JPH0982771A - Method and apparatus for evaluating semiconductor material - Google Patents

Method and apparatus for evaluating semiconductor material

Info

Publication number
JPH0982771A
JPH0982771A JP7240247A JP24024795A JPH0982771A JP H0982771 A JPH0982771 A JP H0982771A JP 7240247 A JP7240247 A JP 7240247A JP 24024795 A JP24024795 A JP 24024795A JP H0982771 A JPH0982771 A JP H0982771A
Authority
JP
Japan
Prior art keywords
probe
sample
amplitude
frequency
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7240247A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
博 山口
Hideki Matsunaga
秀樹 松永
Shiro Takeno
史郎 竹野
Seizo Doi
清三 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7240247A priority Critical patent/JPH0982771A/en
Publication of JPH0982771A publication Critical patent/JPH0982771A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to detect the luminescence due caused by dielectric breakdown, leakage or other defect in the infinitesimal area of a semiconductor or an IC material with the accuracy of 1μm or less by detecting a near field light generated from an electrified semiconductor material. SOLUTION: A semiconductor material 1 is electrified, and a near field light generated from the electrified material 1 is detected. For example, the surface of a sample 1 is scanned while vibrating a probe 7 in the mode that a high-frequency vibration having small amplitude is superposed on a low-frequency vibration having an amplitude equivalent to the light wavelength in the state that the sample 1 is electrified. When the end of the probe 7 is brought into contact with the surface of the sample 1, the amplitude or frequency of the vibration of the probe 7 is varied, and hence the change of the high-frequency vibration component is detected by displacement detecting mechanism 13 to 15, and the height regulation of the Z-axis of the sample 1 is fed back. The light captured by the probe 7 is divided to be detected corresponding to the low-frequency vibration of the probe 7, and the precise distribution of the luminescence from the infinitesimal position is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体材料の微細
な欠陥を検出して品質の評価を行なう方法およびその装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for detecting fine defects in a semiconductor material to evaluate its quality.

【0002】[0002]

【従来の技術】半導体やICには、材料内部での絶縁破
壊,電気的リークなどに基づく微細な欠陥がしばしば存
在する。そして絶縁破壊や電気的リークは、半導体・I
Cに使用される絶縁膜の厚さや材質,表面の平坦性,不
純物による汚染,ピンホールや微粒子あるいは異物・介
在物,ストレスによる内部構造の変化等の様々な要因に
よって引き起こされる。従って、半導体材料の欠陥とそ
の位置を高精度に検出しさらにその原因を解明すること
は、半導体素子の設計仕様の見直し,製造工程の改良を
図る指針となり、ひいては半導体素子の信頼性を向上さ
せる上で極めて重要なことである。
2. Description of the Related Art Semiconductors and ICs often have fine defects due to dielectric breakdown and electrical leakage inside the material. Dielectric breakdown and electrical leakage are
It is caused by various factors such as the thickness and material of the insulating film used for C, the flatness of the surface, contamination by impurities, pinholes, fine particles or foreign substances / inclusions, and changes in internal structure due to stress. Therefore, detecting defects and their positions in the semiconductor material with high accuracy and further clarifying their causes are guidelines for reviewing the design specifications of the semiconductor element and improving the manufacturing process, and thus improve the reliability of the semiconductor element. That is extremely important above.

【0003】ところで、半導体・IC素子に通電して動
作させた場合、時に発光現象が認められるが、この発光
には、前記のような欠陥に基づく発光のほか、高エネル
ギー電子(ホットエレクトロンまたはホットキャリアと
呼ばれる)による発光などがある。この高エネルギー電
子は、電界効果トランジスタ(FET)の場合にその絶
縁膜に進入して損傷を与え、電気的特性を劣化させると
いう問題がある。
By the way, when a semiconductor / IC element is energized to operate, a light emission phenomenon is sometimes observed. This light emission includes not only light emission based on the above defects but also high energy electrons (hot electrons or hot electrons). There is light emission by the carrier). In the case of a field effect transistor (FET), the high-energy electrons enter the insulating film and damage the insulating film, thus deteriorating the electrical characteristics.

