JPH1019693A - Method of measuring stress of semiconductor device - Google Patents

Method of measuring stress of semiconductor device

Info

Publication number
JPH1019693A
JPH1019693A JP8188857A JP18885796A JPH1019693A JP H1019693 A JPH1019693 A JP H1019693A JP 8188857 A JP8188857 A JP 8188857A JP 18885796 A JP18885796 A JP 18885796A JP H1019693 A JPH1019693 A JP H1019693A
Authority
JP
Japan
Prior art keywords
semiconductor
stress
measured
amount
band width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8188857A
Other languages
Japanese (ja)
Inventor
Kazunori Menda
和典 免田
Shigeki Yamaga
重來 山賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP8188857A priority Critical patent/JPH1019693A/en
Publication of JPH1019693A publication Critical patent/JPH1019693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the stress of a specified minute area with high resolution by comparing the energy measured value corresponding to the forbidden band width of the part to be measured of a semiconductor with that natural to the semiconductor to measure the shift tendency and shift quantity. SOLUTION: A laser beam having a photon energy larger than the forbidden band width natural to semiconductor which is emitted from a laser beam source 3 is reflected and converged by a converging mirror 6 to irradiate a sample 1. The electron excited within a semiconductor base by the emitted light emits a light when it is returned to the base state. The emitted light is incident on a spectroscope 9, and the spectrum is detected by a light detector 10 and displayed 12. In the spectrum, the line revealed on the shortest wavelength side is equal to the energy of the semiconductor forbidden band width, and the forbidden band width obtained in the state having no stress becomes the value corresponding to the forbidden band width natural to semiconductor. This stored value is compared with the sample measured value, whereby compression or extension can be judged from which side of long and short wavelength sides it is shifted on, and the stress can be measured from the shift quantity with high resolution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン半導体基
板上あるいはガリウム砒素等の化合物半導体基板上に形
成した半導体装置に内在するストレスを、非破壊で測定
する方法に関し、特に、フォトルミネッセンス法を使用
したストレス測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for non-destructively measuring a stress inherent in a semiconductor device formed on a silicon semiconductor substrate or a compound semiconductor substrate such as gallium arsenide, and more particularly to a method using a photoluminescence method. Related to a stress measurement method.

【0002】[0002]

【従来の技術】シリコン半導体基板上あるいはガリウム
砒素等の化合物半導体基板上に半導体装置を形成する場
合、半導体基板内に所定の導電型の拡散層を形成した
後、半導体基板表面に、拡散層から導出する電極配線、
電極金属を絶縁する絶縁膜あるいは表面保護膜等が形成
される。これら半導体基板表面に形成される被膜は、半
導体基板と熱膨張率が異なる場合がほとんどで、被膜の
形成条件によっては、半導体基板にストレスを内在させ
る結果となる。
2. Description of the Related Art When a semiconductor device is formed on a silicon semiconductor substrate or a compound semiconductor substrate such as gallium arsenide, a diffusion layer of a predetermined conductivity type is formed in the semiconductor substrate, and then a diffusion layer is formed on the surface of the semiconductor substrate. Electrode wiring to derive,
An insulating film or a surface protective film for insulating the electrode metal is formed. In most cases, the film formed on the surface of the semiconductor substrate has a different coefficient of thermal expansion from that of the semiconductor substrate, and depending on the conditions for forming the film, this may result in stress in the semiconductor substrate.

