, the electron beam will not be deflected in two stages and will follow the path shown by the broken line in the figure. In other words, the condition of passing through the center of the objective lens aperture 11 is no longer satisfied. For this reason, if the deflection voltages of the same polarity are applied to the deflection systems 12a and 12b and this is varied, the electron beam will be illuminated and scanned over the objective lens aperture 11, and in this two-dimensional scanning, it will happen that the aperture area The electron beam will reach the sample surface 13 only when the scanning position is located at . Therefore, if the electron beam transmitted through this aperture is detected from its reflected signal and displayed on the CRT monitor 19 in synchronization with the deflection scanning of the electron beam, an image corresponding to the aperture shape will be formed on the monitor 19. be able to. In this case, if a so-called fine particle target, in which fine particles with high electron reflectance are adhered to a substrate with low electron reflectance, is provided on the sample surface 13,
A good aperture image can be obtained while using a shaped electron beam.

そこで今、コンデンサレンズ3の励起量を微小
変化させた場合、電子ビームが上記レンズ3の中
心位置を通つていればその焦点位置の微小変位に
よつてビーム軸が変化することがないので、第2
図aに示すようにCRTモニタ19に表示される
アパーチヤの像位置が変化することがなく、むし
ろ同図bに示すように像の明るさや大きさ、ある
いは像のボケ、分解能が変化するだけとなる。仮
りにビームの軸とレンズ3の中心位置との間にず
れがある場合、上記励起量の微小変化によつて焦
点位置が微小変化し、これによつてビームの軸の
曲りが変化するので、この変化が次段のレンズ
5,9と対物レンズに順次反映されて第2図aに
示すように像位置が変化することになる。そこで
このコンデンサレンズ3への電子ビーム入射位置
を制御する軸合せコイル2を可変調整し、レンズ
3の励起の微小変化に拘らず像位置が一定化する
ようにすれば、ここにコンデンサレンズ3に対す
る軸合せが効果的に行われる。
Therefore, if the excitation amount of the condenser lens 3 is slightly changed, as long as the electron beam passes through the center position of the lens 3, the beam axis will not change due to the small displacement of the focal position. Second
As shown in Figure a, the aperture image position displayed on the CRT monitor 19 does not change; rather, as shown in Figure b, the image brightness, size, image blur, and resolution only change. Become. If there is a misalignment between the beam axis and the center position of the lens 3, the focal position will change slightly due to the minute change in the excitation amount, and this will change the curvature of the beam axis. This change is sequentially reflected in the lenses 5 and 9 of the next stage and the objective lens, and the image position changes as shown in FIG. 2a. Therefore, if the alignment coil 2 that controls the incident position of the electron beam on the condenser lens 3 is variably adjusted so that the image position is constant regardless of minute changes in the excitation of the lens 3, Axis alignment is performed effectively.

しかるのち同様にしてレンズ5に対する軸合せ
を軸合せ用コイル7にて行い、その後レンズ9に
対する軸合せをコイル8にて行い、最后に軸合せ
コイル10を調整して対物レンズアパーチヤ11
に対する軸合せを行えば、全レンズに対する軸合
せを能率良く、高精度に行うことが可能となる。
尚、他のレンズ5,9,11に対する軸合せ時
に、その励起を微小変化させながら行うことは勿
論である。またこの軸合せは、電子銃1側のレン
ズから順に行う。これを逆にした場合、前後のレ
ンズの軸合せを行う都度、後段レンズの軸合せを
再度繰返して行う必要が生じるので甚だ都合が悪
い。
Thereafter, in the same manner, the axis of the lens 5 is aligned using the alignment coil 7, then the axis of the lens 9 is aligned using the coil 8, and finally the alignment coil 10 is adjusted to adjust the objective lens aperture 11.
By performing axis alignment for all lenses, it becomes possible to efficiently and highly accurately align all lenses.
It goes without saying that when aligning the other lenses 5, 9, and 11, the excitation may be slightly changed. Further, this alignment is performed in order from the lens on the electron gun 1 side. If this were reversed, it would be extremely inconvenient because each time the front and rear lenses are aligned, it would be necessary to repeatedly align the rear lenses.