【0004】このため、ICの中のどの様な場所でどの
様な通電条件の時にホットキャリアが発生するかを解明
することは、ICの経時的変化を推測し信頼性を評価す
る上でも重要なことである。従って、半導体・IC素子
からの発光を捕捉し解析することは、半導体材料の欠陥
とその原因を解明する上で極めて有用な方法である。
Therefore, it is important to elucidate where in the IC and under what kind of energization conditions hot carriers are generated in order to estimate changes in the IC over time and to evaluate reliability. That's right. Therefore, capturing and analyzing the light emission from the semiconductor / IC element is a very useful method for clarifying the defect of the semiconductor material and its cause.

【0005】[0005]

【発明が解決しようとする課題】従来、この種の発光の
観測は、半導体素子に通電して動作させ、素子中に発生
した発光をマイクロスコープで拡大した後、モノクロメ
ーターで分光し、光電子増倍管やCCDによって光量を
測定する方法が用いられていた。
Conventionally, this kind of light emission observation has been carried out by energizing a semiconductor element to operate it, enlarging the light emission generated in the element with a microscope, and then dispersing it with a monochromator to increase photoelectron enhancement. A method of measuring the amount of light by a double tube or CCD has been used.

【0006】ところが、半導体やICではLSI(大規
模集積回路)を初めとして集積度が年々向上し、微細化
が進行してきている。例えば16Mビットランダムアク
セスメモリー(DRAM)では、配線幅や電気的な動作
領域の大きさは1μm以下のサイズ,さらに1Gビット
メモリーでは0.1μmのサイズとなった。そのため前
述の絶縁破壊やリーク,ホットキャリアの評価に際して
は、0.1μm以下の微小な領域での観測・評価が必要
になってきている。
However, in semiconductors and ICs, the degree of integration has been increasing year by year, beginning with LSI (large-scale integrated circuits), and miniaturization has been progressing. For example, in a 16 Mbit random access memory (DRAM), the wiring width and the size of an electrical operation area are 1 μm or less, and in a 1 Gbit memory, the size is 0.1 μm. Therefore, when evaluating the above-mentioned dielectric breakdown, leakage, and hot carriers, it is necessary to observe and evaluate in a minute region of 0.1 μm or less.

【0007】しかるに、マイクロスコープで観測する従
来の方法では原理的に可視光の波長以下、即ち0.5〜
1μm以下の微小部分の観測は不可能であり、LSIな
どの高密度素子の評価は困難であったため、この様な微
小領域における高精度の観測を可能にする新しい方法が
求められていた。
However, in the conventional method of observing with a microscope, in principle, the wavelength is less than the wavelength of visible light, that is, 0.5 to
Since it is impossible to observe a minute portion of 1 μm or less and it is difficult to evaluate a high density element such as an LSI, a new method that enables highly accurate observation in such a minute area has been demanded.

【0008】[0008]

【課題を解決するための手段】本発明は、半導体,IC
に通電し動作させたときに欠陥部等から発光する光のう
ちの近視野光に着目し、その位置を正確に検出する後述
の方法と装置によって所期の目的を達するものである。
ちなみに、この近視野光は物質表面からの距離とともに
指数関数的に減衰する性質のために物質表面近傍にのみ
存在する光波であって、その存在する領域(物質表面か
らの距離)は光の波長程度,即ち通常は数百nm以下で
ある。従って近視野光が検出されるということは、正に
その位置に欠陥等が存在することを意味するものであ
る。
The present invention is a semiconductor, IC
Focusing on the near-field light of the light emitted from the defect portion when the device is energized and operated, the method and apparatus described later for accurately detecting the position achieves the intended purpose.
By the way, this near-field light is a light wave that exists only in the vicinity of the material surface because of the property of exponentially decaying with the distance from the material surface, and the existing area (distance from the material surface) is the wavelength of light. The degree, that is, usually several hundreds nm or less. Therefore, the detection of near-field light means that a defect or the like exists at that position.

【0009】しかして、本願の第1の発明は半導体材料
の評価方法に関するもので、半導体材料に通電する工程
と、通電された前記半導体材料から発生する近視野光を
検出する工程とを有することを特徴としている。
Therefore, the first invention of the present application relates to a method for evaluating a semiconductor material, which has a step of energizing the semiconductor material and a step of detecting near-field light generated from the energized semiconductor material. Is characterized by.

