JP3112541B2 - Astigmatism correction method for electron beam device - Google Patents
Astigmatism correction method for electron beam deviceInfo
- Publication number
- JP3112541B2 JP3112541B2 JP04031979A JP3197992A JP3112541B2 JP 3112541 B2 JP3112541 B2 JP 3112541B2 JP 04031979 A JP04031979 A JP 04031979A JP 3197992 A JP3197992 A JP 3197992A JP 3112541 B2 JP3112541 B2 JP 3112541B2
- Authority
- JP
- Japan
- Prior art keywords
- astigmatism correction
- electron beam
- astigmatism
- scanning
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 201000009310 astigmatism Diseases 0.000 title claims description 101
- 238000010894 electron beam technology Methods 0.000 title claims description 48
- 238000000034 method Methods 0.000 title claims description 9
- 230000005284 excitation Effects 0.000 claims description 18
- 238000001514 detection method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 5
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
Description
【0001】[0001]
【産業上の利用分野】本発明は、走査電子顕微鏡などの
電子ビーム装置において、非点収差補正を自動的に行う
ことができる電子ビーム装置における非点収差補正方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting astigmatism in an electron beam apparatus, such as a scanning electron microscope, which can automatically correct astigmatism.
【0002】[0002]
【従来の技術】走査電子顕微鏡などの電子ビーム装置に
おいては、像の観察の前段階として、電子ビームの非点
の補正を行わねばならない。この場合、まず、電子ビー
ムのフォーカス合わせの動作を行い、最小錯乱円位置に
フォーカスを合わせ、その後、X,Yの非点補正コイル
のうち、まずX方向の非点補正コイルに複数の非点補正
値を与え、各非点補正値ごとに電子ビームを走査し、こ
の走査に応じて得られた、例えば、2次電子信号を検出
する。このような動作により、図1に示すような曲線が
得られる。図1の横軸はXあるいはY方向の非点補正
値、縦軸が信号強度である。この曲線のピーク位置の非
点補正値が最良の値であり、この値をX方向の非点補正
コイルにセットする。次に、Y方向の非点補正コイルに
複数の非点補正値を与え、X方向と同様にY方向の非点
補正コイルにも最良の非点補正値をセットする。2. Description of the Related Art In an electron beam apparatus such as a scanning electron microscope, astigmatism of an electron beam must be corrected before observation of an image. In this case, first, the focusing operation of the electron beam is performed to focus on the minimum confusion circle position, and then, among the X and Y astigmatism correction coils, first, a plurality of astigmatism correction coils are applied to the X direction astigmatism correction coil. A correction value is given, an electron beam is scanned for each astigmatism correction value, and for example, a secondary electron signal obtained according to this scanning is detected. By such an operation, a curve as shown in FIG. 1 is obtained. The horizontal axis in FIG. 1 is the astigmatism correction value in the X or Y direction, and the vertical axis is the signal intensity. The astigmatism correction value at the peak position of this curve is the best value, and this value is set in the X direction astigmatism correction coil. Next, a plurality of astigmatism correction values are given to the Y direction astigmatism correction coil, and the best astigmatism correction value is set to the Y direction astigmatism correction coil as in the X direction.
【0003】[0003]
【発明が解決しようとする課題】上記した従来方式の非
点補正動作では、電子ビーム走査をX,Y2方向の非点
補正の都度行わねばならず、非点補正動作の時間が長く
なる欠点がある。In the above-described conventional astigmatism correction operation, the electron beam scanning must be performed each time the astigmatism correction in the X and Y2 directions, and the time required for the astigmatism correction operation becomes long. is there.
【0004】本発明は、このような点に鑑みてなされた
もので、その目的は、短時間に正確にX,Y方向の非点
の補正を行うことができる電子ビーム装置における非点
補正方法を実現するにある。[0004] The present invention has been made in view of such a point, and an object of the present invention is to provide a method for correcting astigmatism in an electron beam apparatus capable of accurately correcting astigmatism in the X and Y directions in a short time. It is to realize.
