JPS59114834A - Method for measuring deep impurity level or crystal defect level contained in semiconductor device - Google Patents

Method for measuring deep impurity level or crystal defect level contained in semiconductor device

Info

Publication number
JPS59114834A
JPS59114834A JP22465282A JP22465282A JPS59114834A JP S59114834 A JPS59114834 A JP S59114834A JP 22465282 A JP22465282 A JP 22465282A JP 22465282 A JP22465282 A JP 22465282A JP S59114834 A JPS59114834 A JP S59114834A
Authority
JP
Japan
Prior art keywords
sample
crystal defect
electron beam
level
deep impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22465282A
Other languages
Japanese (ja)
Inventor
Yozo Tokumaru
徳丸 洋三
Hideyo Ogushi
秀世 大串
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP22465282A priority Critical patent/JPS59114834A/en
Publication of JPS59114834A publication Critical patent/JPS59114834A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Abstract

PURPOSE:To enable to accurately and simply perform the measurement of impurity level or crystal defect level in a micro region or the evaluation of the distribution thereof inside the surface by a method wherein a semiconductor sample is intermittently irradiated with energy beams, and the time response of the variation of capacitances or currents of the sample generated thereby is analyzed by an ICTS method. CONSTITUTION:To perform the measurement by the ICTS method, the time variation of the capacitances (or curres) of the sample S under the equal temperature after electron beam irradiation is measured by means of a capacity meter (ampere meter) 3, the analog output therefrom is digitized by an A/D converter 5a in a wave form analyzer 5, inputted and memorized in a computer 5c having wave form analyzing ability via an interface 5b, thus performing the analysis of the deep impurity level or crystal defect level. Besides, in order to display the distribution inside the surface of the impurity level or crystal defect level in bi-dimensional manner, while scanning an electron beam EB 1', the brightness modulation 10 for a CRT 9 incorporated in an electron beam irradiation device 1 can be performed by the output of the wave form analyzer 5. A DLTS method can be performed while the temperature of the sample is varied by the constitution of this device.

Description

【発明の詳細な説明】 べ発明は、半導体中に含まれる深い不純物準位或いは結
晶欠陥準位の測定方法に関し、殊に、試料における深い
不純物準位或いは結晶欠陥準位の極微小領域或いは面内
分布に関する情報を、高い位置的分解能をもって、正確
かつ簡便に得られるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring deep impurity levels or crystal defect levels contained in a semiconductor. This allows information on internal distribution to be obtained accurately and easily with high positional resolution.

現任、半導体デバイスにおいては素材である半導体に含
まれる深い不純物準位或いは結晶欠陥準位の精密評価が
極めて重要な課題となっている。それは、これらがIC
,LSI、発光素f、半導体レーザ等の性能、劣化、歩
留まりに大きな影響を与えるからである。
Currently, in semiconductor devices, precise evaluation of deep impurity levels or crystal defect levels contained in semiconductor materials is an extremely important issue. That is, these are ICs.
, the performance, deterioration, and yield of LSIs, light emitting elements f, semiconductor lasers, etc. are greatly affected.

一昔し前進は、深い不純物準位或いは結晶欠陥準位の測
定には適当な方法がなく、極めて困難であったが、DL
TS法(Deep Level  TranSient
  S pectoroscopy)が提案されて以来
、これらの測定に関しては目ざましい進歩があった。
Once upon a time, progress was extremely difficult as there was no suitable method for measuring deep impurity levels or crystal defect levels, but DL
TS method (Deep Level Transient
Significant progress has been made in these measurements since spectroscopy was proposed.

DLTS法とは、深い不純物準位或いは結晶欠陥準位の
測定を行なうのに、試料の温度を通常、液体窒素温度(
77K) カ6450 Kイ・!遅進、連続的に変化さ
せながら、pn接合やショットキ接合における空乏層に
基づく電気容量の時間的変化ΔC(t)を電圧の時間的
変化として取り出し、特定の二時刻間の信号の差をII
L度に対してX−Y記録計にプロットするもので、これ
により、深い不純物準位或いは結晶欠陥準位の情報をス
ペクトロスコピ、りに得ることかできる。
The DLTS method is used to measure deep impurity levels or crystal defect levels by changing the temperature of the sample to liquid nitrogen temperature (
77K) Ka6450K! While changing slowly and continuously, the time change ΔC(t) in the capacitance based on the depletion layer in the pn junction or Schottky junction is taken out as the time change in voltage, and the difference in the signal between two specific times is expressed as II
The L degree is plotted on an X-Y recorder, and thereby information on deep impurity levels or crystal defect levels can be obtained spectroscopy.