【0010】本願第2の発明は半導体材料の評価装置に
関するもので、被検試料を載置する試料台と、試料に通
電する手段と、試料から発生する近視野光を捕捉するプ
ローブと、このプローブを試料表面に対して垂直方向に
振動させる加振機構と、プローブの振動の振幅または周
波数の変化を検出して試料表面との間隙を制御する変位
検出機構と、プローブで捕捉した光をプローブの振動に
合わせて分割して検出する光検出システムを有すること
を特徴としている。
The second invention of the present application relates to a semiconductor material evaluation apparatus, including a sample table on which a sample to be tested is mounted, means for energizing the sample, a probe for capturing near-field light generated from the sample, A vibration mechanism that vibrates the probe in the direction perpendicular to the sample surface, a displacement detection mechanism that detects changes in the amplitude or frequency of the probe vibration and controls the gap between the sample surface, and the light captured by the probe It is characterized by having a photodetection system that detects the light by dividing it according to the vibration of the.

【0011】本願第3の発明は半導体材料の評価方法に
関するもので、第1の発明における近視野光を検出する
プローブに周波数が高く振幅の小さい周期振動と、周波
数が低く振幅の大きい周期振動を重ねて加振しながら検
出することを特徴とする。
A third invention of the present application relates to a method for evaluating a semiconductor material, wherein a probe for detecting near-field light in the first invention is provided with a periodic vibration having a high frequency and a small amplitude and a periodic vibration having a low frequency and a large amplitude. It is characterized in that it is detected while being overlaid with vibration.

【0012】本願第4の発明は半導体材料の評価方法に
関するもので、第3の発明においてプローブに加振され
る、周波数が高く振幅が小さい周期振動の周波数が1k
Hz以上で振幅が500nm以下であり、周波数が低く
振幅が大きい周期振動の周波数が10kHz以下で振幅
が400nm以上であることを特徴としている。
A fourth invention of the present application relates to a method for evaluating a semiconductor material, wherein the frequency of periodic vibration with high frequency and small amplitude, which is excited by the probe in the third invention, is 1 k.
It is characterized in that the amplitude is 500 nm or less at Hz or more, and the frequency of periodic vibration having a low frequency and a large amplitude is 10 kHz or less and the amplitude is 400 nm or more.

【0013】本願第5の発明は半導体材料の評価装置に
関するもので、第2の発明におけるプローブの変位検出
機構が、プローブの高周波振動の周波数および振幅の変
化と低周波振動の周波数および振幅の変化を区別して検
出できる変位検出機構であることを特徴としている。
A fifth invention of the present application relates to a semiconductor material evaluation apparatus, wherein the displacement detecting mechanism of the probe in the second invention is such that the high frequency vibration of the probe changes in frequency and amplitude and the low frequency vibration changes in frequency and amplitude. The feature is that it is a displacement detection mechanism capable of distinguishing and detecting.

【0014】[0014]

【発明の実施の形態】本発明に係る半導体,ICの評価
装置は、大要以下の構成を有する。 水平方向(X軸,Y軸)および高さ方向(Z軸)の
精密な移動・位置決めが可能な、半導体・ICの被検試
料を固定する試料台。 近視野光を捕捉する微小な探針(プローブ)。プロ
ーブは、細い石英ガラスファイバー等の透光性材料の先
端を針状に加工したものでもよく、また、フォトダイオ
ード等の微細な受光材料でもよい。プローブには、試料
表面に対して垂直方向に振動させる加振機構とその制御
システムが付設される。 プローブの振動の振幅または周波数の変化を検出し
てプローブの先端と試料表面との距離を制御するため
の、変位検出機構および制御システム。 プローブで捕捉した光を、プローブの振動に合わせ
てロックインアンプ等の検出器により分割して検出でき
るようにした光検出システム。 プローブの加振,試料台の移動,プローブで捕捉し
た光の検出,プローブの振動の変位検出を制御し、近視
野光のイメージングを可能にする制御システム。
BEST MODE FOR CARRYING OUT THE INVENTION A semiconductor / IC evaluation apparatus according to the present invention has the following outline. A sample table for fixing semiconductor / IC test samples that enables precise movement / positioning in the horizontal direction (X axis, Y axis) and height direction (Z axis). A small probe that captures near-field light. The probe may be formed by processing the tip of a transparent material such as thin quartz glass fiber into a needle shape, or may be a fine light receiving material such as a photodiode. The probe is provided with a vibrating mechanism for vibrating in the direction perpendicular to the sample surface and its control system. A displacement detection mechanism and control system for detecting a change in amplitude or frequency of vibration of a probe to control the distance between the tip of the probe and the sample surface. A light detection system that allows the light captured by the probe to be split and detected by a detector such as a lock-in amplifier according to the vibration of the probe. A control system that controls near-field light imaging by controlling the vibration of the probe, movement of the sample stage, detection of light captured by the probe, and displacement detection of probe vibration.