【0005】[0005]
【課題を解決するための手段】本発明に基づく電子ビー
ム装置における非点補正方法は、試料上に照射される電
子ビームを細く集束するための対物レンズと、電子ビー
ムを試料上でX方向とY方向へ2次元的に走査するため
の偏向手段と、電子ビーム通路に配置されたXY方向の
非点収差補正装置とを備えた電子ビーム装置において、
試料上で2次元的に電子ビームを走査し、この走査によ
って得られた信号を積分するステップ、この電子ビーム
走査を対物レンズの励磁強度を変化させながら多数回行
うステップ、対物レンズの励磁強度の変化に伴う積分値
の変化曲線の2つのピークの中心とピークとの間のフォ
ーカスのずれ量Dを求めるステップ、このずれ量Dに応
じてあらかじめ記憶された非点補正装置に供給する複数
の非点補正値のうち、求められたずれ量Dに対応した非
点補正値を読み出すステップ、各非点補正値を非点収差
補正装置に供給してその都度電子ビームを走査し、この
走査によって得られた信号を積分するステップ、非点補
正値の変化に伴う積分値の変化曲線のピークの時の非点
補正値を非点収差補正装置にセットするステップより成
ることを特徴としている。According to the present invention, there is provided an astigmatism correction method for an electron beam apparatus, comprising: an objective lens for narrowly focusing an electron beam irradiated on a sample; An electron beam apparatus comprising: a deflecting unit for two-dimensionally scanning in the Y direction; and an astigmatism correction device in the XY directions arranged in the electron beam path.
Scanning the electron beam two-dimensionally on the sample, integrating a signal obtained by the scanning, performing the electron beam scanning many times while changing the excitation intensity of the objective lens, and adjusting the excitation intensity of the objective lens. A step of obtaining a shift amount D of the focus between the center of the two peaks of the change curve of the integral value due to the change, and a plurality of non-focus correction devices supplied to the astigmatism correction device stored in advance according to the shift amount D; Reading out the astigmatism correction value corresponding to the obtained deviation amount D from the point correction values, supplying each astigmatism correction value to the astigmatism correction device, and scanning the electron beam each time; the step of integrating the resulting signals, the astigmatic correction value when the peak of the variation curve of the integral value with changes in astigmatism correction value characterized by consisting of the step of setting the astigmatism corrector There.
【0006】[0006]
【作用】本発明に基づく電子ビーム装置における非点補
正方法は、試料上で2次元的に電子ビームを走査し、こ
の走査によって得られた信号を積分すると共に、この電
子ビーム走査を対物レンズの励磁強度を変化させながら
多数回行って、対物レンズの励磁強度の変化に伴う積分
値の変化曲線の2つのピークの中心とピークとの間のフ
ォーカスのずれ量Dを求め、このずれ量Dに応じてあら
かじめ記憶された非点補正装置に供給する複数の非点補
正値のうち、求められたずれ量Dに対応した非点補正値
を読み出し、各非点補正値を非点収差補正装置に供給し
てその都度電子ビームを走査し、この走査によって得ら
れた信号を積分し、非点補正値の変化に伴う積分値の変
化曲線のピークの時の非点補正値を非点収差補正装置に
セットする。The astigmatism correction method in the electron beam apparatus according to the present invention scans an electron beam two-dimensionally on a sample, integrates a signal obtained by this scanning, and scans the electron beam with an objective lens. This is performed a number of times while changing the excitation intensity, and the shift amount D of the focus between the center of the two peaks and the peak of the integrated value change curve due to the change in the excitation intensity of the objective lens is obtained. Among the plurality of astigmatism correction values supplied to the astigmatism correction device stored in advance, the astigmatism correction value corresponding to the obtained shift amount D is read, and each astigmatism correction value is sent to the astigmatism correction device. supplied by scanning each time the electron beam, integrating the signal obtained by the scanning, the astigmatic correction value when the peak of the variation curve of the integral value with changes in astigmatism correction value astigmatism corrector Set to.