、−の方法では、試料温度を姐統的に変化させると言う
手法を採っているので、エネルギ的に広い範囲の不純物
或いは結晶欠陥準位の準位測定が簡単にできるという特
長をもっているが、以下に述べる重大な欠点も有してい
る。
, - method uses a method of systematically changing the sample temperature, so it has the advantage that it is easy to measure impurity or crystal defect levels over a wide range of energy. It also has significant drawbacks, which are discussed below.

尤ず イろ−・に、このづj法では、深い不純物樵位し
りいは結晶欠陥準位の微小領域における測定5或いは面
内分布の評価は不可能である。というのも、この方法で
は試料に゛電極を取付(する必黄かあるが、この電極の
大きさで位置的分解能が定まり、この゛電極の大きさは
通常、直径0゜5〜11IImの円形であるため、要求
される0、1乃至1OkI11の07 M画分iv能は
到底、これを満足させることができない。
Of course, with this method, it is impossible to measure deep impurity levels in minute regions or evaluate the in-plane distribution of crystal defect levels. This is because, although it is necessary to attach an electrode to the sample in this method, the positional resolution is determined by the size of this electrode, and the size of this electrode is usually a circular shape with a diameter of 0°5 to 11 IIm. Therefore, the required 07M fraction iv ability of 0, 1 to 1 OkI11 cannot be satisfied at all.

この問題を解決する試みとして、このDLTS法に’2
V fビーム照射を組合わせた走査DLTS法か従来か
らも提案されてはいた。この方法では、電子ビームの照
射位置を−・点に固定すれば、特定の微小領域での測定
ができる一方、ビームで試料面、J二を走査すると面内
分布に関する情報も冑ることができる。この時も、測定
信号を取り出すのには固定した゛電極が必要ではあるが
、得られる情報は電子ビームか!@射されている位置か
らのものである。即ち、亀子ビーL。
In an attempt to solve this problem, we applied the DLTS method to '2.
A scanning DLTS method that combines Vf beam irradiation has been proposed in the past. In this method, by fixing the irradiation position of the electron beam at the - point, measurements can be made in a specific minute area, while by scanning the sample surface, J2, with the beam, information about the in-plane distribution can also be obtained. . Even in this case, a fixed electrode is required to extract the measurement signal, but the information obtained is from an electron beam! @It is from the position where it is being shot. Namely, Kameko Bee L.

の直径は200A以丁に絞ることができるので、−・范
、位置的分解能だけは格段に向−(−シたのである。
Since the diameter of the beam can be reduced to less than 200A, the positional resolution is significantly improved.

然し、ごの走査DLTS法でも、DLTS法が木質的に
持つ不都合に遭遇する。即ち、既述のように、’DLT
S法では温度を変化させるため 高真空層内に加熱、冷
却装置付きの試料台を挿入せねばならず、このこと自体
、木来望ましいことではないのに加え このような試料
台を用いて試料の温度変化を行うと、試料台の熱膨張或
いは収縮が連続的に起こる。そのため、測定中に電子ビ
ームの照射位置が実質的に移動してしまうことがあり、
位置的分解能を上げようとしてビーム径を絞れば絞る程
、このスレ力く大きくなるという問題が起き易0゜更番
こ、これは走査DLTS法に限らず、DLT’S法一般
しこ就いていえることであるカ\、試料力1らの4a号
の時間変化の時定数か約1秒置りと力へなり人きくなる
と(叩ち不純物準位或(・は結、1ム欠陥樵イ弘カベか
なり深くなると) 、DLTS1夫(こよる4)1定C
±不a丁能になる。周期的に発生する7・クルレス1大
の(8号をalll定器で積分、平均化するの番こ長l
/)時用1を要し、その間に試料温度は変化してしまう
力1らであり、試料のiE確な温度と信号との関係力ヘ
イ・明確になるからである。
However, even the scanning DLTS method encounters the disadvantages that the DLTS method has. That is, as mentioned above, 'DLT
In the S method, in order to change the temperature, a sample stage with a heating and cooling device must be inserted into the high vacuum layer, which is not desirable in itself. When the temperature is changed, thermal expansion or contraction of the sample stage occurs continuously. Therefore, the irradiation position of the electron beam may actually move during measurement.
The more you narrow down the beam diameter in an attempt to increase the positional resolution, the more likely it is that this problem will increase. It can be said that the time constant of the time change of sample force No. 4a of the sample force 1 etc. is approximately every 1 second, and when the force becomes strong (the impurity level of the hammer) Hirokabe becomes quite deep), DLTS 1 husband (Koyoru 4) 1 fixed C
±Become incapacitated. Integrating and averaging the periodically occurring 7-Kurres 1 (No. 8 with all constants)
/) This is because the sample temperature changes during this period, and the relationship between the sample temperature and the signal becomes clear.