【0015】本発明に係る測定方法の大要は、以下の通
りである。試料に通電した状態で、光の波長程度の振幅
を持つ低周波振動に振幅の小さな高周波振動を重ねたモ
ードでプローブを振動させながら、試料表面を走査す
る。走査はプローブを定置し、試料のX−Y移動で行な
う。プローブの先端が試料表面に接触するとプローブの
振動の振幅または周波数が変化するので、その高周波振
動成分の変化を変位検出機構で検出して、試料のZ軸の
高さ調整にフィードバックをかける。これによりプロー
ブは試料表面の微細な形状の変化を検出するとともに、
常に試料表面から一定の間隔で振動するように制御され
る。
The outline of the measuring method according to the present invention is as follows. While the sample is energized, the sample surface is scanned while vibrating the probe in a mode in which low-frequency vibration having an amplitude of about the wavelength of light and high-frequency vibration having a small amplitude are superimposed. Scanning is performed by XY movement of the sample with the probe fixed. When the tip of the probe comes into contact with the sample surface, the amplitude or frequency of the vibration of the probe changes, so the change in the high-frequency vibration component is detected by the displacement detection mechanism, and feedback is applied to the height adjustment of the Z axis of the sample. This allows the probe to detect minute changes in the shape of the sample surface,
It is controlled so that it always vibrates at a constant interval from the sample surface.

【0016】プローブで捕捉した光は、プローブの低周
波成分の振動数に対応して分割検出し、プローブが試料
表面に最も近接したときの近視野光主体の光の強度
(S)と試料表面から最も離れたときの散乱光主体の光
の強度(B)との差分を走査領域でプロットすることに
より、微小箇所からの発光の精密な分布を得る。近視野
光は表面から400〜500nmまでに殆ど減衰するの
で、この様にしてS/B比(シグナル/バックグラウン
ド比)をとることにより、近視野光の発生箇所即ち欠陥
等の存在箇所が求められる。
The light captured by the probe is divided and detected according to the frequency of the low frequency component of the probe, and the intensity (S) of the near-field light mainly when the probe is closest to the sample surface and the sample surface. By plotting the difference from the intensity (B) of the scattered light mainly at the farthest from the scanning region, a precise distribution of the light emission from a minute portion is obtained. Near-field light is mostly attenuated from the surface to 400 to 500 nm. Therefore, by obtaining the S / B ratio (signal / background ratio) in this way, the location where near-field light is generated, that is, the location where defects are present is determined. To be

【0017】[0017]

【実施例】図1は、本発明に係る半導体,IC材料を評
価する装置の要部構成を説明する要素関連図である。
(1)は半導体またはIC試料で、ピエゾアクチュエー
ター(3)とステップモーター(5)を備える試料台
(2)に載置され、外部電源からの通電によって試験動
作する。(4)はピエゾアクチュエーターのX−Y−Z
3軸コントローラー、(6)はステップモーターの3軸
コントローラーである。ステップモーターはμmオーダ
ーの精度を、ピエゾアクチュエーターはX−Y−Zの3
軸とも0.1nmオーダーの精度を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an element-related diagram for explaining the essential structure of an apparatus for evaluating semiconductors and IC materials according to the present invention.
Reference numeral (1) is a semiconductor or IC sample, which is placed on a sample table (2) equipped with a piezo actuator (3) and a step motor (5) and is tested by being energized by an external power source. (4) is the XYZ of the piezo actuator
3-axis controller, (6) is a step motor 3-axis controller. The step motor has an accuracy of the order of μm, and the piezo actuator has an XYZ 3
Both axes have an accuracy of the order of 0.1 nm.