【0007】[0007]
【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図2は、本発明に基づく非点補正方法を実
施するための走査電子顕微鏡を示しており、1は走査電
子顕微鏡の電子銃である。電子銃1から発生した電子ビ
ームEBは、対物レンズ2と対物レンズ3によって試料
4上に細く集束される。5は偏向コイルであり、走査信
号発生回路6からの走査信号に応じて電子ビームEBを
試料4上で走査する。7はX方向の非点補正コイル、8
はY方向の非点補正コイルであり、X方向の非点補正コ
イル7は、コイル駆動部9によって駆動され、X方向の
コイル駆動部9には、レジスタ10に設定されたX方向
非点補正値データがDA変換器12を介して供給され
る。Y方向の非点補正コイル8は、コイル駆動部13に
よって駆動され、Y方向のコイル駆動部13には、レジ
スタ14に設定されたY方向非点補正値データがDA変
換器15を介して供給される。対物レンズ3は駆動部1
6によって駆動されるが、この駆動部16にはレジスタ
17に設定された対物レンズ電流値データがDA変換器
18を介して供給される。19は試料4への電子ビーム
の照射によって発生した2次電子を検出する検出器であ
り、検出器19の検出信号はフィルタ回路20,絶対値
回路21を介して積分器22に供給される。積分器22
の積分値は、AD変換器23を介してメモリ24に供給
され記憶される。CPU26は、メモリ24に記憶され
た信号から信号強度分布をつくり、ピーク値を検出す
る。また、CPU26は走査信号発生回路6,積分器2
2などを制御すると共に、データメモリ27の値を読み
だし、レジスタ11,13に非点補正値データをセット
したり、レジスタ17に対物レンズ電流値データをセッ
トする。次にこのような構成の動作を説明する。Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 2 shows a scanning electron microscope for implementing the astigmatism correction method according to the present invention, and 1 is an electron gun of the scanning electron microscope. The electron beam EB generated from the electron gun 1 is narrowly focused on the sample 4 by the objective lens 2 and the objective lens 3. Reference numeral 5 denotes a deflection coil, which scans the sample 4 with the electron beam EB according to a scanning signal from the scanning signal generating circuit 6. 7 is an astigmatism correction coil in the X direction, 8
Is a Y-direction astigmatism correction coil. The X-direction astigmatism correction coil 7 is driven by a coil driving unit 9. The X-direction coil driving unit 9 has an X-direction astigmatism correction coil set in a register 10. The value data is supplied via the DA converter 12. The Y-direction astigmatism correction coil 8 is driven by the coil drive unit 13, and the Y-direction astigmatism correction value data set in the register 14 is supplied to the Y-direction coil drive unit 13 via the DA converter 15. Is done. The objective lens 3 is a driving unit 1
The objective lens current value data set in the register 17 is supplied to the drive unit 16 via the DA converter 18. Reference numeral 19 denotes a detector for detecting secondary electrons generated by irradiating the sample 4 with an electron beam. A detection signal of the detector 19 is supplied to an integrator 22 via a filter circuit 20 and an absolute value circuit 21. Integrator 22
Is supplied to the memory 24 via the AD converter 23 and stored. The CPU 26 creates a signal intensity distribution from the signals stored in the memory 24 and detects a peak value. Further, the CPU 26 includes a scanning signal generation circuit 6, an integrator 2
2 and the like, read the value of the data memory 27, set the astigmatism correction value data in the registers 11 and 13, and set the objective lens current value data in the register 17. Next, the operation of such a configuration will be described.
【0008】通常の試料4の2次電子像を得る場合に
は、対物レンズ2と対物レンズ3によって電子ビームE
Bを試料4上で細く集束すると共に、走査信号発生回路
6から偏向コイル5に2次元的に電子ビームを走査する
信号を供給し、そして、2次電子検出器19からの検出
信号を図示していない陰極線管に供給する。さて、次に
電子ビームの非点の補正動作について説明する。まず、
対物レンズ3の励磁強度を微小ステップで変化させ、各
励磁強度ごとに試料4上の所定領域の電子ビームによる
走査を行う。この場合、CPU26からレジスタ17に
セットされた対物レンズ電流値を微小ステップで変化さ
せ、各対物レンズ電流値ごとに1回の所定2次元走査が
行われるようCPU26は走査信号発生回路6を制御す
る。When a secondary electron image of a normal sample 4 is obtained, the electron beam E is emitted by the objective lens 2 and the objective lens 3.