以上のように、レンズの励起を微小変化させた
ときにアパーチヤ像の位置変化が生じないように
軸合せコイルを調整するだけで簡易にして高精度
な軸合せを行い得るので、その実用性が非常に高
い。またこのようにすれば、従来のように電子ビ
ームの不安定を招く虞れもなく、またビーム整形
時に軸が狂うこともない。つまり、電子ビームの
偏向系の制御を、光学鏡筒の外部において軸合せ
調整時にのみ変え、しかるのち元に戻せばよいの
で、電子光学鏡筒自体を何ら変化させる必要がな
く、実用性が高い。特に多段に亘るレンズ構成を
有する場合その効果が顕著であり、軸合せの判断
基準も単純なので取扱いが容易である。
As described above, it is possible to perform simple and highly accurate alignment by simply adjusting the alignment coil so that the position of the aperture image does not change when the excitation of the lens is slightly changed. Very expensive. In addition, in this case, there is no risk of instability of the electron beam as in the conventional case, and there is no possibility that the axis will be deviated during beam shaping. In other words, the control of the electron beam deflection system can be changed only when adjusting the alignment outside the optical lens barrel, and then returned to its original state, so there is no need to make any changes to the electron optical lens barrel itself, making it highly practical. . This effect is particularly noticeable when the lens has a multi-stage lens configuration, and the criteria for determining axis alignment are simple, making it easy to handle.

尚、本発明は上記実施例に限定されるものでは
ない。例えばアパーチヤ上を走査する手段とし
て、偏向系12a,12bの代りに軸合せコイル
10を用いることも可能であるが、応答速度が遅
いこと等から、やはり静電偏向系を利用した方が
好ましい。また対物レンズに設けるアパーチヤを
縮小レンズ9に設けた構造のものにあつては、こ
の縮小レンズ9上のアパーチヤを電子ビームにて
走査するようにすればよく、要は試料面に最も近
いアパーチヤを走査するようにすればよい。また
CRTモニタ19にて像表示し、これをモニタリ
ングする代りにCPU15に走査情報と反射電子
検出器17による検出信号を入力し、検出信号検
出時における走査電圧が常に一定となるべく自動
軸合せ制御を行わしめることも勿論可能である。
要するに本発明は、そに要旨を逸脱しない範囲で
種々変形して実施することができる。
Note that the present invention is not limited to the above embodiments. For example, it is possible to use the alignment coil 10 instead of the deflection systems 12a and 12b as a means for scanning over the aperture, but it is still preferable to use an electrostatic deflection system because of the slow response speed. In addition, in the case of a structure in which the aperture provided in the objective lens is provided in the reduction lens 9, the aperture on the reduction lens 9 may be scanned with the electron beam, and in short, the aperture closest to the sample surface is scanned. All you have to do is scan. Also
Instead of displaying an image on the CRT monitor 19 and monitoring it, the scanning information and the detection signal from the backscattered electron detector 17 are input to the CPU 15, and automatic alignment control is performed so that the scanning voltage is always constant when the detection signal is detected. Of course, it is also possible to tighten it.
In short, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法によつて軸合せに供される
電子光学鏡筒の一例を示す構成図、第2図a,b
は本発明の軸合せ原理を説明する為の像位置変化
と像の大きさ変化を示す図である。 1……電子銃、2,7,8,10……軸合せ用
コイル、3,5,9……レンズ、11……対物レ
ンズアパーチヤ、12a,12b……偏向系、1
3……試料面、16……走査回路、17……反射
電子検出器、19……CRTモニタ。
Fig. 1 is a configuration diagram showing an example of an electron optical lens barrel subjected to axis alignment by the method of the present invention, Fig. 2 a, b
FIG. 2 is a diagram showing a change in image position and a change in image size for explaining the axis alignment principle of the present invention. 1... Electron gun, 2, 7, 8, 10... Axis alignment coil, 3, 5, 9... Lens, 11... Objective lens aperture, 12a, 12b... Deflection system, 1
3... Sample surface, 16... Scanning circuit, 17... Backscattered electron detector, 19... CRT monitor.

Claims (1)