【0003】例えば、ガリウム砒素基板上に保護膜とし
てプラズマCVD法により窒化膜を形成する場合、ガリ
ウム砒素基板を350℃程度に加熱し、窒化膜を堆積さ
せる。その後、ガリウム砒素基板を室温に戻すと、ガリ
ウム砒素と窒化膜の熱膨張率が異なることから、ガリウ
ム砒素基板にストレスが加わることになる。ストレスが
大きい場合、ガリウム砒素基板と窒化膜が剥離し、窒化
膜が保護膜として機能しなくなり、信頼性が低下すると
いう問題が生じる。また、ガリウム砒素基板にストレス
が加わると、表面に形成されている半導体装置の電気的
特性が変化してしまう。従って、半導体基板に内在する
ストレスを知ることは、非常に重要となっている。
For example, when a nitride film is formed as a protective film on a gallium arsenide substrate by a plasma CVD method, the gallium arsenide substrate is heated to about 350 ° C. to deposit the nitride film. Thereafter, when the gallium arsenide substrate is returned to room temperature, stress is applied to the gallium arsenide substrate because the thermal expansion coefficients of the gallium arsenide and the nitride film are different. If the stress is large, the gallium arsenide substrate and the nitride film are peeled off, the nitride film no longer functions as a protective film, and there is a problem that reliability is reduced. Further, when stress is applied to the gallium arsenide substrate, the electrical characteristics of the semiconductor device formed on the surface change. Therefore, it is very important to know the stress inherent in the semiconductor substrate.

【0004】従来、半導体基板に内在するストレスを測
定する方法として、一般的に行われてきた方法を図4に
より説明する。ガリウム砒素基板21上に窒化膜22を
形成し、基板全体に加わるストレスを測定する方法で、
基板の変形量(反り)Aを測定することによって、スト
レスを測定するものである。ここで、ガリウム砒素基板
のヤング率をE、ガリウム砒素基板の厚さをd、変形量
A、ポアソン比をv、窒化膜の厚さをt、基板の大きさ
lとすると、ストレス(応力)量Xは、 X=E・d2・A/(3(1−v)t・l2) で表すことができる。
[0004] Conventionally, as a method of measuring the stress inherent in a semiconductor substrate, a generally performed method will be described with reference to FIG. A method of forming a nitride film 22 on a gallium arsenide substrate 21 and measuring stress applied to the entire substrate,
The stress is measured by measuring the amount of deformation (warpage) A of the substrate. Here, assuming that the Young's modulus of the gallium arsenide substrate is E, the thickness of the gallium arsenide substrate is d, the deformation amount A, the Poisson's ratio is v, the thickness of the nitride film is t, and the size of the substrate is l, stress (stress) The quantity X can be represented by X = E · d2 · A / (3 (1-v) t · l2).

【0005】しかしこの方法は、変化量Aを測定するこ
とができる程大きい面積の基板のストレス量を測定する
方法であり、ガリウム砒素基板全体に内在するストレス
量を測定できるにすぎない。つまり、ガリウム砒素基板
上の所定の位置(特定した微小領域)のストレス量を測
定することができない。さらに、測定できるストレス量
は、109dyn/cm2以上であり、測定の分解能が低
いという欠点があった。
However, this method is a method of measuring the stress amount of a substrate having an area large enough to measure the change amount A, and can only measure the stress amount existing in the entire gallium arsenide substrate. That is, the amount of stress at a predetermined position (specified minute region) on the gallium arsenide substrate cannot be measured. Furthermore, the measurable stress amount is 10 9 dyn / cm 2 or more, and there is a disadvantage that the measurement resolution is low.

【0006】[0006]

【発明が解決しようとする課題】従来のストレス測定方
法では、微小領域の測定ができず、分解能も低いという
問題点があった。本願発明は、上記問題点を解消し、半
導体基板上に形成された半導体装置の特定微小領域のス
トレス量を測定することが可能で、高い分解能を有する
ストレス測定方法を提供することを目的とする。
However, the conventional stress measurement method has a problem that a minute area cannot be measured and the resolution is low. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a stress measurement method having a high resolution capable of measuring a stress amount in a specific minute region of a semiconductor device formed on a semiconductor substrate. .