B is narrowly focused on the sample 4, a signal for scanning the electron beam two-dimensionally is supplied from the scanning signal generation circuit 6 to the deflection coil 5, and the detection signal from the secondary electron detector 19 is shown. Not supply to the cathode ray tube. Now, the operation of correcting the astigmatism of the electron beam will be described. First,
The excitation intensity of the objective lens 3 is changed in minute steps, and a predetermined region on the sample 4 is scanned with the electron beam for each excitation intensity. In this case, the CPU 26 changes the objective lens current value set in the register 17 in minute steps, and the CPU 26 controls the scanning signal generation circuit 6 so that one predetermined two-dimensional scan is performed for each objective lens current value. .
【0009】試料4への電子ビームEBの照射によって
発生した2次電子は、検出器19によって検出され、フ
ィルター回路20,絶対値回路21を介して積分器22
に供給されるが、積分器22は、電子ビームの1回の2
次元走査の間検出信号を積分する。1回の電子ビームの
2次元走査が終了した後、積分器22において積分され
た値はメモリ24に供給され、そのときの対物レンズ3
の励磁強度に応じて記憶される。このような電子ビーム
の2次元的走査と2次電子検出信号の積分を対物レンズ
3の各励磁強度ごとに行い、各積分値をメモリ24に記
憶する。図3は、CPU26がメモリ24に記憶された
信号からつくる信号強度分布を示す。この図3において
横軸は対物レンズの励磁強度、縦軸は積分値である。こ
の図3の分布は電子ビームに非点が存在しない場合であ
り、ピーク位置の時の対物レンズの励磁強度の時、電子
ビームのフォーカスが正確に合うことになる。言い換え
れば、このピークの時の対物レンズ電流値をレジスタ1
7にセットすることにより、フォーカス合わせを行うこ
とができる。Secondary electrons generated by irradiating the sample 4 with the electron beam EB are detected by a detector 19, and are transmitted through a filter circuit 20 and an absolute value circuit 21 to an integrator 22.
, But the integrator 22 provides a single 2
Integrate the detection signal during the dimensional scan. After the one-dimensional scanning of the electron beam is completed, the value integrated by the integrator 22 is supplied to the memory 24, and the objective lens 3 at that time is supplied to the memory 24.
Is stored in accordance with the excitation intensity of. Such two-dimensional scanning of the electron beam and integration of the secondary electron detection signal are performed for each excitation intensity of the objective lens 3, and each integrated value is stored in the memory 24. FIG. 3 shows a signal intensity distribution created by the CPU 26 from the signals stored in the memory 24. In FIG. 3, the horizontal axis represents the excitation intensity of the objective lens, and the vertical axis represents the integrated value. The distribution in FIG. 3 is a case where the electron beam has no astigmatism, and the electron beam is accurately focused at the excitation intensity of the objective lens at the peak position. In other words, the current value of the objective lens at the time of this peak is stored in the register 1
By setting to 7, focusing can be performed.