こうしたDLTS法の欠点を克月しするために、従来か
らもICTS(工sothermal Capac山n
cs  工ransient  S pectoros
copy)法治く考夏され実用に供されている。この方
法でt士試不:+温度を変化させることなし番と、一定
の試料1詰度で深い不純物準位或いは結晶欠陥準位の千
り報をスペクトロスコピ7.りに得ることかできる。
In order to overcome these drawbacks of the DLTS method, ICTS (Industrial Capacity
cs engineering ransient S pectoros
copy) It has been thoroughly considered and put into practical use. Using this method, it is possible to obtain spectroscopic information on deep impurity levels or crystal defect levels without changing the temperature and with a constant density of the sample.7. You can get it easily.

然し、従来のこのI CTS法のみでt±、Di LT
S法と同様に、高い位置的分解能や1m内千に報は得ら
れない。
However, with only this conventional ICTS method, t±, Di LT
Similar to the S method, high positional resolution and information within 1 meter cannot be obtained.

本発明は、以しに鑑与て為されたもので、電子ビーム、
光ビーム等のエネルギ・ビームを)妥用してのI CT
S法を提供せんとするものであり、不純物準位或いは結
晶欠陥準位の極微I」\領域における測定やそれらの面
内分1)5の8平1曲を正確、簡単に為せるようtこす
るものである。
The present invention was made based on the above findings, and includes an electron beam,
ICT using energy beams such as light beams
The S method is intended to provide an accurate and easy way to measure impurity levels or crystal defect levels in the ultra-fine I'\ region and their in-plane distribution 1). It is something to rub.

以下、徐Hの図面に即して、本発明の望ましい実施例に
就き詳記する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings of Xu H.

第1図は、電子ビームを川(Xて木発[町を実施するγ
こめの第−実施例用の装置構成を力くしてし\て、本発
明で対象としてし)るl CT S iJ:のみでなく
、従来構成のDLTS法も必要をこ11底:してイ史う
こともできる装置となって17)る。
Figure 1 shows how the electron beam is transmitted from the river (X to γ
By emphasizing the device configuration for the first embodiment, it is possible to apply not only the CT S iJ: which is the object of the present invention, but also the DLTS method with the conventional configuration. It becomes a device that can also be used to record history17).

電子ヒーム照用装置1は、公知の′)L査電イー顕微鏡
に電子ビームEBを断続するためのブランキング機能を
もたせたものである。電イービ゛−ム照射装置1内に配
される試料Sの試料台2(±、本発明と併用できるDL
TS法用として、試料7酷度を変化させることのできる
ものである。
The electron beam irradiation device 1 is a well-known L electron scan electron microscope provided with a blanking function for intermittent electron beam EB. Sample stage 2 (±, DL that can be used in combination with the present invention) for the sample S placed in the electric beam irradiation device 1
For use in the TS method, the severity of the sample 7 can be changed.

pn接合又はンヨッ)・主接合をもつ試料からの呑i、
+ (又は電がυの時用変化は容量計(ヌは電流計)3
にて測定され、ICTS法用の波形解析装置5及びDL
TS法用のアナログ測定器6に送られる。
from a sample with a pn junction or main junction,
+ (or change when the voltage is υ is measured by a capacitance meter (nu is an ammeter) 3
waveform analyzer 5 and DL for ICTS method.
The signal is sent to an analog measuring device 6 for the TS method.

jfl fIHパルス発生器4はプランキンク電44 
aに電子ビームのブランキング用電圧パルスを送るだめ
のものである。
jfl fIH pulse generator 4 is a Plankinck electrician 44
This is for sending voltage pulses for blanking the electron beam to a.