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するため、フォトルミネッセンス法を用いて、半導体の
被測定部の禁制帯幅に相当するエネルギー値あるいは波
長を測定し、その測定値と本来半導体が有する固有の禁
制帯幅に相当するエネルギー値あるいは波長とを比較
し、そのシフトする傾向から半導体に加わるストレス
が、伸張あるいは収縮のいずれであるかを、またシフト
量からそのストレス量を測定するものである。その測定
は、フォトルミネッセンス法に使用する光源のスポット
径の範囲で行われ、109dyn/cm2以下のストレス
量の測定が可能となった。
According to the present invention, in order to achieve the above object, an energy value or a wavelength corresponding to a forbidden band width of a measured portion of a semiconductor is measured by using a photoluminescence method. By comparing the energy value or wavelength corresponding to the intrinsic band gap inherent in the semiconductor, the tendency of the shift to determine whether the stress applied to the semiconductor is expansion or contraction, and the shift amount to determine the stress amount It is to be measured. The measurement was performed within the range of the spot diameter of the light source used for the photoluminescence method, and the measurement of the stress amount of 10 9 dyn / cm 2 or less became possible.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を、ガ
リウム砒素基板を例に取り説明する。まず、図1にフォ
トルミネッセンス法の説明図を示す。図に示すように、
レーザー電源2により励起されたレーザー光が、レーザ
ー光源3から放射され、干渉フィルタ4、光チョッパ5
を介し、集束鏡6で反射され集束され、試料1上の所望
の位置に照射される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below by taking a gallium arsenide substrate as an example. First, FIG. 1 shows an explanatory diagram of the photoluminescence method. As shown in the figure,
The laser light excited by the laser power supply 2 is emitted from the laser light source 3, and the interference filter 4 and the optical chopper 5
The light is reflected by the focusing mirror 6 and focused, and is irradiated to a desired position on the sample 1.

【0009】照射する光は、ガリウム砒素の禁制帯幅よ
り大きい光子エネルギーを有するレーザー光を選択す
る。尚、コヒーレント光であれば、レーザー光に限定さ
れることはない。レーザー光の照射によって、ガリウム
砒素基板内の電子が励起され、この励起された電子が基
底状態に戻る際、発光が生ずる。この発光光は、集束レ
ンズ7、光源カットフィルタ8を介して分光器9に入射
する。
As the irradiation light, a laser beam having a photon energy larger than the band gap of gallium arsenide is selected. Note that the light is not limited to laser light as long as it is coherent light. The irradiation of the laser light excites electrons in the gallium arsenide substrate, and when the excited electrons return to the ground state, light emission occurs. This emitted light enters the spectroscope 9 via the focusing lens 7 and the light source cut filter 8.

【0010】分光器9により分光されたスペクトルは、
光検知器10で検知され、位相検波増幅器11で増幅さ
れ、オシロスコープ等からなる表示器12に表示され
る。
The spectrum split by the spectroscope 9 is
The light is detected by a photodetector 10, amplified by a phase detection amplifier 11, and displayed on a display 12 such as an oscilloscope.

【0011】このようにして得られたスペクトルの内、
最も短波長側に現れるラインが、その半導体の禁制帯幅
のエネルギーに等しいことが知られている。測定する半
導体基板にストレスが加わっていない場合、このように
して得られた禁制帯幅が、半導体固有の禁制帯幅に相当
する値となる。尚、表示器12に表示される値は、エネ
ルギー量、波長いずれでも良い。
[0011] Of the spectra thus obtained,
It is known that the line appearing on the shortest wavelength side is equal to the energy of the band gap of the semiconductor. When no stress is applied to the semiconductor substrate to be measured, the forbidden band width obtained in this manner has a value corresponding to the forbidden band width inherent to the semiconductor. The value displayed on the display 12 may be either the energy amount or the wavelength.

【0012】このような測定方法により、ガリウム砒素
基板に圧縮あるいは伸張のストレスを加えた試料の波長
の測定結果を、図2に模式的に示す。図に示すように、
圧縮のストレスが加わると長波長側にシフトし、伸張の
ストレスが加わると短波長側にシフトすることがわかっ
た。
FIG. 2 schematically shows the results of measurement of the wavelength of a sample in which a gallium arsenide substrate is subjected to a compressive or tensile stress by such a measuring method. As shown in the figure,
It was found that when a compressive stress was applied, the wavelength shifted to a longer wavelength, and when an extension stress was applied, the wavelength shifted to a shorter wavelength.

【0013】このような変化は、先に説明した従来の測
定方法と相関があることもわかった。発光ピークの波長
変化(シフト)量を縦軸に、従来の測定方法により測定
したストレス量を横軸に示すと、図3に示すような関係
が得られた。この関係は、圧縮、伸張いずれのストレス
に対しても同様な関係を有することもわかった。
It has also been found that such a change correlates with the conventional measurement method described above. When the wavelength change (shift) amount of the emission peak is shown on the vertical axis and the stress amount measured by the conventional measurement method is shown on the horizontal axis, the relationship shown in FIG. 3 was obtained. It was also found that this relationship has a similar relationship for both compression and extension stress.

【0014】従って、予め、半導体基板のストレスのな
い状態の禁制帯幅に相当する値を記憶しておき、試料の
測定から得られる値と比較すれば、その値が長波長側に
移動するか、短波長側に移動するかによって、圧縮、伸
張いずれであるかを知ることができる。また、そのシフ
ト量から試料に加わるストレス量を知ることができる。
Therefore, if a value corresponding to the forbidden band width of the semiconductor substrate in a stress-free state is stored in advance and compared with a value obtained from measurement of the sample, it is determined whether the value moves to the longer wavelength side. , It is possible to know whether it is compression or expansion by moving to the shorter wavelength side. Further, the amount of stress applied to the sample can be known from the shift amount.

【0015】尚、半導体の種類によって、シフト量に対
するストレス量に違いがあるので、半導体の種類に応じ
て、図3に示すグラフを予め作成しておく必要がある。
また、同じ半導体でも、結晶方位によっても、シフト量
に対するストレス量が異なるため、結晶方位に応じたグ
ラフも用意する必要がある。
Since there is a difference in the amount of stress with respect to the shift amount depending on the type of semiconductor, it is necessary to prepare a graph shown in FIG. 3 in advance according to the type of semiconductor.
Further, even in the same semiconductor, the amount of stress with respect to the shift amount differs depending on the crystal orientation, and therefore, it is necessary to prepare a graph corresponding to the crystal orientation.

【0016】本発明のストレス測定方法では、レーザー
光のスポット径が、測定範囲となる。フォトルミネッセ
ンス法に使用される装置では、1um2程度のビーム径
を使用することから、1um2程度の範囲でストレス量
を測定することが可能となる。また、光検出器の波長測
定能力は、1オングストローム以下であることから、測
定可能なストレス量は109dyn/cm2以下であるこ
とはわかる。
In the stress measuring method according to the present invention, the spot diameter of the laser beam is the measuring range. Since the apparatus used for the photoluminescence method uses a beam diameter of about 1 μm 2, it is possible to measure the stress amount in a range of about 1 μm 2. Further, since the wavelength measuring ability of the photodetector is 1 angstrom or less, it can be seen that the measurable stress amount is 10 9 dyn / cm 2 or less.

【0017】このような測定を実施するための装置とし
ては、照射されるレーザー光と試料の所定の被測定部を
調整するため、試料を固定する載置台、あるいはレーザ
ー光の照射部をマイクロメータの範囲で微動可能とした
り、所望の位置にレーザー光が照射されていることを確
認するため顕微鏡を備えた構成とすればよい。また、レ
ーザー光の照射位置を移動させながら測定することによ
り、ストレス量の変化をマッピングすることも可能であ
る。更に、必要に応じて、クライオスタットを用い、測
定温度を可変とすることも可能である。
As a device for performing such a measurement, a mounting table for fixing a sample or a laser beam irradiating portion is used to adjust a laser beam to be irradiated and a predetermined portion to be measured of the sample. Or a structure provided with a microscope to confirm that a desired position is irradiated with the laser beam. Further, it is also possible to map the change in the amount of stress by measuring while moving the irradiation position of the laser light. Further, if necessary, a cryostat can be used to make the measurement temperature variable.

【0018】以上、ガリウム砒素について説明を行って
きたが、ガリウム砒素に限らず、他の化合物半導体やシ
リコン半導体についても、本願発明の方法が微小領域の
ストレス測定方法として有効であることはいうまでもな
い。
Although gallium arsenide has been described above, it goes without saying that the method of the present invention is effective not only for gallium arsenide but also for other compound semiconductors and silicon semiconductors as a method for measuring stress in a minute region. Nor.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、1
um2程度の微小領域のストレス量を、109dyn/c
m2以下の高精度で測定することが可能となった。ま
た、測定可能な試料は、レーザー光のスポット径より大
きければ良く、従来測定できなかった半導体基板を切断
し、チップ化した半導体装置であっても、ストレス量の
測定が可能となった。
As described above, according to the present invention, 1
The amount of stress in a micro area of about um2 is 10 9 dyn / c
It has become possible to measure with high accuracy of m2 or less. The sample that can be measured only needs to be larger than the spot diameter of the laser beam, and the measurement of the stress amount can be performed even in a semiconductor device in which a semiconductor substrate, which could not be measured conventionally, is cut into chips.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フォトルミネッセンス法を説明するための説明
図である。
FIG. 1 is an explanatory diagram for explaining a photoluminescence method.

【図2】本発明の実施の形態を説明する説明図である。FIG. 2 is an explanatory diagram illustrating an embodiment of the present invention.

【図3】本発明の実施の形態を説明する説明図である。FIG. 3 is an explanatory diagram illustrating an embodiment of the present invention.

【図4】従来のストレス測定方法の説明図である。FIG. 4 is an explanatory diagram of a conventional stress measurement method.

【符号の説明】[Explanation of symbols]

1 試料 2 レーザー電源 3 レーザー光源 4 干渉フィルタ 5 光チョッパ 6 集束鏡 7 集束レンズ 8 光源カット用フィルタ 9 分光器 10 光検知器 11 位相検波増幅器 12 表示器 21 ガリウム砒素基板 22 窒化膜 REFERENCE SIGNS LIST 1 sample 2 laser power supply 3 laser light source 4 interference filter 5 optical chopper 6 focusing mirror 7 focusing lens 8 light source cut filter 9 spectroscope 10 photodetector 11 phase detection amplifier 12 display 21 gallium arsenide substrate 22 nitride film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成された半導体装置の
被測定部に、前記半導体固有の禁制帯幅より大きい光子
エネルギーを有する光を照射し、該光によって励起され
た電子状態からもとの基底状態に戻るとき前記半導体か
ら放射される発光スペクトルの前記半導体の禁制帯幅に
相当する値を測定し、該測定された値と前記半導体固有
の禁制帯幅に相当する発光スペクトルの値とを比較する
ことにより、前記被測定部に内在する圧縮あるいは伸張
のストレス量を測定することを特徴とする半導体装置の
ストレス測定方法。
An object to be measured of a semiconductor device formed on a semiconductor substrate is irradiated with light having a photon energy larger than the band gap specific to the semiconductor, and an original state of electrons excited by the light is restored. When returning to the ground state, a value corresponding to the band gap of the semiconductor of the emission spectrum emitted from the semiconductor is measured, and the measured value and a value of the emission spectrum corresponding to the band gap specific to the semiconductor are measured. A method for measuring stress of a semiconductor device, comprising measuring an amount of compression or expansion stress inherent in the measured portion by comparing.
【請求項2】 請求項1記載の半導体装置のストレス測
定方法において、前記被測定部に内在する圧縮あるいは
伸張のストレス量は、前記発光スペクトルの前記半導体
の禁制帯幅に相当する波長を測定し、該測定波長と前記
半導体固有の禁制帯幅に相当する波長とを比較し、前記
測定波長が長波長側にシフトするとき、該シフト量に応
じた圧縮のストレス量を算出し、短波長側にシフトする
とき、該シフト量に応じた伸張のストレス量を算出する
ことを特徴とする半導体装置のストレス測定方法。
2. The method for measuring stress in a semiconductor device according to claim 1, wherein the amount of compression or expansion stress existing in the measured part is obtained by measuring a wavelength corresponding to a band gap of the semiconductor in the emission spectrum. Comparing the measured wavelength with a wavelength corresponding to the semiconductor-specific bandgap, when the measured wavelength shifts to a longer wavelength side, calculates a compression stress amount according to the shift amount, and calculates a shorter wavelength side. And calculating a stress amount of expansion according to the shift amount when shifting.
JP8188857A 1996-06-27 1996-06-27 Method of measuring stress of semiconductor device Pending JPH1019693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8188857A JPH1019693A (en) 1996-06-27 1996-06-27 Method of measuring stress of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8188857A JPH1019693A (en) 1996-06-27 1996-06-27 Method of measuring stress of semiconductor device

Publications (1)

Publication Number Publication Date
JPH1019693A true JPH1019693A (en) 1998-01-23

Family

ID=16231077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8188857A Pending JPH1019693A (en) 1996-06-27 1996-06-27 Method of measuring stress of semiconductor device

Country Status (1)

Country Link
JP (1) JPH1019693A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327843A (en) * 2003-04-25 2004-11-18 Toppan Printing Co Ltd Method of evaluating stress of amorphous silicon and its compound thin film
KR100684544B1 (en) 2005-07-15 2007-02-20 호서대학교 산학협력단 Apparatus for measuring stress of wafer in high temperature process of high speed temperature variation
JP2018146300A (en) * 2017-03-02 2018-09-20 国立大学法人九州大学 Pressure sensing material and pressure measurement method in ultra-high pressure region
CN115452217A (en) * 2022-10-19 2022-12-09 江苏华兴激光科技有限公司 Semiconductor surface stress distribution detection device and detection method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327843A (en) * 2003-04-25 2004-11-18 Toppan Printing Co Ltd Method of evaluating stress of amorphous silicon and its compound thin film
KR100684544B1 (en) 2005-07-15 2007-02-20 호서대학교 산학협력단 Apparatus for measuring stress of wafer in high temperature process of high speed temperature variation
JP2018146300A (en) * 2017-03-02 2018-09-20 国立大学法人九州大学 Pressure sensing material and pressure measurement method in ultra-high pressure region
JP2022000644A (en) * 2017-03-02 2022-01-04 国立大学法人九州大学 Pressure sensing material and pressure measurement method in ultra-high pressure region
CN115452217A (en) * 2022-10-19 2022-12-09 江苏华兴激光科技有限公司 Semiconductor surface stress distribution detection device and detection method thereof

Similar Documents

Publication Publication Date Title
Donnelly et al. Infrared‐laser interferometric thermometry: A nonintrusive technique for measuring semiconductor wafer temperatures
US4807994A (en) Method of mapping ion implant dose uniformity
US4273421A (en) Semiconductor lifetime measurement method
JPH11511240A (en) Optical techniques for measuring properties of changed materials.
JPS6258143A (en) Method of optically detecting defect of semiconductor material
JPS60203840A (en) Microwave measuring method and microwave measuring device for noncontacting non-destructive test of photosensitive material
US20040253751A1 (en) Photothermal ultra-shallow junction monitoring system with UV pump
JP2008191123A (en) Crystallinity measuring instrument for thin film semiconductor, and method therefor
US7307727B2 (en) Method and apparatus for forming substrate for semiconductor or the like
Fauchet et al. Long range material relaxation after localized laser damage
JPH1019693A (en) Method of measuring stress of semiconductor device
US6786637B2 (en) Temperature measurement of an electronic device
Khriachtchev et al. Free-standing silica film containing Si nanocrystals: Photoluminescence, Raman scattering, optical waveguiding, and laser-induced thermal effects
Guidotti et al. Novel and nonintrusive optical thermometer
US7133128B2 (en) System and method for measuring properties of a semiconductor substrate in a non-destructive way
JP3836987B2 (en) Semiconductor evaluation equipment
He et al. Development of surface thermal lensing technique in absorption and defect analyses of optical coatings
JP2740903B2 (en) Evaluation method for compound semiconductor substrate
CN117388664B (en) Semiconductor wafer minority carrier lifetime imaging system and method
JPH071780B2 (en) Method for evaluating transition region of epitaxial wafer
JP2890616B2 (en) Wiring forming method and apparatus
Moretti et al. Characterization of GaAs/Al/sub x/Ga/sub 1-x/As structure using scanning photoluminescence
Kuball et al. Integrated Raman–IR Thermography for Reliability and Performance Optimization and Failure Analysis of Electronic Devices
JP2932238B2 (en) Evaluation method of compound semiconductor
JPH08264609A (en) Lifetime measuring method for semiconductor