【0010】ここで、電子ビームに非点がある場合に
は、CPU26がつくる信号強度分布は図4に示すよう
にピークが2つ(P1 ,P2 )現われる。このピークP
1 とP2 との中間位置P0 がフォーカスのあった位置、
すなわち、最小錯乱円が形成される位置であることが知
られている。この最小錯乱円位置P0 とピークP1 ,P
2 との間の量Dは、電子ビームの非点のずれ量に対応し
ている。この非点のずれ量Dが大きいと非点の量も大き
く、また、小さければ非点も小さい。CPU26は、こ
の非点の大きさに応じた量Dを検出する。ところで、あ
る非点の大きさに対してその非点を補正するためにX,
Y方向の非点補正コイル7,8に供給しなければならな
い非点補正値は自ずと決まってくる。データメモリ27
には各非点の量Dに対応してその非点を補正するための
X,Yの非点補正コイル7,8に供給すべき非点補正量
の組み合わせが記憶される。この場合、各非点量Dに対
しては、各々複数のX,Yの組み合わせが記憶されてい
る。When the electron beam has a stigma, the signal intensity distribution generated by the CPU 26 has two peaks (P1, P2) as shown in FIG. This peak P
The position at which the intermediate position P0 between 1 and P2 is in focus,
That is, it is known that this is the position where the circle of least confusion is formed. The minimum confusion circle position P0 and the peaks P1, P
2 corresponds to the amount of deviation of the astigmatism of the electron beam. If the deviation amount D of the astigmatism is large, the amount of the astigmatism is large, and if it is small, the astigmatism is small. The CPU 26 detects the amount D according to the size of the astigmatism. By the way, to correct the size of a certain astigmatism, X,
The astigmatism correction value that must be supplied to the astigmatism correction coils 7 and 8 in the Y direction is naturally determined. Data memory 27
Stores a combination of the astigmatism correction amounts to be supplied to the X and Y astigmatism correction coils 7 and 8 for correcting the astigmatism in accordance with the amount D of each astigmatism. In this case, a plurality of combinations of X and Y are stored for each astigmatism amount D.
【0011】今、CPU26で非点のずれ量Dが検出さ
れると、CPU26はこのDに対応した複数の非点補正
量をデータメモリ27から読みだし、順々にレジスタ1
1,13にセットする。このレジスタ11,13にセッ
トされた非点補正量に対応して非点補正コイル7,8に
は駆動部9,10から補正電流が供給される。非点補正
コイル7,8には、複数の非点補正量の組み合わせが順
々に供給されるが、各非点補正量の組み合わせがコイル
7,8に供給される都度、走査信号発生回路6から偏向
コイル5には試料4上を2次元的に走査する走査信号が
供給され、試料上の所定領域が電子ビームによって走査
される。この走査によって発生した2次電子は、検出器
19によって検出され、その検出信号は積分器22によ
って積分される。1回の2次元走査ごとに積分値はメモ
リ24に供給され、その積分値がX,Yの非点補正量の
組み合わせに対応して記憶される。When the CPU 26 detects the astigmatism shift amount D, the CPU 26 reads a plurality of astigmatism correction amounts corresponding to the D from the data memory 27, and sequentially registers them in the register 1.
Set to 1,13. Correction currents are supplied from the drive units 9 and 10 to the astigmatism correction coils 7 and 8 in accordance with the astigmatism correction amounts set in the registers 11 and 13. A plurality of combinations of the astigmatism correction amounts are sequentially supplied to the astigmatism correction coils 7 and 8. Each time the combination of the astigmatism correction amounts is supplied to the coils 7 and 8, the scanning signal generation circuit 6 Thus, a scanning signal for two-dimensionally scanning the sample 4 is supplied to the deflection coil 5, and a predetermined area on the sample is scanned by the electron beam. Secondary electrons generated by this scanning are detected by the detector 19, and the detection signal is integrated by the integrator 22. The integral value is supplied to the memory 24 for each two-dimensional scan, and the integral value is stored corresponding to the combination of the X and Y astigmatism correction amounts.
【0012】この結果、全てのX,Yの非点補正量の組
み合わせが非点補正コイル7,8に供給された後、CP
U26は図5に示すような信号強度分布を得る。図5に
おいて横軸はXY方向の非点補正量の各組み合わせ、縦
軸は信号強度である。この分布のピーク位置のときのX
Y方向の非点補正量が最適な非点補正量であり、この値
がレジスタ11,13にセットされる。この後、通常の
走査像の観察を行えば、常に最適に非点補正された電子
ビームにより試料上の走査を行うことができ、分解能の
高い像を得ることができる。このように、1回の非点補
正動作でXY2方向の非点の補正を行うことができる。As a result, after all the combinations of the X and Y astigmatism correction amounts are supplied to the astigmatism correction coils 7 and 8, the CP
U26 obtains a signal intensity distribution as shown in FIG. In FIG. 5, the horizontal axis represents each combination of the astigmatism correction amounts in the XY directions, and the vertical axis represents the signal intensity. X at the peak position of this distribution
The amount of astigmatism correction in the Y direction is the optimum amount of astigmatism correction, and this value is set in the registers 11 and 13. Thereafter, if a normal scanning image is observed, scanning on the sample can always be performed with the optimally astigmatically corrected electron beam, and an image with high resolution can be obtained. In this manner, the correction of the astigmatism in the XY2 directions can be performed by one astigmatism correction operation.