I CTS法での測定を行うには、゛電子ビーム照射後
の等高下の試料Sの容に(又は′屯Dij )の時間変
化を容量計(?、7.は電流λ1)3でA111定し。
To perform measurements using the ICTS method, the time change in the volume of the sample S (or Dij ) at the same height after electron beam irradiation is measured using a capacitance meter (?, 7. is current λ1). Fixed.

これからのアナログ出力をJ成形解析装置5中のA/D
コンバータ5aでティジタル化シ、・r、/ターフェイ
ス5bを介して波形解析能力を持−っ゛セr占1′M、
機に入力、記憶させ、深い不純物準位或いは結晶欠陥準
位の解析を行なう。
The analog output from now on will be sent to the A/D in the J molding analysis device 5.
The converter 5a converts the data into digital data, and the converter 5a has a waveform analysis capability via the surface 5b.
The information is input into the machine, stored, and analyzed for deep impurity levels or crystal defect levels.

また、−次元的に不純物準位或いは結晶欠陥準位の面内
分布を表示するためには、電子ビームEBを走在しつつ
、波形解析装置15からの出力で電子ど−ム照射装置l
に組込まれたCRT9の輝度変調を行えばよい。
In addition, in order to display the in-plane distribution of impurity levels or crystal defect levels in a -dimensional manner, while the electron beam EB is traveling, the output from the waveform analyzer 15 is used as the electron beam irradiation device l.
It is only necessary to perform brightness modulation of the CRT 9 incorporated in the CRT 9.

DLTS法は上記したところまでの装置構成で試料温度
を変化させつつ行なうことができる。即ち、通常のアナ
ログ的DLTS法による測定を行なうには、試料温度を
変化させつつ。
The DLTS method can be carried out using the apparatus configuration described above while changing the sample temperature. That is, in order to perform measurements using the normal analog DLTS method, the sample temperature must be varied.

容量計3からの出力をダブルボックス力〜 。Double box force output from capacitor 3.

口・2クーインアンプ、シグナルアウ゛ニレージャ等の
アナログ測定器6に導き、特定の二時点tl。
The signal is input to an analog measuring device 6 such as a two-couple amplifier or a signal receiver, and the signal is measured at two specific points in time.

t2間における信号の差を求めて、X−Yレコーダ8の
Y軸に送り、−カ、X軸には、熱゛電対等の試料温度セ
ッサの出刃を導入すれば当該DLTS法による測定、解
析が行なえる。また、アナログ測定器6がらの出力でC
RT9の輝度変調を行なえは、面内分布の丁1次元像を
得ることができる。試料温度の制御が必要な時には、波
形解析装置5を用いて行なう。尚、アナログ的DLTS
法用の装置でICTS法をアナログ的に行なうこともで
きる。
If the signal difference between t2 is determined and sent to the Y-axis of the X-Y recorder 8, and the cutting edge of a sample temperature sensor such as a thermocouple is introduced on the X-axis and the X-axis, measurement and analysis using the DLTS method can be performed. can be done. Also, the output from the analog measuring device 6
By performing brightness modulation in RT9, it is possible to obtain a one-dimensional image of the in-plane distribution. When the sample temperature needs to be controlled, the waveform analyzer 5 is used. In addition, analog DLTS
It is also possible to perform the ICTS method analogously with legal equipment.

第2図は、電子ビームに替えて、光ビームを援用して本
発明を実施するための装置の構成例’i jl’r し
ている。第1図示中の構成子に対応する構成子には同一
の符号を付して説明するが°、パルス電圧発生器4から
のブランキングパルスは直接に光源10に作用して光ビ
ームLBを断続するようになっている。光ビームは透明
なガラス板等を通して真空中或いは空気中の試料Sに照
射する。
FIG. 2 shows a configuration example of an apparatus for carrying out the present invention using a light beam instead of an electron beam. Components corresponding to those shown in the first diagram will be described with the same reference numerals, but the blanking pulse from the pulse voltage generator 4 directly acts on the light source 10 to interrupt the light beam LB. It is supposed to be done. The light beam is irradiated onto the sample S in vacuum or air through a transparent glass plate or the like.

試料台2は三次元的に移動ができるように公知技術を用
いて構成し、面内分布の測定がnf能であるようにする
。面内分布の二次元像は、CRT9に得ることができる
。尚、光ビームLBを振らせることにより、走査が可能
な場合は、試料台の可動性は試料の大まかな位置合わせ
に使用される。
The sample stage 2 is configured using a known technique so as to be movable three-dimensionally, so that the in-plane distribution can be measured with nf capability. A two-dimensional image of the in-plane distribution can be obtained on the CRT 9. Note that if scanning is possible by swinging the light beam LB, the movability of the sample stage is used for rough positioning of the sample.

その他の解析法は第一の実施例の場合と同じである。勿
論、第二実施例の場合も、DLTSθマによる解析は、
第一実施例におけると同様にアナログ解析装置の付加で
これを行なうことがきる。逆に、第2図示の装置でディ
ジタル的にD LTS法による解析を行なうこともでき
る。
Other analysis methods are the same as in the first embodiment. Of course, in the case of the second embodiment as well, the analysis using DLTSθma is
This can be done by adding an analog analyzer as in the first embodiment. Conversely, it is also possible to digitally perform analysis using the DLTS method using the apparatus shown in the second figure.

更に、公知の・rオンビーム発生装置を本発明でのエネ
ルギ・ビーム発生装置として用いても、gmオーダでの
高位置分解能での測定が可能である。
Furthermore, even if a known .r-on beam generator is used as the energy beam generator in the present invention, measurement with high positional resolution on the order of gm is possible.

尚、’Is l、2図において、7はディスプレイであ
る。
In addition, in Figure 2, 7 is a display.

以上詳記のように1本発明によ、れば、従来例の欠陥、
即ち、測定中に電子ビーム照射位置がズレるとか、大き
な時定数を持つイu号、つまり、キャップの小火付近に
ある非常に深い不純物準位或いは結晶欠陥準位の測定が
不1丁能である、等の欠陥を解消でき、等振下での測定
なので、極めて正確な測定が行なえる。また、室温でも
スベクトロスコピンクな情報が正確に得られるというこ
とも極めて大きな利点である。いづれにしても、半導体
中の深い不純物準位或いは結晶欠陥準位の極めて微小な
領域における測定が可能なこと、面内分布の評価も行な
えること、等からして、本発明の増動性は顕かであ6゜
As detailed above, according to the present invention, defects in the conventional example,
In other words, the electron beam irradiation position may shift during measurement, or it may be impossible to measure very deep impurity levels or crystal defect levels near the small flame of the cap, which has a large time constant. It is possible to eliminate defects such as oscillations, etc., and because the measurement is performed under uniform vibration, extremely accurate measurements can be performed. Another great advantage is that svectoscopic information can be obtained accurately even at room temperature. In any case, the enhancement of the present invention is possible because it is possible to measure deep impurity levels or crystal defect levels in extremely small regions in semiconductors, and it is also possible to evaluate in-plane distribution. is clearly 6°

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明の方法を実施するための装
置の概略構成図である。 図中、■は電子ビーム照射装置、2は試料h、3は容州
計又は電流計、5は波形解析装置、6はアナログ測定器
、10は光源、であ指定代理人
1 and 2 are schematic diagrams of an apparatus for carrying out the method of the present invention. In the figure, ■ is an electron beam irradiation device, 2 is a sample h, 3 is a meter or ammeter, 5 is a waveform analyzer, 6 is an analog measuring device, and 10 is a light source, and is a designated representative.

Claims (1)

【特許請求の範囲】 半導体中に含まれる深い不純物準位或いは結晶欠陥地位
の測定力法であって、 1−記#導体の試料にエネルギ・ビ゛−ムを断続的に照
射し、これにより生ずる該試料の容量又は電流変化の時
間応答をI CTS法番こより解析することを特徴とす
る半導体中に含まれる深い不純物準位或いは結晶欠陥準
位の測定方法。
[Claims] A power method for measuring deep impurity levels or crystal defect positions contained in a semiconductor, which comprises: A method for measuring deep impurity levels or crystal defect levels contained in a semiconductor, characterized by analyzing the time response of the capacitance or current change of the sample that occurs using an ICTS method.
JP22465282A 1982-12-21 1982-12-21 Method for measuring deep impurity level or crystal defect level contained in semiconductor device Pending JPS59114834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22465282A JPS59114834A (en) 1982-12-21 1982-12-21 Method for measuring deep impurity level or crystal defect level contained in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22465282A JPS59114834A (en) 1982-12-21 1982-12-21 Method for measuring deep impurity level or crystal defect level contained in semiconductor device

Publications (1)

Publication Number Publication Date
JPS59114834A true JPS59114834A (en) 1984-07-03

Family

ID=16817075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22465282A Pending JPS59114834A (en) 1982-12-21 1982-12-21 Method for measuring deep impurity level or crystal defect level contained in semiconductor device

Country Status (1)

Country Link
JP (1) JPS59114834A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187346A (en) * 1984-10-05 1986-05-02 Nippon Telegr & Teleph Corp <Ntt> Two-dimensional level image measuring method and measuring device
JPS61114543A (en) * 1984-11-09 1986-06-02 Hitachi Ltd Semiconductor evaluating unit
JPS6423545A (en) * 1987-07-17 1989-01-26 Semiconductor Res Found Device for measuring light irradiation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568841A (en) * 1979-07-04 1981-01-29 Nec Corp Measuring method of micro probe deep level
JPS5726451A (en) * 1980-07-24 1982-02-12 Agency Of Ind Science & Technol Measuring method for deep impurity level in semiconductor
JPS5784145A (en) * 1980-11-14 1982-05-26 Agency Of Ind Science & Technol Measuring device of deep impurity level in semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568841A (en) * 1979-07-04 1981-01-29 Nec Corp Measuring method of micro probe deep level
JPS5726451A (en) * 1980-07-24 1982-02-12 Agency Of Ind Science & Technol Measuring method for deep impurity level in semiconductor
JPS5784145A (en) * 1980-11-14 1982-05-26 Agency Of Ind Science & Technol Measuring device of deep impurity level in semiconductor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187346A (en) * 1984-10-05 1986-05-02 Nippon Telegr & Teleph Corp <Ntt> Two-dimensional level image measuring method and measuring device
JPH0412582B2 (en) * 1984-10-05 1992-03-05 Nippon Telegraph & Telephone
JPS61114543A (en) * 1984-11-09 1986-06-02 Hitachi Ltd Semiconductor evaluating unit
JPH0574937B2 (en) * 1984-11-09 1993-10-19 Hitachi Ltd
JPS6423545A (en) * 1987-07-17 1989-01-26 Semiconductor Res Found Device for measuring light irradiation
JPH0577334B2 (en) * 1987-07-17 1993-10-26 Handotai Kenkyu Shinkokai

Similar Documents

Publication Publication Date Title
CN109061295B (en) Near-field microwave resonator resonant frequency measurement system and method
US7091476B2 (en) Scanning probe microscope assembly
Decca et al. Constraining new forces in the Casimir regime using the isoelectronic technique
US6229138B1 (en) Scanning probe microscope assembly and method for making confocal, spectrophotometric, near-field, and scanning probe measurements and associated images
JPH07286981A (en) Method and apparatus for space resolution-type modulation differential analysis
JPH11101624A (en) Flaw evaluating device, its method, and manufacture of semiconductor
US4925298A (en) Etch pit density measuring method
CN109164136A (en) Thermoelectricity transports parameter high pass system for measuring quantity and method
US3857636A (en) Measurement of phase profile across a high power laser beam
Lamaignère et al. A powerful tool for comparing different test procedures to measure the probability and density of laser induced damage on optical materials
US9411002B2 (en) System and method for gradient thermal analysis by induced stimulus
Rubano et al. Optical second harmonic imaging as a diagnostic tool for monitoring epitaxial oxide thin-film growth
JPS59114834A (en) Method for measuring deep impurity level or crystal defect level contained in semiconductor device
Fowler et al. High accuracy measurement of aperture area relative to a standard known aperture
US5122222A (en) Frequency-domain analysis of RHEED data
US3039056A (en) Testing of semiconductors
EP0050475B1 (en) Scanning-image forming apparatus using photo electric signal
JPH0580083A (en) Method and apparatus for testing integrated circuit
Becker et al. Test and evaluation of new GEMs with an automatic scanner
US6844551B2 (en) Method of determining lattice constant, method of evaluating material by using the same and electronic microscope suitable for using the same
US6198097B1 (en) Photocharge microscope
Bloomer et al. Single-crystal diamond pixelated radiation detector with buried graphitic electrodes
JPH071780B2 (en) Method for evaluating transition region of epitaxial wafer
JPH06249863A (en) Sensor for imaging surface structure
JP2001004719A (en) Current variation measuring instrument