【0018】石英ガラス製の光ファイバーで作られたプ
ローブ(7)は、直径が50μmのファイバーを略直角
に屈曲させて先端を絞り込んだ後、フッ酸でエッチング
して針状に加工したもので、先端の曲率半径は2nm以
下である。またファイバーの屈曲部に平坦面を設けてレ
ーザーダイオード(13)からの光を反射する構造にし
てある。ファイバーは先端数十nmを残して金属皮膜の
コーティングを施し、先端以外からの光の進入を防いで
いる。(8)はプローブで捕捉した光線を検出する光電
子増倍管、(9)は光電子流をプローブの低周波振動と
同期して検出・増幅するロックインアンプである。(1
0)はプローブにZ軸方向の高周波振動を,同じく(1
1)は低周波振動を加振するためのピエゾアクチュエー
ターで、モジュレーター(12)により周波数と振幅の
調整を行なう。プローブは、その水平部を(10)と
(11)に接着により固定されている。ただし高周波振
動と低周波振動を一つのピエゾアクチュエーターで発生
させることも可能である。
The probe (7) made of an optical fiber made of quartz glass is made by bending a fiber having a diameter of 50 μm at a substantially right angle to squeeze the tip and then etching with hydrofluoric acid to form a needle. The radius of curvature of the tip is 2 nm or less. In addition, a flat surface is provided on the bent portion of the fiber to reflect the light from the laser diode (13). The fiber is coated with a metal film, leaving a few tens of nanometers at the tip, to prevent light from entering from other than the tip. (8) is a photomultiplier tube that detects the light beam captured by the probe, and (9) is a lock-in amplifier that detects and amplifies the photoelectron flow in synchronization with the low-frequency vibration of the probe. (1
0) is the same as (1)
1) is a piezo actuator for vibrating low frequency vibration, and the frequency and amplitude are adjusted by the modulator (12). The probe has its horizontal portion fixed to (10) and (11) by adhesion. However, it is also possible to generate high-frequency vibration and low-frequency vibration with one piezo actuator.

【0019】(13)と(14)は変位検出機構の構成
要素で、それぞれ試料表面の凹凸によるプローブの振幅
の変化を検出するレーザーダイオードとフォトダイオー
ドである。レーザーダイオードは赤色の通信用素子を用
い、そのプローブからの反射光をフォトダイオード(1
4)で検出する。(15)はアナログ/デジタル変換器
を含む振幅検出器である。(16)はプローブの加振,
光電流の検出,試料のX−Y−Z移動をコントロールす
るコンピューターを含む制御システムであり、(17)
は近視野光の2次元分布を描写するモニターである。
(13) and (14) are constituent elements of the displacement detection mechanism, which are a laser diode and a photodiode for detecting changes in the amplitude of the probe due to irregularities on the sample surface, respectively. The laser diode uses a red communication element, and the light reflected from the probe is reflected by the photodiode (1
Detected in 4). (15) is an amplitude detector including an analog / digital converter. (16) is the vibration of the probe,
A control system including a computer for controlling photocurrent detection and XYZ movement of a sample, (17)
Is a monitor that depicts the two-dimensional distribution of near-field light.

【0020】この装置による半導体,ICなどの評価
は、先ず、試料台に固定した試料1にリードフレームを
通して外部電源から通電して、動作状態にする。次に、
試料の所定の部位がプローブ7の直下に位置するように
試料台を移動し、試料の表面をプローブに近付ける。プ
ローブ7には低周波振動と高周波振動が加振され、その
変位を、レーザー光を用いた変位検出機構が高周波振動
成分の振幅の変化により常に監視している。
In the evaluation of semiconductors, ICs, etc. by this apparatus, first, the sample 1 fixed to the sample table is energized from an external power source through the lead frame to bring it into an operating state. next,
The sample table is moved so that a predetermined part of the sample is located directly below the probe 7, and the surface of the sample is brought close to the probe. A low-frequency vibration and a high-frequency vibration are applied to the probe 7, and the displacement is constantly monitored by a displacement detection mechanism using a laser beam by a change in the amplitude of the high-frequency vibration component.

【0021】この状態でさらに試料をプローブに近接さ
せ、試料の表面がプローブの先端に接触するようになる
と、プローブの高周波振動成分の振幅が変化する。そこ
で、この振幅の変化に対応して試料台のZ軸ピエゾにフ
ィードバックをかけ、試料の表面とプローブとの間隙を
常に一定に保ちながら試料をX−Y方向に移動させ、試
料の表面をプローブで逐次走査する。なおプローブに与
える振動は、高周波加振はプローブの共振周波数に近い
周波数5〜50kHzで振幅は10nm〜50nmが、
低周波加振は周波数0.5〜5kHz,振幅は近視野光
の存在する領域の大きさ程度、即ち400〜1000n
mが適している。この範囲を外れると可視光の範囲を越
え、測定の感度,精度が低下する。
When the sample is brought closer to the probe in this state and the surface of the sample comes into contact with the tip of the probe, the amplitude of the high frequency vibration component of the probe changes. Therefore, feedback is applied to the Z-axis piezo of the sample stage in response to the change in the amplitude, and the sample is moved in the XY directions while always maintaining a constant gap between the sample surface and the probe, and the sample surface is probed. To scan sequentially. The vibration applied to the probe has a frequency of 5 to 50 kHz, which is close to the resonance frequency of the probe, and an amplitude of 10 to 50 nm.
The low-frequency excitation has a frequency of 0.5 to 5 kHz and an amplitude of about the size of the region where near-field light exists, that is, 400 to 1000 n.
m is suitable. Outside this range, the visible light range is exceeded, and the sensitivity and accuracy of measurement deteriorate.

【0022】この様にして試料の表面を走査しながら、
プローブで捕捉した光の強度を連続的に測定しそのS/
B比を逐次プロットする。前述のように近視野光は表面
から400〜500nmまでに殆ど減衰するので、S/
B比が大きく変化する箇所が近視野光の発生箇所即ち欠
陥等の存在箇所として、極めて高精度に検出される。
While scanning the surface of the sample in this manner,
The intensity of the light captured by the probe is continuously measured and the S /
B ratios are plotted sequentially. As described above, near-field light is mostly attenuated from the surface to 400 to 500 nm, so S /
A location where the B ratio changes greatly is detected with extremely high accuracy as a location of near-field light, that is, a location where a defect or the like exists.

【0023】予め本発明の方法で試験済みの試料10箇
について、従来の方法で欠陥箇所の有無を試験したとこ
ろ、本発明の方法により検出されていた欠陥箇所の20
%が検出されたに過ぎなかった。この結果は、本発明の
実施により半導体材料の信頼性が著しく高められること
を示すものである。
Ten samples that had been previously tested by the method of the present invention were tested for the presence of defective points by the conventional method. As a result, 20 of the defective points detected by the method of the present invention were detected.
Only% was detected. The results show that the practice of the present invention significantly enhances the reliability of semiconductor materials.

【0024】[0024]

【発明の効果】本発明によれば、従来困難であった半導
体,IC材料の微小領域における絶縁破壊やリークその
他の欠陥による発光を1μm以下の精度で検出でき、不
具合が発生した場所の特定が正確になることにより、I
CやLSIの設計、プロセスの開発,製造,製品管理の
改善に極めて有益な効果を奏する。
According to the present invention, it is possible to detect light emission due to dielectric breakdown, leakage or other defects in a minute area of a semiconductor or IC material, which has been difficult in the past, with an accuracy of 1 μm or less, and to identify a place where a defect has occurred. By becoming accurate, I
It has an extremely beneficial effect on C and LSI design, process development, manufacturing, and product management improvement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る評価装置の一実施例の要部構成を
説明する要素関連図である。
FIG. 1 is an element-related diagram illustrating a main part configuration of an embodiment of an evaluation device according to the present invention.

【符号の説明】[Explanation of symbols]

1 試料 2 試料台 3,5 試料微動装置 7 プローブ 8 光電子増倍管 9 ロックインアンプ 10,11 加振器 13,14,15 変位検出機構 16 制御システム 17 モニター 1 sample 2 sample stage 3,5 sample fine movement device 7 probe 8 photomultiplier tube 9 lock-in amplifier 10,11 exciter 13,14,15 displacement detection mechanism 16 control system 17 monitor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土井 清三 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyozo Doi 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Toshiba Research & Development Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体材料に通電する工程と、通電され
た前記の半導体材料から発生する近視野光を検出する工
程とを有することを特徴とする半導体材料の評価方法。
1. A method of evaluating a semiconductor material, comprising: a step of energizing a semiconductor material; and a step of detecting near-field light generated from the energized semiconductor material.
【請求項2】 被検試料を載置する試料台と、試料に通
電する手段と、試料から発生する近視野光を捕捉するプ
ローブと、このプローブを試料表面に対して垂直方向に
振動させる加振機構と、プローブの振動の振幅または周
波数の変化を検出して試料表面との間隙を制御する変位
検出機構と、プローブで捕捉した光をプローブの振動に
合わせて分割して検出する光検出システムを有すること
を特徴とする、半導体材料の評価装置。
2. A sample table on which a sample to be tested is placed, a means for energizing the sample, a probe for capturing near-field light generated from the sample, and a probe for vibrating the probe in a direction perpendicular to the sample surface. A vibration mechanism, a displacement detection mechanism that detects changes in the vibration amplitude or frequency of the probe to control the gap with the sample surface, and a light detection system that detects the light captured by the probe by dividing it according to the vibration of the probe. An apparatus for evaluating a semiconductor material, comprising:
【請求項3】 近視野光を検出するプローブに、周波数
が高く振幅の小さい周期振動と、周波数が低く振幅の大
きい周期振動を重ねて加振しながら検出することを特徴
とする、請求項1に記載の半導体材料の評価方法。
3. A probe for detecting near-field light is detected by superimposing a periodic vibration having a high frequency and a small amplitude and a periodic vibration having a low frequency and a large amplitude, while vibrating. The method for evaluating a semiconductor material described in.
【請求項4】 周波数が高く振幅が小さい周期振動の周
波数が1kHz以上で振幅が500nm以下であり、周
波数が低く振幅が大きい周期振動の周波数が10kHz
以下で振幅が400nm以上である、請求項3に記載の
半導体材料の評価方法。
4. The frequency of periodic vibration having a high frequency and a small amplitude is 1 kHz or more and the amplitude is 500 nm or less, and the frequency of a periodic vibration having a low frequency and a large amplitude is 10 kHz.
The method for evaluating a semiconductor material according to claim 3, wherein the amplitude is 400 nm or more.
【請求項5】 プローブの変位検出機構が、プローブの
高周波振動の周波数および振幅の変化と低周波振動の周
波数および振幅の変化を区別して検出できる変位検出機
構である、請求項2に記載の半導体材料の評価装置。
5. The semiconductor according to claim 2, wherein the displacement detecting mechanism of the probe is a displacement detecting mechanism capable of separately detecting a change in frequency and amplitude of high frequency vibration of the probe and a change in frequency and amplitude of low frequency vibration of the probe. Material evaluation equipment.
JP7240247A 1995-09-19 1995-09-19 Method and apparatus for evaluating semiconductor material Pending JPH0982771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7240247A JPH0982771A (en) 1995-09-19 1995-09-19 Method and apparatus for evaluating semiconductor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7240247A JPH0982771A (en) 1995-09-19 1995-09-19 Method and apparatus for evaluating semiconductor material

Publications (1)

Publication Number Publication Date
JPH0982771A true JPH0982771A (en) 1997-03-28

Family

ID=17056655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7240247A Pending JPH0982771A (en) 1995-09-19 1995-09-19 Method and apparatus for evaluating semiconductor material

Country Status (1)

Country Link
JP (1) JPH0982771A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980081247A (en) * 1997-04-09 1998-11-25 이토기요시 Scanning probe microscope
JPH116838A (en) * 1997-04-23 1999-01-12 Seiko Instr Inc Optical probe and manufacture of optical probe as well as scanning probe microscope
JP2001500613A (en) * 1996-09-10 2001-01-16 バイオ―ラド マイクロメジャーメント リミテッド Apparatus and method for detecting microdefects in semiconductor
JP2003065934A (en) * 2001-08-22 2003-03-05 Jasco Corp Probe opening-creating apparatus and near-field optical microscope using the same
JP2004157121A (en) * 2002-11-01 2004-06-03 Suss Microtec Test Systems Gmbh Method and device for inspecting motion sensitive substrate
KR100526217B1 (en) * 1997-04-10 2006-01-12 에스아이아이 나노 테크놀로지 가부시키가이샤 Processing apparatus using a scanning probe microscope, and recording and reproducing apparatus using a scanning probe microscope
JP2010243377A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Scanning probe photoelectron yield spectroscopic microscopy and scanning probe photoelectron yield spectromicroscope
JP2012083230A (en) * 2010-10-12 2012-04-26 Fujitsu Ltd Prober device and probe measuring method
CN102495043A (en) * 2011-12-14 2012-06-13 中国科学院苏州纳米技术与纳米仿生研究所 Device and method for measuring surface defect of semiconductor material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500613A (en) * 1996-09-10 2001-01-16 バイオ―ラド マイクロメジャーメント リミテッド Apparatus and method for detecting microdefects in semiconductor
KR19980081247A (en) * 1997-04-09 1998-11-25 이토기요시 Scanning probe microscope
KR100526217B1 (en) * 1997-04-10 2006-01-12 에스아이아이 나노 테크놀로지 가부시키가이샤 Processing apparatus using a scanning probe microscope, and recording and reproducing apparatus using a scanning probe microscope
JPH116838A (en) * 1997-04-23 1999-01-12 Seiko Instr Inc Optical probe and manufacture of optical probe as well as scanning probe microscope
JP2003065934A (en) * 2001-08-22 2003-03-05 Jasco Corp Probe opening-creating apparatus and near-field optical microscope using the same
JP4694736B2 (en) * 2001-08-22 2011-06-08 日本分光株式会社 Probe aperture manufacturing apparatus and near-field optical microscope using the same
JP2004157121A (en) * 2002-11-01 2004-06-03 Suss Microtec Test Systems Gmbh Method and device for inspecting motion sensitive substrate
JP2010243377A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Scanning probe photoelectron yield spectroscopic microscopy and scanning probe photoelectron yield spectromicroscope
JP2012083230A (en) * 2010-10-12 2012-04-26 Fujitsu Ltd Prober device and probe measuring method
CN102495043A (en) * 2011-12-14 2012-06-13 中国科学院苏州纳米技术与纳米仿生研究所 Device and method for measuring surface defect of semiconductor material

Similar Documents

Publication Publication Date Title
US7323684B2 (en) Scanning probe microscope and specimen observation method and semiconductor device manufacturing method using said scanning probe microscope
EP0633450B1 (en) Scanning probe microscope
JP5009506B2 (en) Method and system for determining one or more characteristics of a sample
JP2010175534A (en) Magnetic device inspection apparatus and magnetic device inspection method
US11709199B2 (en) Evaluation apparatus for semiconductor device
CN111326433A (en) Semiconductor detection device and detection method
JPH0982771A (en) Method and apparatus for evaluating semiconductor material
JP2002181725A (en) Method for analyzing minute foreign matter, analysis apparatus, method for manufacturing semiconductor device and liquid crystal display device
JP3196945B2 (en) Scanning optical microscope
JP2981117B2 (en) Method for detecting and inspecting minute foreign matter, scanning probe microscope used therefor, and method for producing semiconductor element or liquid crystal display element using the same
JP2005134196A (en) Non-destructive analysis method and non-destructive analysis device
JPH06194320A (en) Method and equipment for inspecting mirror face substrate in semiconductor manufacturing line and method for manufacturing
JP2010103320A (en) Semiconductor inspection apparatus
US11391756B2 (en) Probe module and probe
JPH0458622B2 (en)
JP2947288B2 (en) Semiconductor integrated circuit test apparatus and probe position control method for the apparatus
JPH10239242A (en) Apparatus and method for inspection of smooth face of sample
JPH095237A (en) Apparatus and method for measuring raman spectrum
US11977099B2 (en) Method for manufacturing semiconductor device
JPH0521561A (en) Method and equipment for detecting foreign matter on mirror wafer and method and equipment for analyzing the foreign matter
JP2006270111A (en) Method for inspecting semiconductor device and its equipment
JP3836987B2 (en) Semiconductor evaluation equipment
JP2000208448A (en) Method and apparatus for manufacturing circuit board
JPH11230972A (en) Semiconductor evaluating apparatus
KR100636011B1 (en) Defect detection apparatus