【0013】以上本発明の実施例を詳述したが、本発明
はこの実施例に限定されない。例えば、2次電子を検出
するようにしたが、反射電子などを検出するようにして
も良い。また、データメモリ27に各非点のずれ量Dに
対応したXY方向の非点補正値の組み合わせを記憶する
ようにしたが、非点のずれ量Dから所定の計算式によっ
て、そのずれ量Dに対応したXY方向の非点補正値の組
み合わせを逐次求めるようにしても良い。さらに、ずれ
量Dを求めるため、電子ビームにより試料上を2次元的
に走査したが、例えば、図6に示すように、試料4上の
X,Y各1ライン(A,B)を走査し、その走査に基づ
く検出信号に基づきずれ量Dを求めても良い。この場
合、検出信号分布は、図7に示すように、X方向のライ
ン走査に基づく曲線aと、Y方向のライン走査に基づく
曲線bとが得られるが、この曲線aとbの各ピーク位置
の中間位置が最小錯乱円位置となり、その中間位置と各
ピークとの間の量が非点のずれ量となる。なお、オート
フォーカス動作の際、対物レンズの励磁強度を変化させ
たが、対物レンズの補助レンズを用い、この補助レンズ
の励磁強度を変化させるようにしても良い。Although the embodiment of the present invention has been described in detail, the present invention is not limited to this embodiment. For example, secondary electrons are detected, but reflected electrons and the like may be detected. Further, the data memory 27 stores the combination of the astigmatism correction values in the XY directions corresponding to the astigmatism deviation amount D. The deviation amount D is calculated from the astigmatism deviation amount D by a predetermined calculation formula. May be sequentially determined. Further, the electron beam was used to scan the sample two-dimensionally in order to obtain the shift amount D. For example, as shown in FIG. 6, one line (A, B) of each of X and Y on the sample 4 was scanned. Alternatively, the shift amount D may be obtained based on a detection signal based on the scanning. In this case, as shown in FIG. 7, a curve a based on the line scanning in the X direction and a curve b based on the line scanning in the Y direction are obtained as the detection signal distribution, and each peak position of the curves a and b is obtained. Is the minimum confusion circle position, and the amount between the intermediate position and each peak is the astigmatism shift amount. Although the excitation intensity of the objective lens is changed during the autofocus operation, the excitation intensity of the auxiliary lens may be changed by using an auxiliary lens of the objective lens.
【0014】[0014]
【発明の効果】以上説明したように、本発明に基づく電
子ビーム装置における非点補正方法は、試料上で2次元
的に電子ビームを走査し、この走査によって得られた信
号を積分すると共に、この電子ビーム走査を対物レンズ
の励磁強度を変化させながら多数回行って、対物レンズ
の励磁強度の変化に伴う積分値の変化曲線の2つのピー
クの中心とピークとの間のフォーカスのずれ量Dを求
め、このずれ量Dに応じてあらかじめ記憶された非点補
正装置に供給する複数の非点補正値のうち、求められた
ずれ量Dに対応した非点補正値を読み出し、各非点補正
値を非点収差補正装置に供給してその都度電子ビームを
走査し、この走査によって得られた信号を積分し、非点
補正値の変化に伴う積分値の変化曲線のピークの時の非
点補正値を非点収差補正装置にセットするようにしたの
で、短時間に正確にX,Y方向の非点の補正を行うこと
ができる。As described above, the astigmatism correction method in the electron beam apparatus according to the present invention scans an electron beam two-dimensionally on a sample, integrates a signal obtained by this scanning, and This electron beam scanning is performed a number of times while changing the excitation intensity of the objective lens, and the focus shift amount D between the center of the two peaks and the peak of the change curve of the integral value due to the change in the excitation intensity of the objective lens. Is obtained, and among the plurality of astigmatism correction values to be supplied to the astigmatism correction device stored in advance in accordance with the shift amount D, the astigmatism correction value corresponding to the calculated shift amount D is read, and each astigmatism correction is performed. The value is supplied to the astigmatism correction device, the electron beam is scanned each time, the signal obtained by this scanning is integrated, and the astigmatism at the peak of the change curve of the integral value accompanying the change of the astigmatism correction value is obtained. Correction value astigmatism Since so as to set the positive device, it is possible to perform accurate X, correction of astigmatism in the Y direction in a short time.