【特許請求の範囲】 1 電子ビームの通路に複数の電子レンズと1個
以上のビーム整形用アパーチヤマスクを備えた電
子光学鏡筒における軸合せ方法において、所定の
アパーチヤ上を電子ビームで走査したとき、試料
面に設けられた低電子反射率基板上に高電子反射
率微粒子を付着させてなるターゲツトから得られ
るアパーチヤ像を表示し、表示されたアパーチヤ
像の位置が前記電子レンズの励起量の変化に対し
て変化しないように軸合せ用偏向手段を可変調整
することにより、前記軸合せを行なうことを特徴
とする電子光学鏡筒の軸合せ方法。 2 前記所定のアパーチヤは、試料面に最も近い
位置に設けられたアパーチヤである特許請求の範
囲第1項記載の電子光学鏡筒の軸合せ方法。
[Claims] 1. In an alignment method for an electron optical lens barrel having a plurality of electron lenses and one or more beam shaping aperture masks in the electron beam path, a predetermined aperture is scanned with an electron beam. At this time, an aperture image obtained from a target formed by adhering high electron reflectance fine particles on a low electron reflectance substrate provided on the sample surface is displayed, and the position of the displayed aperture image is determined by the amount of excitation of the electron lens. A method for aligning an electron optical lens barrel, characterized in that the alignment is performed by variably adjusting an alignment deflection means so as not to change with respect to changes. 2. The method of aligning an electron optical lens barrel according to claim 1, wherein the predetermined aperture is an aperture provided at a position closest to the sample surface.
JP14330880A 1980-10-14 1980-10-14 Axis aligning method of electronic optical lens barrel Granted JPS5767912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14330880A JPS5767912A (en) 1980-10-14 1980-10-14 Axis aligning method of electronic optical lens barrel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14330880A JPS5767912A (en) 1980-10-14 1980-10-14 Axis aligning method of electronic optical lens barrel

Publications (2)

Publication Number Publication Date
JPS5767912A JPS5767912A (en) 1982-04-24
JPH0234139B2 true JPH0234139B2 (en) 1990-08-01

Family

ID=15335736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14330880A Granted JPS5767912A (en) 1980-10-14 1980-10-14 Axis aligning method of electronic optical lens barrel

Country Status (1)

Country Link
JP (1) JPS5767912A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091540A (en) * 1983-10-25 1985-05-22 Jeol Ltd Alignment unit for transmission electron microscope
JPH082400B2 (en) * 1991-07-02 1996-01-17 三洋電機株式会社 Iron
JP2006216299A (en) * 2005-02-02 2006-08-17 Jeol Ltd Charged particle beam device, and axis adjusting method of aberration correction device of the same
JP4628230B2 (en) * 2005-09-16 2011-02-09 日本電子株式会社 Charged particle beam deflection system
JP4928987B2 (en) * 2006-03-08 2012-05-09 株式会社日立ハイテクノロジーズ Charged particle beam adjustment method and charged particle beam apparatus
DE102009028013B9 (en) * 2009-07-24 2014-04-17 Carl Zeiss Microscopy Gmbh Particle beam device with a diaphragm unit and method for adjusting a jet stream in a particle beam device
JP2014212063A (en) * 2013-04-19 2014-11-13 日本電子株式会社 Scanning charged particle beam microscope, control method of scanning charged particle beam microscope, and axis alignment method of scanning charged particle beam microscope
JP6959969B2 (en) * 2016-01-29 2021-11-05 株式会社日立ハイテク Charged particle beam device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152456A (en) * 1978-05-22 1979-11-30 Akashi Seisakusho Kk Device for centering charged particle beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152456A (en) * 1978-05-22 1979-11-30 Akashi Seisakusho Kk Device for centering charged particle beam

Also Published As

Publication number Publication date
JPS5767912A (en) 1982-04-24

Similar Documents

Publication Publication Date Title
US4983832A (en) Scanning electron microscope
US5598002A (en) Electron beam apparatus
JP4383950B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
US6365897B1 (en) Electron beam type inspection device and method of making same
US3753034A (en) Electron beam apparatus
JPH0234139B2 (en)
US4382182A (en) Method of displaying an image of phase contrast in a scanning transmission electron microscope
JPS614144A (en) Diffraction pattern display method by electron microscope
JP2946537B2 (en) Electron optical column
US4218621A (en) Electron beam exposure apparatus
JPH10255709A (en) Image inspection device
JP3351647B2 (en) Scanning electron microscope
JPH07302564A (en) Scanning electron microscope
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JPS6182428A (en) Lens adjusting method of charged beam optical barrel
JPH1173905A (en) Pattern inspection device
JP2001076659A (en) Manufacture of charged-particle beam microscope, defect- inspecting device, and semiconductor device
WO2021229732A1 (en) Charged particle beam device, and method for controlling charged particle beam device
JPS5820098B2 (en) Electron beam deflection scanning device
JPS63114035A (en) Beam centering
JP3112541B2 (en) Astigmatism correction method for electron beam device
JPH113676A (en) Scanning electron microscope
JPS6125043A (en) Crystal-orientation determining method by scanning electron microscope and scanning electron microscope employed
JPS586267B2 (en) scanning electron microscope
JPH08264147A (en) Electron beam adjusting method in scanning electron microscope