【図1】非点補正値に対する信号強度変化を示す図であ
る。FIG. 1 is a diagram illustrating a change in signal intensity with respect to an astigmatism correction value.
【図2】本発明に基づく方法を実施するための走査電子
顕微鏡を示す図である。FIG. 2 shows a scanning electron microscope for implementing the method according to the invention.
【図3】対物レンズの励磁強度に対する検出信号の積分
値変化を示す図である。FIG. 3 is a diagram showing a change in an integrated value of a detection signal with respect to an excitation intensity of an objective lens.
【図4】対物レンズの励磁強度に対する検出信号の積分
値変化を示す図である。FIG. 4 is a diagram showing a change in an integrated value of a detection signal with respect to an excitation intensity of an objective lens.
【図5】X,Yの非点補正量の組み合わせと検出信号強
度変化を示す図である。FIG. 5 is a diagram illustrating a combination of X and Y astigmatism correction amounts and a change in detection signal intensity.
【図6】本発明の他の実施例における試料上の電子ビー
ムの走査の様子を示す図である。FIG. 6 is a diagram showing a state of scanning of an electron beam on a sample in another embodiment of the present invention.
【図7】図6の走査によって得られた信号の変化曲線を
示す図である。FIG. 7 is a diagram showing a change curve of a signal obtained by the scanning in FIG. 6;
1…電子銃 2…対物レンズ 3…対物レンズ 4…試料 5…偏向コイル 6…走査信号発生回路 7,8…非点補正コイル 9,13,16…駆動部 10,14,17…レジスタ 12,15,18…DA変換器 19…2次電子検出器 22…積分器 24…メモリ 26…CPU 27…データメモリ DESCRIPTION OF SYMBOLS 1 ... Electron gun 2 ... Objective lens 3 ... Objective lens 4 ... Sample 5 ... Deflection coil 6 ... Scanning signal generation circuit 7, 8 ... Astigmatism correction coil 9, 13, 16 ... Driving unit 10, 14, 17 ... Register 12, 15, 18 DA converter 19 Secondary electron detector 22 Integrator 24 Memory 26 CPU 27 Data memory
Claims (1)
束するための集束レンズと、電子ビームを試料上でX方
向とY方向へ2次元的に走査するための偏向手段と、電
子ビーム通路に配置されたXY方向の非点収差補正装置
とを備えた電子ビーム装置において、試料上で2次元的
に電子ビームを走査し、この走査によって得られた信号
を積分するステップ、この電子ビーム走査を対物レンズ
の励磁強度を変化させながら多数回行うステップ、対物
レンズの励磁強度の変化に伴う非点存在時の積分値の変
化曲線の2つのピークの中心とピークとの間のフォーカ
スのずれ量Dを求めるステップ、このずれ量Dに応じて
あらかじめ記憶された非点補正装置に供給する複数の非
点補正値のうち、求められたずれ量Dに対応した非点補
正値を読み出すステップ、各非点補正値を非点収差補正
装置に供給してその都度電子ビームを走査し、この走査
によって得られた信号を積分するステップ、非点補正値
の変化に伴う積分値の変化曲線のピークの時の非点補正
値を非点収差補正装置にセットするステップより成る電
子ビーム装置における非点収差補正方法。1. A focusing lens for narrowly focusing an electron beam irradiated on a sample, a deflecting unit for scanning the electron beam two-dimensionally in an X direction and a Y direction on the sample, and an electron beam path. Scanning an electron beam two-dimensionally on a sample and integrating a signal obtained by the scanning in an electron beam apparatus having an XY direction astigmatism correction device disposed in Is performed a number of times while changing the excitation intensity of the objective lens, the amount of focus shift between the center of the two peaks and the peak of the change curve of the integral value when there is a non-point due to the change in the excitation intensity of the objective lens D. a step of reading out the astigmatism correction value corresponding to the calculated shift amount D from among a plurality of astigmatism correction values to be supplied to the astigmatism correction device stored in advance according to the shift amount D. Step of supplying each astigmatism correction value to the astigmatism correction device, scanning the electron beam each time, and integrating a signal obtained by this scanning, with the change of the astigmatism correction value A method for correcting astigmatism in an electron beam device, comprising: setting an astigmatism correction value at a peak of a change curve of an integral value in an astigmatism correction device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04031979A JP3112541B2 (en) | 1992-02-19 | 1992-02-19 | Astigmatism correction method for electron beam device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04031979A JP3112541B2 (en) | 1992-02-19 | 1992-02-19 | Astigmatism correction method for electron beam device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05234551A JPH05234551A (en) | 1993-09-10 |
JP3112541B2 true JP3112541B2 (en) | 2000-11-27 |
Family
ID=12346066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04031979A Expired - Fee Related JP3112541B2 (en) | 1992-02-19 | 1992-02-19 | Astigmatism correction method for electron beam device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3112541B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007109408A (en) * | 2005-10-11 | 2007-04-26 | Topcon Corp | Automatic regulation method of electron beam device and electron beam device |
-
1992
- 1992-02-19 JP JP04031979A patent/JP3112541B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007109408A (en) * | 2005-10-11 | 2007-04-26 | Topcon Corp | Automatic regulation method of electron beam device and electron beam device |
Also Published As
Publication number | Publication date |
---|---|
JPH05234551A (en) | 1993-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6555816B1 (en) | Scanning electron microscope and sample observation method using the same | |
JPH1173903A (en) | Autofocusing method for scanning electron microscope | |
JP3021917B2 (en) | Automatic focusing and astigmatism correction method in electron beam device | |
JP3153391B2 (en) | Focused ion beam equipment | |
JPH1027563A (en) | Scanning electron microscope | |
JP3112541B2 (en) | Astigmatism correction method for electron beam device | |
JP4310824B2 (en) | Electron beam inspection device | |
JP3524776B2 (en) | Scanning electron microscope | |
JPH06243812A (en) | Scanning electron microscope | |
JPH0756786B2 (en) | Electron microscope focusing device | |
JP2000251823A (en) | Sample inclination observing method in scanning charged particle beam system | |
JP2001006599A (en) | Method for controlling electron beam in electron beam device | |
JP4528589B2 (en) | Mask inspection apparatus, mask inspection method, and electron beam exposure apparatus | |
JP2000156192A (en) | Scanning electron microscope | |
JP3112548B2 (en) | Image signal processing method in charged particle beam device | |
JP3114416B2 (en) | Focusing method in charged particle beam device | |
JP2000195457A (en) | Scanning microscope | |
JP3678910B2 (en) | Scanning electron microscope | |
JP3037006B2 (en) | Automatic image adjustment method for scanning electron microscope | |
JPH08264147A (en) | Electron beam adjusting method in scanning electron microscope | |
JPS63150842A (en) | Scanning electron microscope | |
JPH10172489A (en) | Adjusting method of electron beam in scan electron microscope | |
JPH113676A (en) | Scanning electron microscope | |
JPS5914222B2 (en) | Magnification control device for scanning electron microscopes, etc. | |
JP2000048749A (en) | Scanning electron microscope, and electron beam axis aligning method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000905 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080922 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |